• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Two-step Design Method for Shaft Work Targeting on Low-temperature Process*

    2014-07-18 12:09:48LUOYiqing羅祎青FENGShengke馮勝科SUNChangjiang孫長(zhǎng)江andYUANXigang袁希鋼SchoolofChemicalEngineeringandTechnologyTianjinUniversityTianjin30007ChinaBeijingRisunChemicalTechnologiesInstituteCompanyLimitedBeijing00070China
    關(guān)鍵詞:長(zhǎng)江

    LUO Yiqing (羅祎青)**, FENG Shengke (馮勝科) SUN Changjiang (孫長(zhǎng)江)and YUAN Xigang (袁希鋼)School of Chemical Engineering and Technology, Tianjin University, Tianjin 30007, ChinaBeijing Risun Chemical Technologies Institute Company Limited, Beijing 00070, China

    A Two-step Design Method for Shaft Work Targeting on Low-temperature Process*

    LUO Yiqing (羅祎青)1,**, FENG Shengke (馮勝科)1, SUN Changjiang (孫長(zhǎng)江)2and YUAN Xigang (袁希鋼)11School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China2Beijing Risun Chemical Technologies Institute Company Limited, Beijing 100070, China

    In low-temperature processes, there are interactions between heat exchanger network (HEN) and refrigeration system. The modification on HEN of the chilling train for increasing energy recovery does not always coordinate with the minimum shaft work consumption of the corresponding refrigeration system. In this paper, a systematic approach for optimizing low-temperature system is presented through mathematical method and exergy analysis. The possibility of “pockets”, which appears as right nose section in the grand composite curve (EGCC) of the process, is first optimized. The EGCC with the pockets cutting down is designed as a separate part. A case study is used to illustrate the application of the approach for a HEN of a chilling train with propylene and ethylene refrigerant system in an ethylene production process.

    exergy, shaft work, heat exchanger network, cold pocket, low-temperature process, optimization

    1 INTRODUCTION

    The heat exchanger network (HEN) and the refrigeration system in a low-temperature process are interlinked and their interactions are complex because compressor power is involved in utility requirements as well as heat in the system [1]. There are several methods for optimizing HEN in low temperature in recent years, almost all of which try to recover more heat energy in HEN [2]. However, since different level cold utility is supported by the refrigeration compressor, although these methods can recover most of heat energy in HEN, the refrigeration shaft work is usually not optimal and the optimization for whole system cannot be guaranteed. In a low-temperature process, the refrigeration shaft work should be the final target in optimizing the whole system [3, 4]. The pinch analysis method [5] can set heat load targets, but it is difficult to optimize the shaft work target simultaneously. Linnhoff and Dhole [6] had introduced the concept of “shaft work targets”, which allows the designer to obtain quantitive changes in the refrigeration shaft work requirement with exergy analysis [7] and bypass the exact design of both HEN and refrigeration system. To show the exergy loss in a heat exchanger network, carnot factor has been used to form the grand composite curve (EGCC) as shown in Fig. 1 [8-10],

    where ηcis the carnot efficiency and T0is the environment temperature. In Fig. 1 the shaded area between curves is proportional to the exergy loss in the HEN and is denoted as (σT0)HEN[8, 11]. Thus the amount of ideal work equivalent lost in heat transfer is proportional to the shaded area. When the reduction of shaded area is (σT0)HEN, the reduction of the shaft work is

    Figure 1 Exergy grand composite curve

    where ηexis the exergetic efficiency of refrigeration system, which is approximately constant [12] and is 0.59 here.

    However, as shown in Fig. 2, there are always pockets in the EGCC. If the energy in pockets and the temperature difference of the hot and cold streams in the pocket are both large [13], it is worthwhile to recover the energy in the pocket to improve the energy efficiency of the system. In this study, a two-step method is introduced to reduce the shaft work of a low-temperature process. First, cold pockets in the EGCC will be optimized in order to recover high quality utility. Then a mathematical method will be used to optimize the optimal utility arrangement. AHEN of a chilling train with propylene and ethylene refrigerant cycle process, with several cold pockets below the pinch of its EGCC, is used as a case study to specify the significant economic benefits.

