• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials*

    2014-07-18 11:56:12王昱征,薛向欣,楊合

    Synthesis and Antimicrobial Activity of Boron-doped Titania Nano-materials*

    WANG Yuzheng (王昱征)1,2,3,4, XUE Xiangxin (薛向欣)1,2,3,4,**and YANG He (楊合)1,2,3,44
    1Institute of Metallurgical Resources and Environmental Engineering, Northeastern University, Shenyang 110819, China
    2Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110819, China
    3Liaoning Engineering and Technology Research Center of Boron Resources Comprehensive Utilization, Shenyang 110819, China
    4Liaoning Provincial Universities Key Laboratory of Boron Resources Ecological Utilization Technology and Boron Materials, Shenyang 110819, China

    Antibacterial activity of boron-doped TiO2(B/TiO2) nano-materials under visible light irradiation and in the dark was investigated. A simple sol-gel method was used to synthesize TiO2nano-materials. X-ray diffraction pattern of B/TiO2nano-materials represents the diffraction peaks relating to the crystal planes of TiO2(anatase and rutile). X-ray photoelectron spectroscopy result shows that part of boron ions incorporates into TiO2lattice to form a possible chemical environment like Ti O B and the rest exist in the form of B2O3. The study on antibacterial effect of B/TiO2nano-materials on fungal Candida albicans (ATCC10231), Gram-negative Escherichia coli (ATCC25922) and Gram-positive Staphylococcus aureus (ATCC6538) shows that the antibacterial action is more significant on Candida albicans than on Escherichia coli and Staphylococcus aureus. Under visible light irradiation, the antibacterial activity is superior to that in the dark.

    boron doping, titania, antimicrobial activity

    1 INTRODUCTION

    Contamination by microorganisms is of great concern in a variety of areas, such as medical devices, healthcare products, water purification systems, hospitals, dental office equipment, food packaging, food storage, and household sanitation [1-3]. It is essential to have appropriate antibacterial method. Photocatalysis is a promising technology based on the interaction between light and solid semiconductor particles and is able to produce highly oxidative species that destroy bacteria and a large variety of chemical contaminants. Among the photoactive semiconductors are TiO2, ZnO, Fe2O3, WO3and CdSe. TiO2is most widely used in different media as photocatalyst because of its high stability, low cost and wide availability [4-6]. Matsunaga et al. [7] reported for the first time the microbiocidal effect of TiO2photocatalytic reactions. Since then, the research on photocatalytic killing of TiO2has been intensively conducted on a wide spectrum of organisms including viruses, bacteria, fungi, algae and cancer cells. From these experiments it is unclear as to the primary mechanism for toxicity, with three possible candidates: (i) oxidation of phospholipid membranes, (ii) oxidation of Coenzyme A or (iii) direct cleavage of DNA. The latter two mechanisms are reliant upon particulate TiO2entering the cell structure [8].

    However, the wide band gap of TiO2greatly limits its applications. Photocatalysts exhibiting reactivity under visible light (λ>400 nm) could be obtained by non-metal doping such as nitrogen [9], sulfur [10], carbon [11], fluorine [12] and boron [13, 14]. Among these anion doped TiO2, boron doping TiO2has attracted more attentions in the application studies of functional materials due to its prompting creation of electron acceptor level. Zaleska et al. [15] synthesized boron modified TiO2using boric acid and boric acid triethyl ester by the sol-gel method and by grinding anatase powder with boron dopant. They found that boron doping could result in absorption of the visible light and these B-TiO2samples had higher activity for photo-oxidation of phenol under the visible light irradiation than pure TiO2.

    Boric acid is a well-known antibacterial and anti-fungal agent, inhibiting a variety of bacteria and fungi. However, boric acid is low melting and boiling, so it cannot be directly applied in high temperature products. This greatly limits its applications in antimicrobial material. No work has been reported on boron-doped TiO2in antimicrobial field.

    In this study, boron-doped TiO2nano-materials are prepared by a sol-gel method. Their antibacterial effect is examined against Candida albicans, Escherichia coli and Staphylococcus aureus. These microorganisms are selected because of their relatively diverse make up in terms of biological structure, in particular the cell walls of the organisms, with high resistance to conventional antibacterial techniques. Our aim is to better understand the interaction of boron with anatase and potential effects in the antimicrobial ability.

    2 EXPERIMENTAL

    2.1 Preparation of boron-doped TiO2nano-materials The boron doped TiO2was synthesized by sol-gel method. 10 ml tetrabutyl titanate was dissolved into

    * Supported by the National Natural Science Foundation of China (51090384).

    ** To whom correspondence should be addressed. E-mail: xuexx@mail.neu.edu.cn35 ml anhydrous ethanol (solution A), and solution B consisted of 35 ml anhydrous ethanol, 4 ml acetic acid, 10 ml water, and 0.61 g boric acid. Then solution A was added drop-wise to solution B under magnetic stirring. The resultant mixture was stirred at room temperature for 3 h until the transparent sol was obtained. The sol was then aged for 1 day and the gel was obtained. The gel was dried at 80 °C for 24 h, and the dried powder was calcinated at various temperatures (600, 700, 800 and 900 °C) at a heating rate of 5 °C per minute and held at these temperatures for 1 h, then cooled down naturally. The resulting materials were labeled as B/TiO2-x, where x denotes the calcination temperature (°C).

