• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Femtosecond Two-Photon Detachment of Cu-Studied By Photoelectron Imaging

    2014-07-18 11:51:52BenkangLiuYanqiuWangLiWang
    CHINESE JOURNAL OF CHEMICAL PHYSICS 2014年2期

    Ben-kang Liu,Yan-qiu Wang,Li Wang

    Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,China

    (Dated:Received on September 12,2013;Accepted on October 14,2013)

    ARTICLE

    Femtosecond Two-Photon Detachment of Cu-Studied By Photoelectron Imaging

    Ben-kang Liu,Yan-qiu Wang,Li Wang?

    Dalian Institute of Chemical Physics,Chinese Academy of Science,Dalian 116023,China

    (Dated:Received on September 12,2013;Accepted on October 14,2013)

    The wavelength dependence of photoelectron angular distributions(PADs)of two-photon detachment of Cu-has been directly studied by using the photoelectron map imaging.Results show that for the laser f i eld intensity of 6.0×1010W/cm2,PADs exhibit dramatic change with the external f i eld wavelength.Comparison between the experimental observation and the lowest-order perturbation theory prediction indicates that the pattern of PADs can be explained by the interference of the s and d partial waves in the f i nal state.Relative contributions of s and d partial waves in the two-photon detachment at dif f erent laser wavelengths are obtained.

    Femtosecond,Two-photon detachment,Photoelectron velocity imaging,Cu-

    I.INTRODUCTION

    The excess electrons in negative ions are bound in a short-range potential on the order of r-4(r is the distance between the electron and the nucleus),with the H-ion being the only exception[1].This shortrange potential gives rise to a number of exotic properties of negative ions that are dif f erent from neutral atoms or positive ions,in which electrons are bound in a long-range Coulomb potential,proportional to r-1. Photodetachment of the“extra”electrons from anions has proven to be the most accurate technique for investigating the structural properties of anions.The photodetachment process is a boundary-free transition, which provides a unique opportunity to examine electron correlation ef f ects,leaving a neutral atomic core in the presence of short-ranged potentials.Subtle interactions,such as electron correlation and relativistic ef f ects can be investigated in photodetachment studies,which are veiled by the long-range Coulomb potential in the photoionization of neutral species or positive ions.The experimental observation of the excess-photon detachment of negative ions was reported for Cl-and Au-systems[2,3]and was similar to the above-threshold ionization or excess-photon ionization in neutral or cation systems.Previous studies suggested that the detachment process near the negative threshold followed the Wigner threshold law[4,5].In the vicinity of the detachment threshold,the photodetachment cross section has the form

    where l is the angular momentum of the outgoing electron and E is its excess energy.The photodetachment of anions in the vicinity of the detachment threshold has drawn great attention,since in this energy range the electron-correlation ef f ects and interferences become more prominent.

    The photoelectron velocity mapping technique provides a valuable approach for investigating the photodetachment of anions[6,7].The photoelectron angular distributions(PADs)carry the signature of the electronic structure of the anion,the neutral species and the symmetry of the wave function for the detached electron[8,9],which may provide insight into the partial wave composition of the molecular orbitals through which the detachment process occurs[6,10-12].PADs are typically well described by the single-electron model in which the orbital angular momentum of the incoming photon is coupled only to the detaching electron neglecting all interactions involving the neutral core[13, 14].Thus,emission from an s-orbital yields a β value of+2,while emission from a p-orbital(or higher orbital angular momentum state)results in two partial waves that can interfere to yield any β value between-1 and +2.However,near the autoionization and autodetachment resonances threshold,electron correlations could be signif i cant and could induce a twist in the spectral dependency of the asymmetry parameters,as predicted theoretically[15]and observed experimentally near the autoionizing resonances of two-photon-excited iodine atoms[16].Signif i cant electron correlations in either the initial bound or f i nal continuum state change the asymmetry parameter from that predicted by the single-electron model.Remarkable deviations in the asymmetry parameter can provide a convenient probe for autodetachment resonances.Experimental probing of such a deviation from the single-electron model isnecessary in anions whose electronic structure and dynamics are largely determined by the electron correlations[17].Recent photodetachment experiments of sodium cluster anions have indicated that PADs deviate strongly from the predictions of single-electron models, indicating that the correlated multi-electron e ff ects play a distinct role in the photoemission process[18].

    Previous studies on detachment of H-indicated that two-photon detachment was di ff erent from one-photon process.The PAD in the two-photon detachment was found to change dramatically with laser intensity.At the lower intensity,1.3×1011W/cm2,the PAD had a maximum distribution along the direction of the laser polarization,which could be described by a superposition of s and d waves with their relative phase taken into account.At an intensity of 6.5×1011W/cm2,the PAD had a bell-like appearance with the maximum pointing perpendicular to the laser polarization.The semiclassical Keldysh-Faisal-Reiss(KFR)theory was used to explain this behavior[19].The detached electron could tunnel into the continuum at di ff erent times within a period of the fi eld oscillation,resulting in a continuum of wave functions with di ff erent phases at which electrons were emitted.The superposition of these wave functions with di ff erent phases led to a speci fi c PAD dependence on the laser intensity.Non-perturbative Floquet theory predicted that,while the laser fi eld intensity was fi xed,similar e ff ects would be observed under di ff erent laser frequencies[20].In multiphoton detachment by a linearly polarized laser fi eld,the quantum interference e ff ects of the electrons emitted in such a process show a characteristic distribution in the angle-resolved energy spectrum[19,21].Semi-analytical approaches,such as the adiabatic saddle-point model of Gribakin and Kuchiev[23]based on the Keldysh approximation[24], have been successfully applied in quantitatively describing the interaction of negative atomic ions with femtosecond[22,25]and few-cycle ultrafast infrared laser fi elds[26].The dependence of PADs on the laser intensity was predicted theoretically by the time-dependent Schr¨odinger equation using the Sturmian-Floquet approach[27].