    Figure 2 EGCC with pocket

    2 OPTIMIZATION METHOD

    In a low-temperature process, the EGCC always contains some pockets. A two-step method is adopted to optimize the process.

    2.1 Optimizing cold pockets

    Figure 3 shows the principle of optimizing cold pockets. A lower quality utility “EB” is used to exchange heat with the hot streams. Then, cold streams are used to generate a higher quality utility “FC”, and its temperature is decided by the minimum temperature difference of heat transfer. According to Linnhoff, the reduction of the exergy loss is proportional to the area of “EBCF”, namely Δ(σT0)HEN,P.

    Figure 3 Cold pockets in the EGCC

    2.2 Optimizing the low-temperature process without pockets

    Figure 4 shows the EGCC without pockets after optimizing the cold package of “EBCF”, and a mathematical method is then used to obtain the optimum utility setting for the system. The level as well as the number of cold utilities is chosen as optimization variables, and the shaded area between the cold utilities and the process streams is the objective for minimization.

    The mathematical model is presented as

    where N is the number of cold utilities, Hirepresents the enthalpy supplied by cold utility at temperature level i, ηciis the carnot factor at temperature level i, Hminand Hmaxrepresent the minimum and maximum enthalpy in the EGCC, respectively, S is the original loss of exergy, which is represented by the shaded area in Fig. 4. The optimization problem can be solved using a particle swarm optimization (PSO) [14] algorithm, which is a population based stochastic optimization technique. In PSO, the potential solutions, named as particles, fly through the problem space following the current optimum particles. As a point in a D-dimensional space, each particle updates according to its own experience and of other particles. The algorithm is simple in concept and can give good results in a faster and cheaper way. A PSO algorithm [15] is implemented and is illustrated in Fig. 5, where k is the number of iteration, ω, c1and c2are positive constants, v is the set of rate of position change of particle, and T is a set of temperature levels needed to be optimized for all particles.

    Figure 4 EGCC without pockets

    Figure 5 The methodology framework

    Table 1 Stream data of the HEN

    3 CASE STUDY

    The stream data shown in Table 1 belong to a HEN of a chilling train in an ethylene plant. The value of T0in Eq. (1) is 298.15 K. Fig. 6 is the EGCC for the process with vertical axis ηc. The original cold utilitiesare shown in Table 2, where P represents the propylene refrigerant and E represents the ethylene refrigerant. By calculating the area between the EGCC and the cold utilities, we get the exergy loss 2.659 MW. Then the two-step method is adopted to optimize the process.

    Figure 6 shows the pockets for the system. We optimize the pocket as shown in Fig. 7, in which both the energy and the temperature difference of the hot and cold streams are large. Here, the minimum temperature difference of heat transfer is taken as 3.0 °C. A lower quality utility is used to exchange heat with the hot streams and the cold streams are used to generate a higher quality utility. The rectangle area is proportional to the reduction of exergy loss.

    Figure 6 EGCC for the HEN of a chilling train in an ethylene plant

    Table 2 The data of original cold utilities

    Figure 7 The pocket with the lowest temperature for the HEN of a chilling train

    To maximum the area of the rectangle, a cold utility at ?101.0 °C with 1 MW heat load is used to exchange heat with the hot streams in the pocket. Meanwhile, the process cold streams generate a high quality utility at ?134.5 °C with 1 MW heat load. From the area of the rectangle, the reduction of exergy loss is 0.457 MW. According to Eq. (2), the reduction of the shaft work is 0.775 MW.

    Next, the process without pockets is optimized. Fig. 8 is the EGCC. To find the optimum arrangement of cold utilities, which makes the area between the process streams and the utilities minimum, mathematical programming is used. The number of cold utilities is first set 7, then the levels of refrigeration are searched in the curve with the objective function of minimizing the area between the refrigeration and process streams. Table 3 shows the results with 7 optimum cold utilities. By calculating the area between the process streams and the cold utilities, we get the exergy loss of 2.316 MW. Then the reduction of exergy loss is 0.343 MW and the reduction of the shaft work is 0.581 MW.