    2.2 Characterization

    X-ray diffractometry (XRD; Shimadzu) equipped with a copper target (1Kαλ=0.1541874 nm) was used to identify the formation phase of the powder samples. The morphology and crystallite size of the powder were taken with TECNAI G2 F20 transmission electron microscope (TEM). The binding energy was identified by X-ray photoelectron spectroscopy (XPS) with Mg Kαradiation (ESCALAB250). The BET surface area was determined by N2adsorption on a Quantachrome NOVA 1200e apparatus at 77 K.

    2.3 Determination of antimicrobial effect

    Candida albicans (ATCC 10231), Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 6538) were chosen as the bacteria in the antibacterial examinations. Antibacterial performance was evaluated by inhibition ring method. All glassware and materials were autoclaved at 120 °C for 15 min to ensure the sterility for testing. Microorganisms were inoculated and grew aerobically in 25 ml liquid nutrient broth at 37 °C on a rotary shaker (120 r·min?1) for 18 h. They were adjusted to a concentration of 104-105CFU·ml?1in the antibacterial assay.

    The experiments were carried out under two irradiation conditions: visible light and dark. The visible light source was 15 common fluorescent tubes, mounted on the inside of an artificial climate box (with total power of 15×18 W). The experimental procedures were as follows. Inhibition ring method was carried out by pouring agar into Petri dishes to form 4 mm thick layers and the Petri dishes were left for 10 min to dry in the air. Dense inoculum of the tested microorganisms was added to Petri dishes, and then the compacted powder (0.70 g of samples, 14 mm in diameter) was arranged on the agar surface and incubated at 37 °C for 24 h in the artificial climate box under the visible light or in the dark. A vernier caliper was adopted to measure the diameter of the width of inhibition zone (mm).

    3 RESULTS AND DISCUSSION

    3.1 XRD analysis

    Figure 1 shows the XRD patterns of boron-doped TiO2nano-materials with different calcination temperatures. As the calcination temperature increases from 600 to 800 °C, a diffraction peak corresponding to the (101) plane (peak 25.3°) of anatase phase appears. The anatase is predominant in crystalline phases of all calcinated samples. A small amount of rutile (peak 27.4°) appears in B/TiO2at 700 °C. It demonstrates that the phase transformation from anatase to rutile occurs at 700 °C, which is consistent with that reported in literature [13]. At calcination temperature of 900 °C, anatase phase nearly disappears, rutile phase Ti0.924O2is predominant and a small amount of rutile TiB0.024O2is present. The ratio between anatase and rutile extracted from XRD spectra, which is often used to quantify the anatase-to-rutile transformation, is calculated with the empirical relationship:

    where R(T) is the percentage content of rutile at temperature T, IAis the intensity for the main anatase reflection, and IRis the intensity for the main rutile reflection. Table 1 presents basic characteristic parameters of the antimicrobial materials. It is well known that the crystalline and the crystal phase are crucial factors in the antimicrobial activity of TiO2, where the crystalline anatase phase is considered as the most active form of TiO2[16], while rutile and amorphous TiO2are believed to be relatively inactive.

    Figure 1 also shows that the intensity and width of the diffraction peaks of anatase become higher and narrower as the calcination temperature increases from 600 to 900 °C, suggesting that the crystalline of anatase is greatly improved. According to the line width analysis of anatase (101) based on the Scherrer equation, the average grain sizes of the samples are estimated to be about 18 nm, 48 nm and 73 nm for B/TiO2-600, B/TiO2-700, B/TiO2-800, respectively. Apparently, the calcination temperature has a significant effect on the grain size of boron-doped titania particles.

    Figure 1 XRD patterns of B/TiO2calcinated at different temperatures■ anatase TiO2; ▲ rutile TiO2; ● rutile TiB0.024O2; ★ rutile Ti0.924O2

    Table 1 Basic characteristic parameters of the antimicrobial materials

    Figure 2 TEM images of B/TiO2-600 (a) and SADP of B/TiO2-600 (b)

    Figure 3 XPS spectra of B/TiO2-600

    3.2 TEM analysis

    Figure 2 shows the TEM images of the B-doped TiO2sample calcinated at 600 °C. The morphology, crystallite size and crystallographic planes of the particles are observed. The images show that the sample consists of large number of small particles with the size around 20 nm, which is in agreement with the XRD results calculated by the Scherrer equation. A corresponding selected area electron diffraction pattern (SADP) shows the Debye rings, exhibiting a polycrystalline nature of the particle. The Debye rings with d-values corresponding to 0.3512 nm (marked as 101), 0.2293 nm (marked as 004), 0.1841 nm (marked as 200), 0.1626 nm (marked as 211), 0.1442 nm (marked as 204), and 0.1297 nm (marked as 215) are assigned to the B/TiO2anatase phase.