    Multi-photon ionization of atoms or molecules and multi-photon detachment of negative ions in an ultrafast laser fi eld are very interesting non-perturbative quantum mechanical phenomena,which have been a hot topic of chemical physics in the past two decades both theoretically and experimentally[1,19,22-29].Theoretically,multi-photon detachment is well described by the quantum-mechanical models based on the strongfi eld approximation(SFA)[24].Negative ions represent such a structure,which constitutes simpler systems than neutral atoms due to the absence of the net Coulomb attraction between the active electron and neutral atom.The Coulomb e ff ects are the main problem of the SFA,which fails to explain the low-energy spectra in some laser parameters regimes.In addition, the atomic potential for negative ions can be well modeled by a zero-range potential[30].So the multi-photon detachment of negative ions has been treated as an ideal process to verify the SFA theory.

    FIG.1 Simplif i ed energy-level diagram for Cu and Cu-. Energies of neutral-atom states are marked with respect to the ground state of Cu-.Three laser wavelengths of 1448 nm(solid arrow),1495 nm(dash dot arrow),1597 nm (dash arrow)are investigated in this work

    In this work,we report on the wavelength dependence of two-photon detachment of Cu-.Cu-has been extensively studied with one-photon detachment for probing the electron-electron correlation ef f ects[12,31,32]. An energy-level diagram of the relevant states is shown in Fig.1,based upon these previous researches[33,34]. Our femtosecond two-photon detachment experiments of Cu-indicate that the PADs has an unusual shape with a maximum pointing perpendicular to the laser polarization,and the relative intensities of dif f erent components in PADs change intensively with the laser wavelengths.An adiabatic-theory approach to the multiphoton problems proposed by Gribakin and Kuchiev[23]is applied for understanding our observations.Relative contributions from s and d partial waves in the twophoton detachments at dif f erent laser wavelengths are also obtained.

    II.EXPERIMENTS

    The experimental setup for studying photodetachment of anions is illustrated in Fig.2(a).Copper anions are formed from a laser vaporization metal cluster source in which the second harmonic output(532 nm) of a neodymium-doped yttrium aluminum garnet laser (YAG laser,Quantel Brilliant)with a pulse duration of 5 ns operating at 20 Hz is focused on a rotating and translating copper rod to form a plasma shown in Fig.2(b).The metal plasma is then cooled using a helium carrier gas(99.9%)at a stagnation pressure of 0.4 MPa and is expanded into a vacuum through a pulsed valve(General Valve Corp.).As shown in Fig.2(a),the central portion of the negative ions is extracted perpendicularly and accelerated into a McLaren-Wiley TOF mass spectrometer using a -1.4 kV high-voltage pulse.

    FIG.2Schematic drawing of the experimental setup. (a)Laser vaporization metal cluster source,(b)details of laser vaporization metal cluster source.

    Mass selection is achieved via three electrodes with a time-delayed,pulsed electric f i eld applied to the central electrode.The selected negative ions are then refocused onto the center of a time-delayed,pulsed velocitymapping two-stage electric f i eld and are photodetached by a time-delayed femtosecond laser pulse.The detached photoelectrons are accelerated and velocityfocused toward a position-sensitive detector.After f l ying through a 40 cm f i eld-free region,which is shielded against stray magnetic f i elds by aμ-metal tube,the photoelectrons are mapped onto a two-stage microchannel plate(MCP)detector backed by a phosphor screen.Images on the screen are captured using a thermoelectrically cooled charge-coupled device video camera(LAVISION Inc.Imager QE).All photoelectron images are reconstructed using the pBASEX program [35,36],which can yield both the photoelectron energy spectra and the PADs[37].

    Linearly polarized laser wavelengths of 1448,1495, and 1597 nm are generated in a commercial optical parametric amplif i er(Quantronix/Light Conversion, TOPAS)pumped by the fundamental output(centered at 817 nm with a 30 nm FWHM bandwidth and a 70 fs pulse width)of a solid-state femtosecond laser at a 20 Hz repetition rate with a 10 mJ/pulse.The laser pulse width is determined via single-shot intensity autocorrelation.The pulse energies at these wavelengths are maintained at approximately 200μJ in the interaction region.The laser beam is focused with a 50 cm focal-length lens with a polarization direction parallel to the detector plane.