    Figure 8 EGCC without pockets for the HEN of a chilling train in the ethylene plant

    Table 3 The data with 7 cold utilities

    Table 4 shows the optimum results with 8 cold utilities. The reduction of exergy loss is 0.454 MW and the reduction of the shaft work is 0.769 MW. Table 5 shows the optimum results with 6 cold utilities. The reduction of exergy loss is 0.140 MW and the reduction of the shaft work is 0.237 MW.

    Table 4 The data with 8 cold utilities

    Table 5 The data with 6 cold utilities

    The results are compared in Table 6. The reduction of shaft work increases with the number of utilities, but the increment is reduced as the number is increased from 7 to 8. More utilities mean more capital cost, so a suitable level of utilities should be chosen by a trade-off between the reduction of shaft work and capital cost.

    Table 6 Comparison of the reduction of shaft work with different numbers of utilities

    4 CONCLUSIONS

    This paper presents a two-step method to optimize HEN in a low-temperature process. The main purpose is to achieve the largest reduction of shaft work needed in HEN and to obtain optimal refrigerant levels. The cold pockets are first optimized to improve the energy performance of the system, which not only reduces the refrigerant quality requirement, but also generates higher quality refrigerant; then a mathematical method is used to find the best utility setting in the EGCC to cut down the cold pockets. The two-step method can give the optimal configuration of refrigeration levels in an efficient and effective way. A HEN of a chilling train with propylene and ethylene refrigerant cycle process is used as a case study. The results show that the two-step method can reduce the shaft work loss significantly.

    NOMENCLATURE

    Subscripts

    REFERENCE

    1 Linnhoff, B., Ashmad, S., “Super-targeting: Optimal synthesis of energy management systems”, Trans. ASME, J. Energy Resources Techno, 111 (3), 131-136 (1989).

    2 Huang, K.F., Zhang, J.W., Feng, X., “Optimum setting for the utility system of ethylene plant”, Chemical Industry and Engineering Progress, 25, 466-469 (2006). (in Chinese)

    3 Mehra Yuv, R., “Refrigeration charts for low temperature processes”, Chemical Engineering, 15 (1), 131-139 (1979).

    4 Shelton, M.R., Grossmann, I.E., “Optimal synthesis of refrigeration systems”, Computers and Chemical Engineering, 10 (5), 461-477 (1986).

    5 Linnhoff, B., “The pinch design method for heat exchanger networks”, Chemical Engineering Science, 38 (4), 745-763 (1983).

    6 Linnhoff, B., Dhole, V. R., “Shaft work targets for low-temperature process design”, Chemical Engineering Science, 47 (8), 2081-2091 (1992).

    7 Rosen, M.A., Dincer, I., “Exergy as the confluence of energy, environment and sustainable development”, International Journal of Eχergy, 1 (1), 3-13 (2001).

    8 Linnhoff, B., “Pinch technology for the synthesis of optimal heat and power systems”, Trans ASME, J. Energy Resources Technol, 111 (3), 137-147 (1989).

    9 Hui, C.W., Ahmad, S., “Total site heat integration using the utility system”, Computers and Chemical Engineering, 18 (8), 729-742 (1994).

    10 Panjeshahi, M. H., Langeroudi, E.G., Tahouni, N., “Retrofit of ammonia plant for improving energy efficiency”, Energy, 33 (1), 46-64 (2008).

    11 Umeda, T., “A thermodynamic approach to the synthesis of heat integration systems in chemical processes”, Computers and Chemical Engineering, 3 (1-4), 273-282 (1979).

    12 Dhole, V. R., “Distillation column integration and overall design of sub-ambient plants”, Ph.D. Thesis, University of Manchester (UMIST), England (1991).

    13 Wang, Y.F., Feng, X., Cai, Y., Zhu, M.B., Chu, K.H., “Improving a process’s efficiency by exploiting heat pockets in its heat exchange network”, Energy, 34 (11), 1925-1932 (2009).