    3.3 XPS analysis

    Figure 3 (a) shows the XPS spectra of B/TiO2-600. It contains only Ti, O, B, and C elements. Element C can be ascribed to the residual carbon from the precursor. Fig. 3 (b) shows the XPS B 1s spectrum of B/TiO2-600, which appears at around 191-193 eV. Based on previous study reported [13], the standard binding energy of B 1s in B2O3or H3BO3equals 193.0 eV (B O bond) and that in TiB2equals 187.5 eV (B Ti bond). The observed B 1s peak consists of two peaks. The first peak (191.55 eV) is related to TiO B bonds and the second peak (193.28 eV) is related to B O B bonds. XPS analysis confirms that boron ions partially incorporate into TiO2lattice after heat treatment to form a possible chemical environment like TiO B and the rest exist in the form ofB2O3. This is probably because the concentration of doped boron is beyond its solubility limit in the TiO2anatase structure. The boron ions expelled from the anatase structure could form nanoclusters on the surface of TiO2nanoparticles and grow slowly [13]. The B contents are given in Table 1. The influence of calcination temperature on boron content can be almost ignored. The average boron content in the surface layer is 14.5%.

    Figure 4 Antimicrobial experiments of B/TiO2and pure TiO2nano-materials under visible light irradiation among different strains. (a) Candida albicans; (b) Staphylococcus aureus; (c) Escherichia coli; (d) B/TiO2nano-materials on Candida albicans in the dark

    3.4 Study of antimicrobial effect of boron ions doped nano-TiO2

    We tested the antimicrobial efficiency of B/TiO2by checking the ability of attached bacteria to form colonies in agar. Bacteria attached to a surface are able to duplicate, move and form colonies beyond the biofilm. Bacteria from the biofilm formed on the TiO2surface move and colonize the surrounding agar area forming a halo. From growing halo assays it is possible to have an indication about the viability of the bacteria attached to the surface [17].

    The antimicrobial results are given in Fig. 4. Formation of inhibition zone confirms that all the B-doped TiO2nano-materials have antimicrobial activity, while pure TiO2nano-materials do not have. However, antimicrobial abilities of B-doped TiO2nano-materials prepared at different calcination temperatures are not the same. Calcinated at 600 and 700 °C, B/TiO2shows higher antimicrobial activity. B/TiO2-800 and B/TiO2-900 have moderate activity. Fig. 4 (d) shows that antimicrobial activity of B/TiO2nano-materials on Candida albicans in the dark is weaker than that in the visible light and the average inhibition zones against Candida albicans are 8.28, 7.31, 6.59, and 4.30 mm for B/TiO2-600, B/TiO2-700, B/TiO2-800, and B/TiO2-900, respectively.

    Figure 5 Antimicrobial experiment of B/TiO2nano-materials

    For different strains, antimicrobial abilities of B/TiO2nano-materials are different (see Fig. 5). B/TiO2nano-materials present about 16 mm average inhibition zone against Candida albicans, 10 mm zone against Escherichia coli and 7 mm zone against Staphylococcus aureus. We can conclude that the antimicrobial action of the B/TiO2is more significant on fungal than on Gram-negative and Gram-positive bacteria. In one of the most important publications related to TiO2[18, 19], the reduction efficiency of TiO2coated Plexiglass depends on the cell wall thickness, with Gram-negative microorganisms killed easily and Gram-positive microorganisms more resistant. C. albicans is highly resistant to photocatalytic degradation due to its thick eukaryotic cell wall, while in our study, the antibacterial effect of boron-doped TiO2nano-materials on C. albicans is the best. This is a promising result especially for simple preparation route with incorporation of nano-materials.

    In general, the bactericidal effect of TiO2is attributed to the decomposition of outer membranes of bacteria by reactive oxygen species, primarily hydroxyl radicals, which leads to phospholipid peroxidation and ultimately cell death. It is proposed that nano-materials that can physically attach to a cell are bactericidal when they contact with this cell. If the membrane of a bacterium is compromised, the cellmay repair itself; if the scratch is severe, the cell component may release and the cell will die eventually [20, 21]. capture electron hole pair and transform into free groups (·OH), causing the rupture of cell membrane [23]. (3) B atoms incorporated into TiO2lattice result in a charge imbalance and lattice distortion, so that TiO2generates surface oxygen vacancy, which also improves TiO2antimicrobial activity [24].

    4 CONCLUSIONS

    In this study, highly effective boron-doped TiO2antimicrobial materials were synthesized by a sol-gel method. The anatase is predominant in crystal planes of the TiO2calcinated at 600 and 700 °C, and rutile phases are predominant at calcination temperature of 900 °C. Part of boron ions incorporate into TiO2lattice, forming a possible chemical environment like TiO B and the rest exist in the form of B2O3. The B/TiO2nano-materials exhibit high antibacterial efficiency. Their antibacterial action is more significant on fungal than on Gram-negative and Gram-positive. Antimicrobial activities of B/TiO2materials on Candida albicans in the dark are weaker than that in the visible light.

    REFERENCES

    The boron-doped TiO2nano-particles under visible light have strong antimicrobial activity, probably due to the following points. (1) XPS show that part of B exists in the form of TiO B with boron atoms incorporated into the TiO2lattice, so B p and O 2p form with mixed valence band and the band gap narrows, leading to visible light response [22]. (2) Due to B3+electron deficient character, Lewis acid on the B/TiO2surface enhances and OH?increases. OH?can

    1 Li, B., Wang, X., Chen, R.X., Hang, W.G., Xie, G.L., “Antibacterial activity of chitosan solution against Xanthomonas pathogenic bacteria isolated from Euphorbia pulcherrima”, Carbohydr. Polym., 72 (2/5), 287-292 (2008).