    III.RESULTS AND DISCUSSION

    Figure 3 illustrates the femtosecond photodetachment results of Cu-at 1448,1495,and 1597 nm at a fi xed intensity of 6.0×1010W/cm2.The kinetic energy of detached photoelectron can be described as

    FIG.3 Photodetachment results of Cu-at(a)1448 nm, (b)1495 nm,and(c)1597 nm at a f i xed intensity of 6.0×1010W/cm2.Right column:reconstructed photoelectron images,left column:the corresponding photoelectron spectra.Double arrow lines in right column represent the directions of the laser polarization.

    where Evis the one photon energy,and Edis the electron detachment energies,1.235 eV for Cu-[33, 34].The largest peaks in the photoelectron kinetic energy spectra(PES)in Fig.3 represent the two-photon detachment channels of Cu-(1S0+2hν→2S1/2+e-). Weak peaks in PES,correspond to the f i rst-order above threshold detachment,three-photon detachment, (1S0+3hν→2S1/2+e-)of Cu-.Currently,we mainly focus on the two-photon detachment process of Cu-. The laser intensities at these wavelengths are carefully controlled to maximize the two-photon detachment signals and to minimize the unexpected multiphoton detachment processes,such as three-or four-photon process.The laser peak intensities in the interaction region are estimated to be about 6×1010W/cm2at these wavelengths by measuring the focus size based on the pinhole method.As shown in Fig.3,one can visually conclude that the angular distributions of photoelectron from the two-photon detachments change dramatically with the laser wavelengths.

    FIG.4 PADs of the two-photon detachment of Cu-at(a)1448 nm,(b)1495 nm,and(c)1597 nm at a f i xed intensity of 6.0×1010W/cm2.Circle symbol:the experimental data;solid lines:the f i tting results,dashed lines:the theoretical calculations.

    Figure 4 illustrates the PADs of the two-photon detachment channel of Cu-at given laser intensities and these three wavelengths.Clearly,the PADs consist of main lobes(along the directions of the laser polarization)and central jets(perpendicular to the laser polarization).Relative intensities of the central jet to that of the main lobe vary with the laser wavelength,as shown in Fig.4.The pattern of the PADs of two-photon detachment of Cu-is similar to that found in the experiment on two-photon detachment of H-and X-(X=F, Br)for they represent a negative ion with a short-range interaction between the loosely bound electron and the core[19,22].In the case of X-(X=F,Br)[22],since the laser intensity in the detachment experiment was about 6.0×1014W/cm2,the angle resolved momentum distribution consisted of a few excess photon detachment peaks,which were due to ponderomotively broadening ef f ect.At higher electron momenta,however,there were the well-pronounced jets pointing along the laser polarization direction,which were supposed to be due to the contribution from the subsequent ionization of neutral atom(the sequential double detachment)[22].In our experiments,the laser intensity is kept at about 6.0×1010W/cm2,which is much lower than the experimental laser conditions in Refs.[19,22].The sequential double detachment process cannot be reachable and the ponderomotive energy shift is estimated less than 0.01 eV.

    As illustrated in Fig.3,it is evident that the ratio of the height of the central jets to that of the main lobes increases with the laser wavelength.Similar to the wavelength dependence,this PAD behavior can be attributed to the Wigner threshold law[5].As explained by Telnov and Chu[20],when the laser intensity increases with a f i xed wavelength,the larger ponderomotive shift results in a drift of the two-photon detachment channel towards the detachment threshold,which changes the relative contributions of the s and d waves to the detachment amplitude and,as a result,the shape of the PADs.

    The PAD patterns of two-photon detachment of Cu-are similar to those f i ne structures in the two-photon detachment experiments of H-and X-[19,22].An adiabatic-theory approach to the multiphoton problems proposed by Gribakin and Kuchiev were successfully applied in describing multiphoton detachment results of H-and X-[23].In this theory,a saddlepoint method have been used to give a simple analytical solution to the problem of multi-photon detachment by a monochromatic linearly polarized laser f i eld F(t)=Fcosωt.The dif f erential n-photon detachment rate of negative ion for the electron in the initial state l,m can be represented as Eq.(3):

    where ωnis the total n-photon detachment rate, dωn/d? is the dif f erential n-photon detachment rate, A=1.2 is the asymptotic parameter of the bound-state radial wavefunction of the ground state of Cu-,p is the photoelectron momentum,θ is the emission anglewith respect to the polarization axis,is the associated Legendre function,κ is determined by the energy of the bound state E0=-κ2/2,F is the fi eld strength of the laser fi eld,ω is the frequency of the laser fi eld, n is the number of the photons.The signs±in the sμand cμcorrespond to the two saddle pointsμ=1,2.An explicit expression for the saddle points can be found in Ref.[23].

    As illustrated in Fig.4,the oscillatory features at different laser wavelengths are reproduced well.According to the theory,these oscillatory behaviors can be attributed to the quantum interference from the two saddle point contributions.Although the main characters are quite close to the experimental results,the magnitudes between theoretical calculations and experimental results di ff er signi fi cantly at particular angles. This disagreement may be due to several reasons.The important features of ultrafast laser,the carrier envelope phase and the cycle number,may play a crucial role in the nonlinear interaction with matter[20,28, 38],and current theory does not consider these parameters.In addition,Keldysh-based theories are based upon one-electron approximation,while many-electron e ff ects are well known to a ff ect signi fi cantly both the electron structure and the photodetachment of negative ions.Furthermore,the dipole moment,induced by the outer electron in the atomic core due to the ac fi eld [39],may also be a key factor,which is not considered in these theoretical approaches.Evidently,accurate theoretical approach is needed for fully understanding the two-detachment of anions by femtosecond laser.