    14 Luo, Y.Q., Yuan, X.G., Liu, Y.J., “An improved PSO algorithm for solving non-convex NLP/MINLP problems with equality constraints”, Computers and Chemical Engineering, 31, 153-162 (2007).

    15 Luo, Y.Q., Yuan, X.G., “Global optimization for the synthesis of integrated water systems with particle swarm optimization algorithm”, Chin. J. Chem. Eng., 16 (1), 11-15 (2008).

    2013-08-13, accepted 2013-09-09.

    * Supported by the National Basic Research Program of China (2010CB720500) and the National Natural Science Foundation (21176178).

    ** To whom correspondence should be addressed. E-mail: luoyq@tju.edu.cn

    猜你喜歡
    長(zhǎng)江
    第17屆長(zhǎng)江韜奮獎(jiǎng)
    長(zhǎng)江學(xué)人
    理論探索(2022年6期)2023-01-17 01:56:30
    長(zhǎng)江學(xué)人
    理論探索(2022年5期)2022-11-07 10:17:18
    萬(wàn)里長(zhǎng)江第一站,有一束“光””
    長(zhǎng)江,你從哪里來(lái)
    長(zhǎng)江之頭
    青年歌聲(2020年11期)2020-11-24 06:57:28
    游長(zhǎng)江
    長(zhǎng)江之歌(外二首)
    長(zhǎng)江圖(外二首)
    長(zhǎng)江石的一次大發(fā)現(xiàn)
    寶藏(2017年7期)2017-08-09 08:15:18
    成人国语在线视频| 九色亚洲精品在线播放| 国产成人欧美| 亚洲国产看品久久| 日韩熟女老妇一区二区性免费视频| 天天躁夜夜躁狠狠久久av| 久久性视频一级片| 国产男女内射视频| 老司机影院成人| 男人舔女人的私密视频| 亚洲久久久国产精品| 大型av网站在线播放| 国产极品粉嫩免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 亚洲自偷自拍图片 自拍| 悠悠久久av| 两个人免费观看高清视频| 国产伦理片在线播放av一区| 永久免费av网站大全| 国产国语露脸激情在线看| 欧美精品av麻豆av| 一二三四在线观看免费中文在| 女人高潮潮喷娇喘18禁视频| 天天添夜夜摸| 亚洲欧美成人综合另类久久久| 久久国产精品人妻蜜桃| 欧美日韩精品网址| 国产精品香港三级国产av潘金莲 | 久久久久久久久免费视频了| 97精品久久久久久久久久精品| 乱人伦中国视频| 99国产精品免费福利视频| 国产成人精品无人区| 亚洲国产av影院在线观看| 久久久久久久久免费视频了| 麻豆乱淫一区二区| 日韩视频在线欧美| 久久人妻熟女aⅴ| 别揉我奶头~嗯~啊~动态视频 | a级毛片黄视频| 日本五十路高清| 国产一区二区三区综合在线观看| 男女午夜视频在线观看| 国产亚洲欧美在线一区二区| 国产麻豆69| 50天的宝宝边吃奶边哭怎么回事| 黄色 视频免费看| 亚洲人成网站在线观看播放| 国产高清不卡午夜福利| 亚洲国产av新网站| 久久青草综合色| 