    2 Chi, G.J., Yao, S.W., Fan, J., Zhang, W.G., Wang, H.Z., “Antibacterial surface treatment of aluminum materials”, Chin. J. Chem. Eng., 10 (5), 622-624 (2002).

    3 Zhang, J.L., Sun, D.H., Zhan, G.W., Lin, L.Q., Zheng, Y.M., Jing, X.L., Huang, J.L., Li, Q.B., “In-situ synthesis and antibacterial immobilized on aspergillus niger”, J. Chem. Ind. Eng., 63 (7), 2271-2278 (2012). (in Chinese)

    4 Wang, F.M., Shi, Z.S., Gong, F., Jiu, J.T., Adachi, M., “Morphology control of anatase TiO2by surfactant-assisted hydrothermal method”, Chin. J. Chem. Eng., 15 (5), 754-759 (2007).

    5 Zhou, Y.S., Jiang, W.G., “Study on properties of composite oxides TiO2/SiO2”, Chin. J. Chem. Eng., 10 (3), 349-353 (2002).

    6 Ling, Q.C., Sun, J.Z., Zhou, Q.Y., “Preparation and characterization of visible-light-driven titania photocatalyst co-doped with boron and nitrogen”, Appl. Surf. Sci., 254 (10), 3236-3248 (2008).

    7 Matsunaga, T., Tomoda, R., Nakajima, T., Wake, H., “Photoelectrochemical sterilization of microbial cells by semiconductor powders”, FEMS Microbiol. Lett., 29 (1/2), 211-214 (1985).

    8 MacFarlanea, J.W., Jenkinsonb, H.F., Scotta, T.B., “Sterilization of microorganisms on jet spray formed titanium dioxide surfaces”, Appl. Catal., B: Environ., 106 (1/2), 181-185 (2011).

    9 Ma, Y.F., Zhang, J.L., Tian, B.Z., Chen, F., Wang, L.Z., “Synthesis and characterization of thermally stable Sm, N co-doped TiO2with highly visible light activity”, J. Hazard. Mater., 182 (1/3), 386-393 (2010).

    10 Gu, L.Y., Wang, Y.P., Peng, P.Y., Wang, L.J., “Preparation of S and metal co-doped TiO2and their photocatalytic activities”, Chin. J. Nonferrous Met., 19 (5), 911-918 (2009). (in Chinese)

    11 Yang, K., Gu, J.H., Zhang, Y., “Visible light catalytical property and mechanism of carbon doped TiO2thin film”, Rare Met. Mater. Eng., 38(2), 759-761 (2009). (in Chinese)

    12 Ding, H., Zhang, N., Rong, F., Fu, D.G., “Preparation, characterization and bactericidal activity of N-F-codoped TiO2Film”, J. Inorg. Mater., 26 (5), 517-522 (2011). (in Chinese)

    13 Zhao, W., Ma, W.H., Chen, C.S., Zhao, J.C., Shuai, Z.G., “Efficient Degradation of Toxic organic pollutants with Ni2O3/TiO2-xBxunder visible irradiation”, J. Am. Chem. Soc., 126 (15), 4782-4783 (2004).

    14 Chen, D.M., Yang, D., Wang, Q., Jiang, Z.Y., “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles”, Ind. Eng. Chem. Res., 45 (12), 4110-4116 (2006).

    15 Zaleska, A., Grabowska, E., Sobczak, J. W., Gazda, M., Hupka, J.,“Photocatalytic activity of boron-modified TiO2under visible light: The effect of boron content, calcination temperature and TiO2matrix”, Appl. Catal. B: Environ., 89 (3/4), 469-475 (2009).

    16 Mai, L.X., Wang, D.W., Zhang, S., “Synthesis and bactericidal ability of Ag/TiO2composite films deposited on titanium plate”, Appl. Surf. Sci., 257 (3), 974-978 (2009).

    17 Flores, C.Y., Diaz, C., Rubert, A., Benítez, G.A., Moreno, M.S., Salvarezza, R.C., Schilardi, P.L., Vericat, C., “Spontaneous adsorption of silver nanoparticles on Ti/TiO2surfaces antibacterial effect on pseudomonas aeruginosa”, J. Colloid Interf. Sci., 350 (2), 402-408 (2010).

    18 Kühn, K.P., Chaberny, I.F., Massholder, K., Stickler, M., Benz, V.W., Sonntag, H.G., Erdinger, L., “Disinfection of surfaces by photocatalytic oxidation with titanium dioxide and UVA light”, Chemosphere, 53 (1), 71-77 (2003).

    19 S?mena, M., Tatl?dil, I., Breenb, C., Cleggb, F., Buruk, C.K., Sivlima, T., Akkana, S., “A new nano-TiO2immobilized biodegradable polymer with self-cleaning properties”, J. Hazard. Mater., 187 (1/3), 199-205 (2011).

    20 Rajakumara, G., Abdul Rahumana, A., Mohana Roopanb, S., Gopiesh Khannac, V., Elangoa, G., Kamaraja, C., Abduz Zahira, A., Velayuthama, K., “Fungus-mediated biosynthesis and characterization of TiO2nanoparticles and their activity against pathogenic bacteria”, Spectrochim. Acta Part A, 91, 23-29 (2012).