    The dramatic changes in PADs with the laser wavelength can be understood as the Wigner threshold e ff ect [5].Based upon the Wigner threshold law,the lowestorder perturbation theory(LOPT)were proposed for understanding the two-photon detachment process by intense laser fi eld[20].It has been proven that even for the intensity as high as 6.5×1011W/cm2,PADs can be well described by LOPT in the two-photon detachment amplitude[20].Thus,we can expand the PADs as a function of the angle θ between the detection and laser fi eld directions on the basis of the Legendre polynomials.

    wphere Anpis the photodetachment amplitude,factorsare added as normalization coefficients for the Legendre polynomials.The mixing coefficient δ

    TABLE I Anisotropy parameters and partial-wave contributions of the two-photon detachment channel.

    can be calculated by f i tting the PADs:

    Contributions of s and d partial waves can be expressed as follows

    Therefore,contributions of s and d partial waves can be obtained by f i tting the experimental results using Eqs.(11)-(16),as illustrated in Fig.4.The wavelength dependent partial-wave amplitudes with the f i tting results of experimental PADs are list in Table I.The two saddle-point approach[23],which is the basis of our data analysis,is developed for describing the quantum interference between the two detachment points in each optical cycle.Therefore,contributions from dif f erent partial waves determine the f i nal PAD pattern.As indicated in Table I,the relative contributions of s and d partial waves change heavily with the laser wavelength. According to the adiabatic-theory[23],dif f erent contributions from the two quantum detached channels result in the f i nal changing PADs.Therefore,the relative contributions of s and d partial waves in Table I,obtained from the experimental varying PADs ref l ect the interference ef f ects at dif f erent laser wavelengths.The s wave dominates in the vicinity of the threshold.The tendency is indeed consistent with the Wigner threshold law.

    IV.CONCLUSION

    In summary,we have presented the wavelength dependence of PADs after two-photon detachment of Cuwhich employs a photoelectron velocity map imaging. The quantum interference e ff ect is observed in the PADs of the experiment.Our analysis shows that for the laser fi eld at di ff erent wavelength,the shape of PADs exhibit interference of s and d partial wave in the fi nal state of the photoelectron.For the longer wavelength,the shape of PADs changes in accordance with the Wigner threshold law when the two-photon threshold is approached,manifesting the increase of the relative weight of the s electrons.The KFR theory of Gribakin and Kuchiev is also used to simulate our experiment.However,the agreement between the experimental and theoretical results is far from satisf i cation.Further theoretical investigations of the strong-f i eld interaction of negative copper ions are required.

    V.ACKNOWLEDGMENTS

    This work was supported by the National Natural Science Foundation of China(No.21073188).

    [1]T.Andersen,Phys.Rep.394,157(2004).

    [2]M.D.Davidson,H.G.Muller,and H.B.van Linden van den Heuvell,Phys.Rev.Lett.67,1712(1991).

    [3]H.Stapelfeldt,P.Balling,C.Brink,and H.K.Haugen, Phys.Rev.Lett.67,1731(1991).

    [4]R.Trainham,G.D.Fletcher,and D.J.Larson,J.Phys. B 20,L777(1987).

    [5]E.P.Wigner,Phys.Rev.73,1002(1948).

    [6]J.J.Melko and A.W.Jr.Castleman,Phys.Chem. Chem.Phys.15,3173(2013).

    [7]R.Mabbs,E.Surber,L.Velarde,and A.Sanov,J. Chem.Phys.120,5148(2004).

    [8]K.J.Reed,A.H.Zimmerman,H.C.Andersen,and J. I.Brauman,J.Chem.Phys.64,1368(1976).

    [9]M.S.Bowen and R.E.Continetti,J.Phys.Chem.A 108,7827(2004).

    [10]E.Surber,R.Mabbs,T.Habteyes,and A.Sanov,J. Phys.Chem.A 109,4452(2005).

    [11]S.M.Bellm and K.L.Reid,Chem.Phys.Lett.395, 253(2004).

    [12]M.A.Sobhy and A.W.Jr.Castleman,J.Chem.Phys. 126,154314(2007).

    [13]G.Aravind,A.K.Gupta,M.Krishnamurthy,and E. Krishnakumar,Phys.Rev.A 76,042714(2007).

    [14]J.Cooper and R.N.Zare,J.Chem.Phys.48,942 (1968).

    [15]A.N.Grum-Grzhimailo,S.Fritzsche,P.O’Keef f e,and M.Meyer,J.Phys.B 38,2545(2005).

    [16]S.Tauro and K.P.Liu,J.Phys.B 41,225001(2008).

    [17]G.Aravind,N.Bhargava Ram,A.K.Gupta,and E. Krishnakumar,Phys.Rev.A 79,043411(2009).

    [18]C.Bartels,C.Hock,J.Huwer,R.Kuhnen,J.Schw¨obel, and B.von Issendorf f,Science 323,1323(2009).

    [19]R.Reichle,H.Helm,and I.Y.Kiyan,Phys.Rev.Lett. 83,243001(2001).

    [20]D.A.Telnov and S.I.Chu,Phys.Rev.A 66,063409 (2002).

    [21]B.Bergues and I.Y.Kiyan,Phys.Rev.Lett.100, 143004(2008).

    [22]J.Pedregosa-Gutierrez,P.A.Orr,J.B.Greenwood, A.Murphy,J.T.Costello,K.Zrost,T.Ergler,R. Moshammer,and J.Ullrich,Phys.Rev.Lett.93, 223001(2004).

    [23]G.F.Gribakin and M.Y.Kuchiev,Phys.Rev.A 55, 3760(1997).

    [24]L.V.Keldysh,Zh.Eksp.Teor.Fiz.47,1945(1964).

    [25]B.Bergues,Y.F.Ni,H.Helm,and I.Y.Kiyan,Phys. Rev.Lett.95,263002(2005).

    [26]S.F.C.Shearer and C.R.J.Addis,Phys.Rev.A 85, 063409(2012).