狂野欧美激情性bbbbbb| av视频免费观看在线观看| 男女之事视频高清在线观看 | 黄网站色视频无遮挡免费观看| 美女午夜性视频免费| 午夜福利免费观看在线| 久久精品亚洲av国产电影网| 国产精品一区二区在线不卡| 99热全是精品| 精品视频人人做人人爽| 永久免费av网站大全| 少妇的丰满在线观看| 亚洲国产最新在线播放| 无遮挡黄片免费观看| 看十八女毛片水多多多| 操出白浆在线播放| 日日摸夜夜添夜夜爱| 亚洲精品在线美女| 一本一本久久a久久精品综合妖精| 天堂中文最新版在线下载| 日韩av在线免费看完整版不卡| 日本av免费视频播放| 亚洲免费av在线视频| 91麻豆av在线| 欧美日韩av久久| 搡老岳熟女国产| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| 伦理电影免费视频| 久久国产精品影院| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 日日摸夜夜添夜夜爱| 久久久久久免费高清国产稀缺| 国产精品国产av在线观看| 亚洲av日韩在线播放| 日本vs欧美在线观看视频| 久久热在线av| 久久久久久人人人人人| 亚洲av电影在线进入| 在线观看免费午夜福利视频| av国产久精品久网站免费入址| 天天躁夜夜躁狠狠躁躁| 黑丝袜美女国产一区| 黄色片一级片一级黄色片| 日日夜夜操网爽| 好男人电影高清在线观看| 亚洲av日韩精品久久久久久密 | 韩国高清视频一区二区三区| 国产免费现黄频在线看| 高清av免费在线| 欧美精品亚洲一区二区| 捣出白浆h1v1| 亚洲精品乱久久久久久| 国产亚洲av高清不卡| 国产午夜精品一二区理论片| 久久九九热精品免费| 一级毛片女人18水好多 | 精品欧美一区二区三区在线| 国产无遮挡羞羞视频在线观看| 国产三级黄色录像| 日本vs欧美在线观看视频| 亚洲欧美清纯卡通| 91成人精品电影| 亚洲欧美精品自产自拍| 国产精品一区二区在线不卡| 亚洲精品一区蜜桃| 久久女婷五月综合色啪小说| 日本猛色少妇xxxxx猛交久久| 亚洲精品一卡2卡三卡4卡5卡 | 国产高清不卡午夜福利| 亚洲欧洲日产国产| 三上悠亚av全集在线观看| 视频区欧美日本亚洲| 国产一区二区在线观看av| 国产免费一区二区三区四区乱码| 老汉色∧v一级毛片| 国产不卡av网站在线观看| 免费高清在线观看日韩| 一级毛片 在线播放| 国产99久久九九免费精品| 精品少妇一区二区三区视频日本电影| 国产不卡av网站在线观看| 国产一区有黄有色的免费视频| 日本黄色日本黄色录像| 一区在线观看完整版| 国产片内射在线| 中文字幕精品免费在线观看视频| 精品人妻1区二区| 女人久久www免费人成看片| 午夜福利在线免费观看网站| 久久性视频一级片| 在线观看免费高清a一片| 欧美亚洲日本最大视频资源| 深夜精品福利| 后天国语完整版免费观看| 丰满人妻熟妇乱又伦精品不卡| 国产在视频线精品| 欧美精品高潮呻吟av久久| 亚洲av日韩精品久久久久久密 | 精品久久久精品久久久| 国产欧美日韩一区二区三区在线| 亚洲成av片中文字幕在线观看| 伊人亚洲综合成人网| 在线av久久热| 一本大道久久a久久精品| 91成人精品电影| 99国产精品免费福利视频| 中国美女看黄片| √禁漫天堂资源中文www| 不卡av一区二区三区| av在线app专区| videosex国产| 免费观看a级毛片全部| 久久国产精品人妻蜜桃| 精品国产超薄肉色丝袜足j| 天天躁狠狠躁夜夜躁狠狠躁| 老汉色∧v一级毛片| www.999成人在线观看| 亚洲精品久久久久久婷婷小说| 熟女少妇亚洲综合色aaa.