    21 Haghighia, N., Abdia, Y., Haghighi, F., “Light-induced antifungal activity of TiO2nanoparticles/ZnO nanowires”, Appl. Surf. Sci., 257 (23), 10096-10100 (2011).

    22 Grabowska, E., Zaleska, A., Sobczak, J.W., Hupka, J., “Boron-doped TiO2: Characteristics and photoactivity under visible light”, Procedia Chem., 1 (2), 1553-1559 (2009).

    23 Long, H.J., Meng, Q.J., Yuan, J., Yang, W.S., Cao, Y.A., “Study on photocatalytic activity of boron doped TiO2catalyst (TiO2-xBx)”, Acta Chim. Sinica, 66 (6), 657-661 (2008). (in Chinese)

    24 Wei, F.Y., Ni, L.S., “Photocatalytic performance and doping mechanism of B-S co-doped TiO2”, Chin. J. Catal., 28 (10), 905-909 (2007). (in Chinese)

    2012-10-19, accepted 2013-02-27.

    精品久久久久久久毛片微露脸| 久久久久九九精品影院| av在线播放免费不卡| 女同久久另类99精品国产91| 男女那种视频在线观看| 无人区码免费观看不卡| 精品国产乱码久久久久久男人| 国产亚洲精品久久久久久毛片| 91老司机精品| 男人操女人黄网站| 露出奶头的视频| 无遮挡黄片免费观看| 成年版毛片免费区| 国产又黄又爽又无遮挡在线| 亚洲成av人片免费观看| 国产亚洲欧美在线一区二区| 男人舔奶头视频| 日韩国内少妇激情av| 精品久久久久久成人av| 成人手机av| 露出奶头的视频| 亚洲片人在线观看| 一区二区三区激情视频| 国产亚洲精品综合一区在线观看 | 狠狠狠狠99中文字幕| 精品国产乱码久久久久久男人| 亚洲av熟女| 国产亚洲av嫩草精品影院| 欧美日韩乱码在线| 两个人免费观看高清视频| 亚洲人成网站在线播放欧美日韩| 日韩大尺度精品在线看网址| 欧美丝袜亚洲另类 | 99热只有精品国产| 婷婷精品国产亚洲av在线| 在线观看www视频免费| 国产亚洲精品av在线| 熟女少妇亚洲综合色aaa.| 一区二区三区精品91| 亚洲人成77777在线视频| 一区二区日韩欧美中文字幕| 久久婷婷成人综合色麻豆| 91在线观看av| 日韩欧美在线二视频| 1024手机看黄色片| 精品国产乱子伦一区二区三区| www.精华液| 免费看美女性在线毛片视频| 久久人人精品亚洲av| 一级黄色大片毛片| 亚洲五月色婷婷综合| 亚洲国产高清在线一区二区三 | 熟妇人妻久久中文字幕3abv| www日本在线高清视频| 国产精品免费视频内射| 日本黄色视频三级网站网址| 一区二区三区高清视频在线| 亚洲国产精品sss在线观看| 18禁国产床啪视频网站| 亚洲成人精品中文字幕电影| 亚洲avbb在线观看| 91字幕亚洲| 国产黄片美女视频| 久99久视频精品免费| 黄色视频不卡| 日韩 欧美 亚洲 中文字幕| 久久国产精品影院| 中文在线观看免费www的网站 | 免费观看人在逋| www.自偷自拍.com| 黄色a级毛片大全视频| 9191精品国产免费久久| 亚洲专区国产一区二区| 午夜福利在线在线| 精品国产美女av久久久久小说| 国产野战对白在线观看| 国产精品电影一区二区三区| 欧美成狂野欧美在线观看| 这个男人来自地球电影免费观看| 欧美黄色片欧美黄色片| 香蕉av资源在线| 亚洲国产高清在线一区二区三 | 欧美 亚洲 国产 日韩一| 90打野战视频偷拍视频| 岛国在线观看网站| 91麻豆av在线| 国产高清有码在线观看视频 | 免费看十八禁软件| 女性生殖器流出的白浆| 久久精品国产亚洲av香蕉五月| 欧美+亚洲+日韩+国产| 男女那种视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日本免费a在线| 天堂动漫精品| 波多野结衣高清无吗| xxxwww97欧美| 啦啦啦韩国在线观看视频| 99久久国产精品久久久| 天堂动漫精品| 亚洲第一av免费看| 日韩欧美 国产精品| 曰老女人黄片| 国产99久久九九免费精品| 婷婷丁香在线五月| 美女 人体艺术 gogo| 午夜福利视频1000在线观看| 免费看美女性在线毛片视频| 哪里可以看免费的av片| 久久99热这里只有精品18| 此物有八面人人有两片| 亚洲一区二区三区色噜噜| 欧美性长视频在线观看| 欧美激情久久久久久爽电影| 黄色毛片三级朝国网站| 