    [27]K.Krajewska,I.I.Fabrikant,and A.F.Starace,Phys. Rev.A 74,053407(2006).

    [28]J.Yu,C.C.Shu,W.H.Hu,and S.L.Cong,J.Theor. Comput.Chem.9,785(2010).

    [29]Y.Z.Liu,C.C.Qin,S.Zhang,Y.M.Wang,and B. Zhang,Acta Phys.Chim.Sin.27,965(2011).

    [30]N.L.Manakov and A.G.Fainshtein,Zh.Eksp.Teor. Fiz.79,751(1980).

    [31]A.M.Covington,S.S.Duvvuri,E.D.Emmons,R.G. Kraus,W.W.Williams,J.S.Thompson,D.Calabrese, D.L.Carpenter,R.D.Collier,T.J.Kvale,and V.T. Davis,Phys.Rev.A 75,022711(2007).

    [32]G.Aravind,N.B.Ram,A.K.Gupta,and E.Krishnakumar,Phys.Rev.A 79,043411(2009).

    [33]J.Ho,K.M.Ervin,and W.C.Lineberger,J.Chem. Phys.93,6987(1990).

    [34]J.Sugar and A.Musgrove,J.Phys.Chem.Ref.Data 19,527(1990).

    [35]A.T.J.B.Eppink and D.H.Parker,Rev.Sci.Instrum. 68,3477(1997).

    [36]P.O’Keef f e,P.Bolognesi,M.Coreno,A.Moise,R. Richter,G.Cautero,L.Stebel,R.Sergo,L.Pravica, Y.Ovcharenko,and L.A.Avaldi,Rev.Sci.Instrum. 82,033109(2011).

    [37]B.K.Liu,Y.Q.Wang,and L.Wang,J.Phys.Chem. A 116,111(2012).

    [38]D.B.Milo?sevi′c,G.G.Paulus,D.Bauer,and W. Becker,J.Phys.B 39,R203(2006).

    [39]V.E.Chernov,I.Yu.Kiyan,H.Helm,and B.A.Zon, Phys.Rev.A 71,033410(2005).

    ?Author to whom correspondence should be addressed.E-mail:Liwangye@dicp.ac.cn,Tel.:+86-411-84379243