| 美国免费a级毛片| 涩涩av久久男人的天堂| 久久国产精品大桥未久av| 18禁黄网站禁片午夜丰满| av天堂久久9| 热99国产精品久久久久久7| 国产一区有黄有色的免费视频| 人体艺术视频欧美日本| 精品少妇久久久久久888优播| 午夜两性在线视频| 国产成人一区二区在线| 亚洲一卡2卡3卡4卡5卡精品中文| 高清不卡的av网站| 精品人妻一区二区三区麻豆| 欧美激情高清一区二区三区| 国产成人免费观看mmmm| 丰满少妇做爰视频| 日本欧美视频一区| 母亲3免费完整高清在线观看| 亚洲国产av影院在线观看| 黑人欧美特级aaaaaa片| 麻豆乱淫一区二区| 久久久国产精品麻豆| 99热网站在线观看| 国产精品熟女久久久久浪| 青春草视频在线免费观看| 尾随美女入室| 99香蕉大伊视频| 热99国产精品久久久久久7| av在线老鸭窝| 黄频高清免费视频| 国产精品三级大全| 97精品久久久久久久久久精品| 久久亚洲国产成人精品v| 天天添夜夜摸| 国产亚洲欧美精品永久| 91字幕亚洲| 欧美日本中文国产一区发布| 国产麻豆69| 又黄又粗又硬又大视频| 国产又爽黄色视频| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 亚洲图色成人| 亚洲欧美精品自产自拍| 制服人妻中文乱码| 一边摸一边抽搐一进一出视频| 成年av动漫网址| 91精品三级在线观看| 日韩大码丰满熟妇| 午夜免费鲁丝| 亚洲精品一卡2卡三卡4卡5卡 | 秋霞在线观看毛片| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 欧美精品啪啪一区二区三区 | 国产精品久久久久成人av| 久久久国产欧美日韩av| 老汉色av国产亚洲站长工具| 美女扒开内裤让男人捅视频| 国产亚洲av高清不卡| 深夜精品福利| 桃花免费在线播放| 久久久久国产精品人妻一区二区| 国产精品国产av在线观看| 男女边摸边吃奶| 校园人妻丝袜中文字幕| 精品亚洲成国产av| 纵有疾风起免费观看全集完整版| 黄色a级毛片大全视频| 丝袜在线中文字幕| 两个人免费观看高清视频| 免费不卡黄色视频| 97精品久久久久久久久久精品| 午夜福利,免费看| 波多野结衣一区麻豆| 亚洲,一卡二卡三卡| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 美国免费a级毛片| 男女无遮挡免费网站观看| 这个男人来自地球电影免费观看| 啦啦啦在线免费观看视频4| 亚洲专区中文字幕在线| 中文欧美无线码| 久久青草综合色| 乱人伦中国视频| 国产熟女欧美一区二区| 欧美大码av| 午夜激情av网站| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 曰老女人黄片| 国产欧美亚洲国产| 亚洲综合色网址| 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 国产男女内射视频| 在线亚洲精品国产二区图片欧美| 国产伦人伦偷精品视频| 国产一区二区 视频在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美性长视频在线观看| 国产不卡av网站在线观看| 国产国语露脸激情在线看| netflix在线观看网站| 久久久精品免费免费高清| 成年人黄色毛片网站| 国产成人精品久久二区二区免费| 免费少妇av软件| 日韩av在线免费看完整版不卡| 欧美精品av麻豆av| 亚洲欧美中文字幕日韩二区| 叶爱在线成人免费视频播放| svipshipincom国产片| 999精品在线视频| 波野结衣二区三区在线| av一本久久久久| 久久久久久久大尺度免费视频| 肉色欧美久久久久久久蜜桃| 91老司机精品| 搡老岳熟女国产| 久久九九热精品免费| 国语对白做爰xxxⅹ性视频网站| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av | 欧美激情极品国产一区二区三区| 久久久久久亚洲精品国产蜜桃av| 每晚都被弄得嗷嗷叫到高潮| 