高清在线国产一区| 亚洲第一欧美日韩一区二区三区| 欧美成狂野欧美在线观看| 啪啪无遮挡十八禁网站| 国内毛片毛片毛片毛片毛片| 琪琪午夜伦伦电影理论片6080| 日韩欧美三级三区| 男女做爰动态图高潮gif福利片| 日韩成人在线观看一区二区三区| 亚洲精品国产区一区二| 久久国产精品影院| 国产精品国产高清国产av| 一本综合久久免费| 国产激情偷乱视频一区二区| 天堂影院成人在线观看| 亚洲一区高清亚洲精品| 精品一区二区三区四区五区乱码| 真人一进一出gif抽搐免费| 午夜福利在线观看吧| 国产成人精品无人区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av日韩精品久久久久久密| 十八禁网站免费在线| 91麻豆精品激情在线观看国产| 国内揄拍国产精品人妻在线 | 国产又爽黄色视频| 午夜影院日韩av| 国产精品影院久久| 91字幕亚洲| 日本免费一区二区三区高清不卡| 欧美三级亚洲精品| 久久国产精品影院| 午夜激情av网站| 曰老女人黄片| 又黄又爽又免费观看的视频| 又黄又粗又硬又大视频| 搡老熟女国产l中国老女人| 人人妻人人看人人澡| 亚洲av中文字字幕乱码综合 | 国产av一区二区精品久久| 午夜福利欧美成人| 18禁黄网站禁片免费观看直播| 村上凉子中文字幕在线| av中文乱码字幕在线| 99国产极品粉嫩在线观看| 嫩草影视91久久| 欧美一区二区精品小视频在线| 国产成人欧美| 少妇粗大呻吟视频| 99国产极品粉嫩在线观看| 亚洲第一av免费看| 成人免费观看视频高清| 国产色视频综合| 亚洲男人的天堂狠狠| 亚洲一区中文字幕在线| 午夜福利在线在线| 哪里可以看免费的av片| 制服诱惑二区| 国产在线精品亚洲第一网站| 亚洲三区欧美一区| 18禁国产床啪视频网站| 久久99热这里只有精品18| 免费在线观看完整版高清| 亚洲熟妇熟女久久| 黑丝袜美女国产一区| 亚洲欧美一区二区三区黑人| 一个人观看的视频www高清免费观看 | 免费在线观看完整版高清| АⅤ资源中文在线天堂| or卡值多少钱| 欧美成狂野欧美在线观看| 国产亚洲欧美98| 亚洲国产欧美网| 成人永久免费在线观看视频| 少妇熟女aⅴ在线视频| 精品少妇一区二区三区视频日本电影| 欧美不卡视频在线免费观看 | 日韩欧美 国产精品| 美女高潮到喷水免费观看| 禁无遮挡网站| 午夜激情福利司机影院| 成年免费大片在线观看| 特大巨黑吊av在线直播 | av欧美777| 精品国产美女av久久久久小说| 亚洲久久久国产精品| 成在线人永久免费视频| 久久亚洲真实| 别揉我奶头~嗯~啊~动态视频| 国产97色在线日韩免费| 国产精品亚洲美女久久久| 国产av在哪里看| 久久中文字幕一级| 成年女人毛片免费观看观看9| 午夜免费鲁丝| 美国免费a级毛片| 日本五十路高清| 91成年电影在线观看| 日韩av在线大香蕉| 在线观看日韩欧美| 国内精品久久久久精免费| 女同久久另类99精品国产91| 久久精品aⅴ一区二区三区四区| а√天堂www在线а√下载| 久久九九热精品免费| 亚洲一卡2卡3卡4卡5卡精品中文| 非洲黑人性xxxx精品又粗又长| 在线av久久热| 国产久久久一区二区三区| 国产成人av激情在线播放| 一区二区三区国产精品乱码| 久久久久免费精品人妻一区二区 | 91字幕亚洲| 一级a爱片免费观看的视频| 免费av毛片视频| 国产三级黄色录像| 国产亚洲精品久久久久5区| 亚洲精华国产精华精| 麻豆国产av国片精品| xxxwww97欧美| 法律面前人人平等表现在哪些方面| 中文字幕最新亚洲高清| 国产1区2区3区精品| 日本熟妇午夜| 久久精品91蜜桃| 亚洲全国av大片| 国产又爽黄色视频| 亚洲第一青青草原| 国产精品爽爽va在线观看网站 | e午夜精品久久久久久久| 欧美中文综合在线视频| 精品国产乱子伦一区二区三区| 在线观看舔阴道视频| 国产精品1区2区在线观看.| 成人av一区二区三区在线看| 成人三级黄色视频| 国产一卡二卡三卡精品| 女性生殖器流出的白浆| 欧美zozozo另类| 欧美人与性动交α欧美精品济南到| 最新在线观看一区二区三区| 国产片内射在线| 中文字幕高清在线视频| 亚洲最大成人中文| 老汉色∧v一级毛片| 无遮挡黄片免费观看| 日韩欧美三级三区| 俄罗斯特黄特色一大片| 又大又爽又粗| 很黄的视频免费| 黄色丝袜av网址大全| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 老汉色∧v一级毛片| 精华霜和精华液先用哪个| 亚洲久久久国产精品| 日本免费a在线| 一本一本综合久久| 国产v大片淫在线免费观看| 国产成人av激情在线播放| 老司机深夜福利视频在线观看| 在线观看www视频免费| 久久久国产欧美日韩av| 美女高潮喷水抽搐中文字幕| 中文字幕另类日韩欧美亚洲嫩草| 国产精华一区二区三区| 性欧美人与动物交配| 国产成人av激情在线播放| 日韩国内少妇激情av| 99久久久亚洲精品蜜臀av| 搡老岳熟女国产| 欧美激情极品国产一区二区三区| 日韩av在线大香蕉| 