    最近中文字幕2019免费版| 一级a做视频免费观看| 欧美日韩视频高清一区二区三区二| 久久久久网色| 日本欧美视频一区| 日本黄大片高清| 26uuu在线亚洲综合色| 国产日韩一区二区三区精品不卡 | 日韩免费高清中文字幕av| 亚洲精品中文字幕在线视频 | 丰满人妻一区二区三区视频av| 国产综合精华液| 久久精品夜色国产| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久人人人人人人| 精品久久久久久电影网| 2018国产大陆天天弄谢| 九九久久精品国产亚洲av麻豆| 免费观看av网站的网址| 国产免费一级a男人的天堂| 在线看a的网站| 久久久午夜欧美精品| 国产永久视频网站| 国产女主播在线喷水免费视频网站| 91久久精品电影网| 最新的欧美精品一区二区| 国产一区二区三区av在线| 九九久久精品国产亚洲av麻豆| 亚洲国产欧美在线一区| av一本久久久久| 免费观看性生交大片5| 午夜91福利影院| 2021少妇久久久久久久久久久| 麻豆成人午夜福利视频| 在线亚洲精品国产二区图片欧美 | 国产av一区二区精品久久| 一区二区三区四区激情视频| 成年人午夜在线观看视频| 春色校园在线视频观看| 日韩av在线免费看完整版不卡| 这个男人来自地球电影免费观看 | 国产成人精品一,二区| 国产精品国产av在线观看| 亚洲在久久综合| 高清黄色对白视频在线免费看 | 亚洲成人一二三区av| 亚洲美女搞黄在线观看| 成年女人在线观看亚洲视频| a级片在线免费高清观看视频| 免费大片黄手机在线观看| 人妻夜夜爽99麻豆av| 欧美日韩视频精品一区| 国产欧美另类精品又又久久亚洲欧美| 人人澡人人妻人| av不卡在线播放| 如何舔出高潮| 一个人看视频在线观看www免费| 久久99蜜桃精品久久| 青春草亚洲视频在线观看| 三级国产精品片| 熟女av电影| 蜜臀久久99精品久久宅男| 国产精品一区二区在线不卡| 晚上一个人看的免费电影| 国产探花极品一区二区| 国产精品秋霞免费鲁丝片| videossex国产| 国产乱人偷精品视频| 老司机影院毛片| 九九久久精品国产亚洲av麻豆| av国产久精品久网站免费入址| av线在线观看网站| 日本黄大片高清| 九色成人免费人妻av| 曰老女人黄片| 高清视频免费观看一区二区| 精品国产一区二区久久| 日韩亚洲欧美综合| 国产精品不卡视频一区二区| 欧美日韩精品成人综合77777| 啦啦啦中文免费视频观看日本| 亚洲av不卡在线观看| av有码第一页| 免费播放大片免费观看视频在线观看| 国产亚洲精品久久久com| 成人综合一区亚洲| 在线观看免费日韩欧美大片 | 香蕉精品网在线| 亚洲国产日韩一区二区| 国产精品国产三级国产av玫瑰| 久久国内精品自在自线图片| 国产精品国产av在线观看| 日本与韩国留学比较| 视频中文字幕在线观看| 十八禁高潮呻吟视频 | 久久精品国产亚洲网站| 国产在线视频一区二区| 亚洲精品乱久久久久久| 99热6这里只有精品| 亚洲国产精品999| 深夜a级毛片| 国产av国产精品国产| 99热这里只有精品一区| av天堂中文字幕网| 精品久久久久久久久av| 欧美日韩亚洲高清精品| 精品国产露脸久久av麻豆| 777米奇影视久久| a 毛片基地| 国产又色又爽无遮挡免| 欧美日韩视频精品一区| 热re99久久国产66热| 十八禁高潮呻吟视频 | 水蜜桃什么品种好| 麻豆成人av视频| 日韩中字成人| 2021少妇久久久久久久久久久| 青春草视频在线免费观看| a级毛片在线看网站| 丰满迷人的少妇在线观看| 色视频www国产| 伊人久久精品亚洲午夜| 久久精品久久久久久噜噜老黄| 一级毛片我不卡| 日韩视频在线欧美| 免费高清在线观看视频在线观看| 18禁在线无遮挡免费观看视频| 日本91视频免费播放| 国产成人精品无人区| 一级毛片电影观看| 成年av动漫网址| 日本免费在线观看一区| 久久人人爽av亚洲精品天堂| 国产日韩欧美亚洲二区| 亚洲av国产av综合av卡| 国精品久久久久久国模美| videos熟女内射| 成人毛片60女人毛片免费| 丰满乱子伦码专区| 欧美成人午夜免费资源| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 国产欧美日韩精品一区二区| 最新中文字幕久久久久| 我要看黄色一级片免费的| 99久久精品一区二区三区| 自拍偷自拍亚洲精品老妇| 国国产精品蜜臀av免费| 亚洲色图综合在线观看| 免费播放大片免费观看视频在线观看| 桃花免费在线播放| 青青草视频在线视频观看| 在现免费观看毛片| 综合色丁香网| 日韩亚洲欧美综合| 老女人水多毛片| 伊人久久精品亚洲午夜| 亚洲av国产av综合av卡| 又粗又硬又长又爽又黄的视频| 男男h啪啪无遮挡| 亚洲精品成人av观看孕妇| 欧美一级a爱片免费观看看| 成人亚洲精品一区在线观看| 免费黄色在线免费观看| 极品少妇高潮喷水抽搐| 黄色一级大片看看| 国产 一区精品| 国产精品一区二区在线不卡| 一区二区三区免费毛片| 男人爽女人下面视频在线观看| 一本色道久久久久久精品综合| 最近中文字幕高清免费大全6| av女优亚洲男人天堂| av黄色大香蕉| 女性生殖器流出的白浆| 日本与韩国留学比较| 中国国产av一级| 精品人妻熟女av久视频| 国产日韩欧美在线精品| 精品熟女少妇av免费看| 99热国产这里只有精品6| 校园人妻丝袜中文字幕| 一区二区三区四区激情视频| 亚洲av免费高清在线观看| 乱系列少妇在线播放| 久久久久久久国产电影| 欧美激情极品国产一区二区三区 | 美女视频免费永久观看网站| 亚洲经典国产精华液单| 中国国产av一级| 亚洲精品一区蜜桃| 少妇人妻一区二区三区视频| 老司机影院成人| 欧美人与善性xxx| 日韩大片免费观看网站| 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版| 少妇猛男粗大的猛烈进出视频| 夜夜爽夜夜爽视频| 国内揄拍国产精品人妻在线| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 少妇猛男粗大的猛烈进出视频| 久久婷婷青草| 中国三级夫妇交换| 欧美日韩亚洲高清精品| 久久久午夜欧美精品| 