国产女主播在线喷水免费视频网站| 黑人欧美特级aaaaaa片| 国产一区有黄有色的免费视频| 国产亚洲精品久久久久5区| 人人澡人人妻人| 欧美97在线视频| 欧美精品一区二区免费开放| 国语对白做爰xxxⅹ性视频网站| 午夜福利一区二区在线看| 婷婷色综合大香蕉| 老司机在亚洲福利影院| 免费女性裸体啪啪无遮挡网站| 欧美另类一区| 丝瓜视频免费看黄片| 男女免费视频国产| 高潮久久久久久久久久久不卡| 久久久精品区二区三区| kizo精华| 波多野结衣一区麻豆| 欧美乱码精品一区二区三区| 另类亚洲欧美激情| 欧美人与性动交α欧美精品济南到| 我要看黄色一级片免费的| 欧美激情 高清一区二区三区| 日本a在线网址| 亚洲熟女精品中文字幕| 亚洲五月色婷婷综合| 久久精品人人爽人人爽视色| 国产男人的电影天堂91| 自线自在国产av| 交换朋友夫妻互换小说| 人人澡人人妻人| 精品亚洲成国产av| 国产黄色免费在线视频| 亚洲国产欧美网| 少妇被粗大的猛进出69影院| 国产女主播在线喷水免费视频网站| 丰满人妻熟妇乱又伦精品不卡| 久久人人97超碰香蕉20202| 在线看a的网站| 黄色怎么调成土黄色| 亚洲国产毛片av蜜桃av| 99香蕉大伊视频| 亚洲国产最新在线播放| 午夜福利在线免费观看网站| 亚洲情色 制服丝袜| 国产在线观看jvid| 精品国产乱码久久久久久小说| 久久久久精品国产欧美久久久 | 视频区欧美日本亚洲| 国产成人91sexporn| 9色porny在线观看| 午夜影院在线不卡| 亚洲熟女精品中文字幕| 水蜜桃什么品种好| 久久人妻熟女aⅴ| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲 | 水蜜桃什么品种好| 国产三级黄色录像| 国产成人a∨麻豆精品| 亚洲国产看品久久| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美日韩另类电影网站| 国产精品.久久久| 一级毛片电影观看| videos熟女内射| 亚洲人成电影观看| av不卡在线播放| 少妇精品久久久久久久| 免费在线观看黄色视频的| 久久99热这里只频精品6学生| 国产xxxxx性猛交| 操出白浆在线播放| 又紧又爽又黄一区二区| 天堂中文最新版在线下载| av不卡在线播放| 十八禁高潮呻吟视频| 婷婷色麻豆天堂久久| 国语对白做爰xxxⅹ性视频网站| 老汉色∧v一级毛片| 免费看十八禁软件| 亚洲成人手机| 精品人妻熟女毛片av久久网站| av网站在线播放免费| 嫩草影视91久久| 亚洲人成77777在线视频| 精品少妇内射三级| 国产不卡av网站在线观看| 成人国语在线视频| 成年av动漫网址| 亚洲国产精品一区二区三区在线| 一级毛片我不卡| 精品少妇黑人巨大在线播放| 国产精品三级大全| 美女午夜性视频免费| 午夜久久久在线观看| 精品人妻一区二区三区麻豆| 欧美日韩福利视频一区二区| 欧美人与性动交α欧美软件| 性色av乱码一区二区三区2| 国精品久久久久久国模美| 精品人妻在线不人妻| 国产麻豆69| 9热在线视频观看99| 国产高清不卡午夜福利| 国精品久久久久久国模美| 亚洲,欧美精品.| 性少妇av在线| 国产日韩欧美在线精品| 女人精品久久久久毛片| 999久久久国产精品视频| 久久性视频一级片| 自线自在国产av| 波多野结衣一区麻豆| 亚洲精品一卡2卡三卡4卡5卡 | 在线观看人妻少妇| 久9热在线精品视频| 一级黄色大片毛片| 国产成人精品久久二区二区91| 日韩 亚洲 欧美在线| 老司机影院毛片| 脱女人内裤的视频| 午夜免费男女啪啪视频观看| 91老司机精品| 国产不卡av网站在线观看| 啦啦啦在线观看免费高清www| 国产深夜福利视频在线观看| 一本色道久久久久久精品综合| 欧美 日韩 精品 国产| 一级片免费观看大全| 欧美精品啪啪一区二区三区 | 啦啦啦 在线观看视频| 