国产极品粉嫩免费观看在线| 午夜成年电影在线免费观看| 色播在线永久视频| 亚洲成人免费电影在线观看| 91成人精品电影| 亚洲精品美女久久久久99蜜臀| 久久精品国产亚洲av高清一级| 久久香蕉激情| 国内久久婷婷六月综合欲色啪| 欧美日本视频| 999久久久精品免费观看国产| 美女免费视频网站| 亚洲中文av在线| 国产成人影院久久av| 男人的好看免费观看在线视频 | 女警被强在线播放| 亚洲欧洲精品一区二区精品久久久| 搡老熟女国产l中国老女人| 国产午夜福利久久久久久| 日韩 欧美 亚洲 中文字幕| videosex国产| 一本久久中文字幕| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 亚洲美女黄片视频| 亚洲aⅴ乱码一区二区在线播放 | 黄色毛片三级朝国网站| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看| 满18在线观看网站| 十分钟在线观看高清视频www| 精品不卡国产一区二区三区| 国产一卡二卡三卡精品| 黄片小视频在线播放| 一个人观看的视频www高清免费观看 | 搡老妇女老女人老熟妇| 国内精品久久久久久久电影| 免费一级毛片在线播放高清视频| 亚洲一区二区三区色噜噜| 亚洲第一青青草原| 这个男人来自地球电影免费观看| 校园春色视频在线观看| 日本熟妇午夜| 美女大奶头视频| 国内毛片毛片毛片毛片毛片| 99久久精品国产亚洲精品| 成人一区二区视频在线观看| 亚洲一区二区三区色噜噜| 免费在线观看完整版高清| 99riav亚洲国产免费| 精品久久久久久久久久久久久 | 久久亚洲精品不卡| 国产成人精品久久二区二区91| 可以免费在线观看a视频的电影网站| 国产熟女xx| 欧美日本亚洲视频在线播放| 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 亚洲av片天天在线观看| 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 女警被强在线播放| 真人做人爱边吃奶动态| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美在线一区二区| 一进一出抽搐动态| 一区二区三区国产精品乱码| www.自偷自拍.com| 露出奶头的视频| 日本撒尿小便嘘嘘汇集6| 韩国av一区二区三区四区| 最好的美女福利视频网| 久久人妻福利社区极品人妻图片| 亚洲免费av在线视频| 欧美日韩瑟瑟在线播放| 男人舔女人下体高潮全视频| 老鸭窝网址在线观看| 正在播放国产对白刺激| 亚洲中文字幕日韩| 国产成人精品无人区| 在线国产一区二区在线| 久久久久久久久久黄片| 久久亚洲真实| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区mp4| 国产精品,欧美在线| 成年人黄色毛片网站| 可以在线观看毛片的网站| 嫩草影视91久久| 免费看美女性在线毛片视频| 中出人妻视频一区二区| 亚洲av五月六月丁香网| 免费av毛片视频| 两性夫妻黄色片| 丁香六月欧美| 男女午夜视频在线观看| 日本a在线网址| 日本三级黄在线观看| 成人国产一区最新在线观看| 国产精品 国内视频| 一本综合久久免费| 国产精品日韩av在线免费观看| 中文在线观看免费www的网站 | 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 可以在线观看毛片的网站| 天天躁夜夜躁狠狠躁躁| 淫秽高清视频在线观看| 99久久精品国产亚洲精品| 国产精品亚洲美女久久久| 一级a爱片免费观看的视频| 99国产精品一区二区蜜桃av| 国产激情久久老熟女| 亚洲精品在线观看二区| 亚洲成人久久爱视频| 99久久99久久久精品蜜桃| 亚洲国产毛片av蜜桃av| 国产精品 国内视频| 脱女人内裤的视频| 亚洲片人在线观看| 禁无遮挡网站| 又黄又粗又硬又大视频| 午夜免费观看网址| 日韩有码中文字幕| 欧美国产精品va在线观看不卡| 精品国产美女av久久久久小说| 久9热在线精品视频| 欧美激情久久久久久爽电影| 变态另类丝袜制服| 成人18禁在线播放| 最好的美女福利视频网| 亚洲色图av天堂| 在线天堂中文资源库| 国产真实乱freesex| 日本熟妇午夜| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 18禁黄网站禁片免费观看直播| 成人手机av| 欧美激情久久久久久爽电影| 久久中文看片网| 女警被强在线播放| 国产亚洲精品久久久久久毛片| 国产三级在线视频| 黄频高清免费视频| 欧美绝顶高潮抽搐喷水| 女性生殖器流出的白浆| 欧美一级a爱片免费观看看 | 法律面前人人平等表现在哪些方面| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 侵犯人妻中文字幕一二三四区| 母亲3免费完整高清在线观看| 一级黄色大片毛片| tocl精华| 