国产综合精华液| 亚洲成人一二三区av| 国产高清有码在线观看视频| 一本久久精品| 自线自在国产av| 成人免费观看视频高清| 精品国产一区二区久久| 六月丁香七月| 亚洲美女搞黄在线观看| av天堂中文字幕网| 日本wwww免费看| 99久久综合免费| 内地一区二区视频在线| 伦理电影大哥的女人| 26uuu在线亚洲综合色| 91精品伊人久久大香线蕉| 中文字幕制服av| 岛国毛片在线播放| 欧美bdsm另类| 久久6这里有精品| 免费黄网站久久成人精品| 成人免费观看视频高清| 日日撸夜夜添| 国内精品宾馆在线| 亚洲丝袜综合中文字幕| 男女边摸边吃奶| √禁漫天堂资源中文www| 少妇 在线观看| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| 亚洲av福利一区| 极品教师在线视频| 亚洲精品久久久久久婷婷小说| 亚洲国产最新在线播放| 亚洲中文av在线| 免费av中文字幕在线| 新久久久久国产一级毛片| 亚洲美女黄色视频免费看| 精品一区二区三区视频在线| 人体艺术视频欧美日本| 久久韩国三级中文字幕| 免费看光身美女| 视频区图区小说| 精品少妇内射三级| 精品人妻熟女毛片av久久网站| 精品久久久久久久久亚洲| 午夜福利视频精品| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 国产亚洲av片在线观看秒播厂| 国产午夜精品久久久久久一区二区三区| 男人和女人高潮做爰伦理| 国产欧美亚洲国产| a级毛片免费高清观看在线播放| 又爽又黄a免费视频| 中文欧美无线码| 欧美日韩av久久| 美女脱内裤让男人舔精品视频| 国产综合精华液| 久久久精品免费免费高清| 我的女老师完整版在线观看| 自线自在国产av| 在线观看免费日韩欧美大片 | 国产欧美日韩一区二区三区在线 | 丰满迷人的少妇在线观看| 国产免费又黄又爽又色| 亚州av有码| 精品99又大又爽又粗少妇毛片| 久久精品夜色国产| 丝袜喷水一区| 久久久久久伊人网av| 欧美成人精品欧美一级黄| 男人舔奶头视频| 99久久精品国产国产毛片| 看十八女毛片水多多多| 日本爱情动作片www.在线观看| 日韩一区二区视频免费看| 最新的欧美精品一区二区| 91久久精品国产一区二区成人| 亚洲欧洲精品一区二区精品久久久 | 亚洲综合色惰| 精品国产国语对白av| 在线观看人妻少妇| a级毛片在线看网站| 精品久久久久久久久av| 国产精品国产三级国产专区5o| 亚洲成色77777| 免费久久久久久久精品成人欧美视频 | 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| 最近中文字幕2019免费版| 亚洲av不卡在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品,欧美精品| 中文字幕av电影在线播放| 一区二区三区免费毛片| 免费黄频网站在线观看国产| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 人妻人人澡人人爽人人| 久久毛片免费看一区二区三区| 自拍偷自拍亚洲精品老妇| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 欧美精品一区二区大全| 一级a做视频免费观看| 91aial.com中文字幕在线观看| 人人澡人人妻人| 亚洲国产成人一精品久久久| 日日摸夜夜添夜夜添av毛片| 日日啪夜夜爽| 看免费成人av毛片| 亚洲av.av天堂| 一级黄片播放器| 最近中文字幕2019免费版| 久久人人爽人人爽人人片va| 久久久久久人妻| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| h视频一区二区三区| 99久久精品热视频| 日韩一区二区三区影片| 国产精品一区二区三区四区免费观看| 免费av中文字幕在线| 亚洲不卡免费看| 中文天堂在线官网| 日韩强制内射视频| 久久久久久久久久久丰满| 日日啪夜夜撸| 黄色怎么调成土黄色| 精品亚洲成a人片在线观看| freevideosex欧美| 男男h啪啪无遮挡| 久久久久久久亚洲中文字幕| 男女免费视频国产| 国国产精品蜜臀av免费| 妹子高潮喷水视频| 国产精品.久久久| 大码成人一级视频| 久久精品国产亚洲网站| h日本视频在线播放| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 波野结衣二区三区在线| 少妇的逼好多水| 啦啦啦啦在线视频资源| av.在线天堂| 亚洲情色 制服丝袜| 99久久人妻综合| 在线观看av片永久免费下载| 最近中文字幕高清免费大全6| 欧美精品高潮呻吟av久久| 国产真实伦视频高清在线观看| 夜夜骑夜夜射夜夜干| 99国产精品免费福利视频| 亚洲av福利一区| 如何舔出高潮| 久久久久久久久久久免费av| 亚洲精品乱码久久久v下载方式| 99精国产麻豆久久婷婷| 一区二区三区四区激情视频| 大又大粗又爽又黄少妇毛片口| 久久精品久久久久久噜噜老黄| 亚洲欧美日韩另类电影网站| 免费观看av网站的网址| av国产精品久久久久影院| 久久婷婷青草| 十分钟在线观看高清视频www | 亚洲av不卡在线观看| 日本免费在线观看一区| 高清av免费在线| 丝袜脚勾引网站| 黄色配什么色好看| 国产成人免费观看mmmm| 建设人人有责人人尽责人人享有的| 精品国产露脸久久av麻豆| 一级二级三级毛片免费看| 国产色爽女视频免费观看| av福利片在线| 国产精品99久久99久久久不卡 | 午夜免费观看性视频| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 91在线精品国自产拍蜜月| 久久亚洲国产成人精品v| 亚洲精品色激情综合| 91精品国产九色| 久久久久久久久久久久大奶| 视频中文字幕在线观看| 最后的刺客免费高清国语| 亚洲第一av免费看| 精品久久久久久电影网| 超碰97精品在线观看| 成年人免费黄色播放视频 | 亚洲综合精品二区| 不卡视频在线观看欧美| 免费久久久久久久精品成人欧美视频 | 青春草视频在线免费观看| 99热国产这里只有精品6| 