久久精品人妻少妇| 91大片在线观看| 久久中文看片网| 欧美大码av| 亚洲精品色激情综合| 国产精品永久免费网站| 久久天堂一区二区三区四区| 成人18禁在线播放| 亚洲熟妇中文字幕五十中出| 色综合婷婷激情| 日韩视频一区二区在线观看| 少妇熟女aⅴ在线视频| 视频在线观看一区二区三区| 久久久久久免费高清国产稀缺| 在线观看日韩欧美| 久久国产乱子伦精品免费另类| 无人区码免费观看不卡| 亚洲国产精品sss在线观看| 精品午夜福利视频在线观看一区| 精品国产美女av久久久久小说| 国内精品久久久久精免费| 国产精品日韩av在线免费观看| 韩国av一区二区三区四区| а√天堂www在线а√下载| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 欧美又色又爽又黄视频| 日韩三级视频一区二区三区| 色播在线永久视频| 亚洲av熟女| av免费在线观看网站| 成人手机av| 999久久久国产精品视频| 桃色一区二区三区在线观看| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 欧美性猛交黑人性爽| 一区二区三区国产精品乱码| 久久精品国产亚洲av高清一级| 一级黄色大片毛片| 人人妻人人澡人人看| 无遮挡黄片免费观看| 日韩欧美在线二视频| 深夜精品福利| 人人妻人人看人人澡| а√天堂www在线а√下载| 熟女电影av网| 久99久视频精品免费| 午夜福利18| 国产久久久一区二区三区| 亚洲久久久国产精品| 亚洲av片天天在线观看| a级毛片在线看网站| 国产高清视频在线播放一区| 首页视频小说图片口味搜索| 国产精品久久久人人做人人爽| 国产成人av激情在线播放| a级毛片a级免费在线| 亚洲av五月六月丁香网| 一本一本综合久久| 国产亚洲精品第一综合不卡| 欧美成人免费av一区二区三区| 少妇被粗大的猛进出69影院| 成人欧美大片| 性色av乱码一区二区三区2| 麻豆成人av在线观看| 别揉我奶头~嗯~啊~动态视频| 人人妻人人澡欧美一区二区| svipshipincom国产片| 国产欧美日韩精品亚洲av| 中文资源天堂在线| 精品久久久久久久末码| 国产爱豆传媒在线观看 | 精品国产国语对白av| 69av精品久久久久久| 动漫黄色视频在线观看| 久久久国产成人精品二区| 男女做爰动态图高潮gif福利片| 日韩大尺度精品在线看网址| 久久精品国产亚洲av高清一级| 在线观看www视频免费| aaaaa片日本免费| 他把我摸到了高潮在线观看| 波多野结衣巨乳人妻| 久久久久久久精品吃奶| 国产成人欧美| 国产成人欧美在线观看| 欧美激情 高清一区二区三区| 久久久久久久久中文| 免费人成视频x8x8入口观看| 精品电影一区二区在线| 校园春色视频在线观看| 亚洲av成人av| 搞女人的毛片| 在线观看免费日韩欧美大片| 亚洲精品一区av在线观看| 黄色丝袜av网址大全| 色综合站精品国产| 一级黄色大片毛片| e午夜精品久久久久久久| 在线永久观看黄色视频| 日韩大尺度精品在线看网址| 欧美zozozo另类| 久久婷婷成人综合色麻豆| 久久久国产成人精品二区| 国产成年人精品一区二区| 国产伦在线观看视频一区| 日韩高清综合在线| 亚洲精品一区av在线观看| 精品第一国产精品| 国内毛片毛片毛片毛片毛片| 熟女电影av网| 免费看日本二区| 日本精品一区二区三区蜜桃| 搞女人的毛片| 一级作爱视频免费观看| 欧美黑人精品巨大| 99国产精品99久久久久| a级毛片在线看网站| 午夜免费成人在线视频| 欧美大码av| 黄频高清免费视频| 12—13女人毛片做爰片一| 欧美成人免费av一区二区三区| 国产午夜精品久久久久久| 色老头精品视频在线观看| 别揉我奶头~嗯~啊~动态视频| 欧美黑人精品巨大| 在线观看舔阴道视频| 18禁裸乳无遮挡免费网站照片 | 国产欧美日韩一区二区精品| 18禁黄网站禁片免费观看直播| 人妻丰满熟妇av一区二区三区| 18禁美女被吸乳视频| 丝袜在线中文字幕| 一卡2卡三卡四卡精品乱码亚洲| av有码第一页| 亚洲人成网站在线播放欧美日韩| 国产成人欧美在线观看| 日韩三级视频一区二区三区| 久热爱精品视频在线9| 日韩一卡2卡3卡4卡2021年| 亚洲成人国产一区在线观看| 久久精品亚洲精品国产色婷小说| 欧美成狂野欧美在线观看| 一级a爱片免费观看的视频| 欧美最黄视频在线播放免费| 啪啪无遮挡十八禁网站| 亚洲av成人不卡在线观看播放网| 国产人伦9x9x在线观看| 精品国产乱码久久久久久男人| 999久久久精品免费观看国产| 欧美一级毛片孕妇| 国产一区二区在线av高清观看| 午夜激情av网站| 日韩一卡2卡3卡4卡2021年| 日本精品一区二区三区蜜桃| 精品福利观看| 亚洲人成伊人成综合网2020| 亚洲,欧美精品.| 亚洲va日本ⅴa欧美va伊人久久| 午夜精品久久久久久毛片777| 日本 av在线| 亚洲午夜理论影院| 禁无遮挡网站| 亚洲片人在线观看| 好看av亚洲va欧美ⅴa在| 香蕉国产在线看| avwww免费| 成人欧美大片| 大香蕉久久成人网|