欧美精品亚洲一区二区| 最近中文字幕2019免费版| 嫩草影院新地址| 亚洲av电影在线观看一区二区三区| 99热这里只有精品一区| 国产免费福利视频在线观看| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院 | 国产成人精品无人区| 久久久久人妻精品一区果冻| 中文在线观看免费www的网站| 亚洲天堂av无毛| 狂野欧美激情性bbbbbb| 一级毛片黄色毛片免费观看视频| av国产精品久久久久影院| 另类亚洲欧美激情| 中国三级夫妇交换| 欧美成人午夜免费资源| 黄片无遮挡物在线观看| 午夜激情福利司机影院| 日本免费在线观看一区| 国产成人免费无遮挡视频| 亚洲性久久影院| 少妇的逼水好多| 亚洲av成人精品一二三区| 亚洲成人一二三区av| 久久久午夜欧美精品| 简卡轻食公司| 熟女电影av网| 大片免费播放器 马上看| 欧美人与善性xxx| av一本久久久久| 日韩精品免费视频一区二区三区 | 人人妻人人澡人人看| 女性被躁到高潮视频| 精品少妇黑人巨大在线播放| 久久精品国产自在天天线| 久久人人爽人人片av| 夜夜看夜夜爽夜夜摸| videossex国产| 黑人巨大精品欧美一区二区蜜桃 | 国产熟女午夜一区二区三区 | 少妇熟女欧美另类| 国产又色又爽无遮挡免| 日日撸夜夜添| 男人狂女人下面高潮的视频| 91久久精品电影网| 高清欧美精品videossex| 免费av不卡在线播放| av国产精品久久久久影院| 国产高清三级在线| 国产亚洲欧美精品永久| 国产成人一区二区在线| 精品卡一卡二卡四卡免费| 大话2 男鬼变身卡| 韩国高清视频一区二区三区| 99久久精品热视频| 美女中出高潮动态图| 国产视频首页在线观看| 看免费成人av毛片| 热99国产精品久久久久久7| 91午夜精品亚洲一区二区三区| 妹子高潮喷水视频| 日本vs欧美在线观看视频 | 日韩成人av中文字幕在线观看| 成人亚洲精品一区在线观看| 久久久久网色| 亚洲精品视频女| 欧美日韩亚洲高清精品| 大码成人一级视频| 色5月婷婷丁香| 久久国产亚洲av麻豆专区| 精品熟女少妇av免费看| 韩国高清视频一区二区三区| 国产成人91sexporn| 久久婷婷青草| 国产av国产精品国产| 国产精品久久久久久久电影| 免费在线观看成人毛片| 免费播放大片免费观看视频在线观看| 亚洲三级黄色毛片| 美女xxoo啪啪120秒动态图| 女性生殖器流出的白浆| 成年人午夜在线观看视频| 欧美精品一区二区免费开放| 中文在线观看免费www的网站| 欧美国产精品一级二级三级 | 男人和女人高潮做爰伦理| 汤姆久久久久久久影院中文字幕| 丝瓜视频免费看黄片| 国产精品免费大片| 人妻制服诱惑在线中文字幕| 热99国产精品久久久久久7| 亚洲精品,欧美精品| 日日啪夜夜爽| 日韩强制内射视频| 国产精品一区二区在线观看99| 国产精品一区www在线观看| 免费观看a级毛片全部| 又黄又爽又刺激的免费视频.| 欧美另类一区| 色94色欧美一区二区| 乱系列少妇在线播放| 婷婷色综合大香蕉| 日韩电影二区| 亚洲精品久久午夜乱码| 在线看a的网站| 国产无遮挡羞羞视频在线观看| 色吧在线观看| 免费看不卡的av| 精品卡一卡二卡四卡免费| 久久久久久久久久久久大奶| 久久久久久人妻| 亚洲欧洲日产国产| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 国产欧美日韩综合在线一区二区 | 我的女老师完整版在线观看| 亚洲精华国产精华液的使用体验| 精品卡一卡二卡四卡免费| 男女边摸边吃奶| 高清毛片免费看| 黑人猛操日本美女一级片| 女人久久www免费人成看片| 成年人午夜在线观看视频| 婷婷色综合大香蕉| 国产淫语在线视频| 久久韩国三级中文字幕| a级毛片在线看网站| 色视频www国产| 免费观看a级毛片全部| 国产精品蜜桃在线观看| 欧美变态另类bdsm刘玥| 国产伦精品一区二区三区视频9| 国产91av在线免费观看| 国产极品粉嫩免费观看在线 | av国产精品久久久久影院| 久久精品国产亚洲av涩爱| 日本猛色少妇xxxxx猛交久久| 亚洲精品中文字幕在线视频 | 噜噜噜噜噜久久久久久91| 中文在线观看免费www的网站| 大码成人一级视频| 久久婷婷青草| 成人漫画全彩无遮挡| 国产探花极品一区二区| 久久韩国三级中文字幕| 你懂的网址亚洲精品在线观看| av不卡在线播放| 日韩人妻高清精品专区| 三级国产精品片| 国产一区二区在线观看日韩| 亚洲图色成人| 18禁裸乳无遮挡动漫免费视频| av专区在线播放| 狂野欧美激情性xxxx在线观看| 精品少妇黑人巨大在线播放| 美女福利国产在线| 夜夜看夜夜爽夜夜摸| 下体分泌物呈黄色| av播播在线观看一区| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 亚洲三级黄色毛片| 欧美少妇被猛烈插入视频| 日韩电影二区| 欧美xxⅹ黑人| 一本一本综合久久| 免费高清在线观看视频在线观看| 午夜激情福利司机影院| 日韩精品有码人妻一区| 又黄又爽又刺激的免费视频.| 狂野欧美激情性xxxx在线观看| 免费大片黄手机在线观看| 春色校园在线视频观看| 久久久亚洲精品成人影院| 中文字幕制服av| 精品午夜福利在线看| 80岁老熟妇乱子伦牲交| 色视频在线一区二区三区| www.av在线官网国产| 五月天丁香电影| 国产一区二区三区av在线| 丝袜喷水一区| 我要看日韩黄色一级片| 亚洲av二区三区四区| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 精品人妻一区二区三区麻豆| 777米奇影视久久| 18+在线观看网站| 亚洲精品久久午夜乱码| av天堂中文字幕网| 男人爽女人下面视频在线观看| 蜜臀久久99精品久久宅男| 午夜精品国产一区二区电影| 一区二区av电影网| 成人综合一区亚洲| 99九九线精品视频在线观看视频| 女人久久www免费人成看片| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 亚洲国产成人一精品久久久| 中国三级夫妇交换| 18+在线观看网站| 久久 成人 亚洲| 色5月婷婷丁香|