婷婷丁香在线五月| 精品人妻1区二区| 欧美日韩福利视频一区二区| 午夜免费成人在线视频| 亚洲人成电影免费在线| 999精品在线视频| 大香蕉久久网| 欧美性长视频在线观看| 性色av乱码一区二区三区2| 精品少妇内射三级| 大香蕉久久网| 久久精品亚洲熟妇少妇任你| 色94色欧美一区二区| 免费在线观看日本一区| 国产精品二区激情视频| 日本av手机在线免费观看| 中文字幕人妻丝袜一区二区| 国产日韩一区二区三区精品不卡| 国产免费又黄又爽又色| 久久热在线av| 深夜精品福利| 中文字幕最新亚洲高清| 久热爱精品视频在线9| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 精品国产乱码久久久久久男人| 少妇的丰满在线观看| av在线老鸭窝| 亚洲免费av在线视频| 亚洲精品一区蜜桃| 亚洲免费av在线视频| 激情视频va一区二区三区| 亚洲精品久久久久久婷婷小说| 9热在线视频观看99| 黄频高清免费视频| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av涩爱| 精品一区在线观看国产| 一区福利在线观看| 国产精品人妻久久久影院| www.自偷自拍.com| 亚洲精品乱久久久久久| 精品亚洲成国产av| 免费高清在线观看视频在线观看| 国产精品久久久久久精品电影小说| 夫妻性生交免费视频一级片| 一边亲一边摸免费视频| 日韩 欧美 亚洲 中文字幕| 国产成人av教育| 999久久久国产精品视频| 精品欧美一区二区三区在线| 在线观看一区二区三区激情| 美女主播在线视频| 午夜视频精品福利| 日韩中文字幕视频在线看片| 91成人精品电影| 色婷婷av一区二区三区视频| 亚洲av成人不卡在线观看播放网 | 少妇人妻 视频| 三上悠亚av全集在线观看| 欧美日韩亚洲综合一区二区三区_| 热re99久久国产66热| 成人免费观看视频高清| 热re99久久国产66热| 国产一区二区激情短视频 | 日日摸夜夜添夜夜爱| 免费观看人在逋| 热re99久久国产66热| 国产欧美亚洲国产| 国产1区2区3区精品| 大型av网站在线播放| 亚洲欧美中文字幕日韩二区| 永久免费av网站大全| 丰满迷人的少妇在线观看| 岛国毛片在线播放| 亚洲,一卡二卡三卡| 在线天堂中文资源库| 欧美日韩视频高清一区二区三区二| 最近中文字幕2019免费版| 亚洲欧美一区二区三区久久| 国产高清不卡午夜福利| 精品少妇久久久久久888优播| 美女脱内裤让男人舔精品视频| 午夜日韩欧美国产| 亚洲中文av在线| 亚洲情色 制服丝袜| 国产男女超爽视频在线观看| 亚洲欧美一区二区三区久久| 免费观看人在逋| 中文字幕av电影在线播放| 国产成人精品无人区| a级毛片黄视频| 交换朋友夫妻互换小说| 亚洲国产成人一精品久久久| 日本午夜av视频| 欧美 日韩 精品 国产| 精品国产一区二区三区久久久樱花| 热re99久久国产66热| 肉色欧美久久久久久久蜜桃| 超碰成人久久| 十八禁网站网址无遮挡| 亚洲精品国产av成人精品| 性高湖久久久久久久久免费观看| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 精品少妇一区二区三区视频日本电影| 汤姆久久久久久久影院中文字幕| 亚洲成人免费电影在线观看 | 亚洲中文字幕日韩| 欧美亚洲 丝袜 人妻 在线| 国产一级毛片在线| 可以免费在线观看a视频的电影网站| 日本欧美视频一区| 亚洲国产中文字幕在线视频| 国产又爽黄色视频| 亚洲色图综合在线观看| www.av在线官网国产| 亚洲国产最新在线播放| 免费人妻精品一区二区三区视频| 免费看av在线观看网站| 国产成人av教育| 久久天堂一区二区三区四区| 亚洲精品久久午夜乱码| 亚洲av美国av| 国产成人免费无遮挡视频| 亚洲国产欧美一区二区综合| 国产精品免费视频内射| 大香蕉久久成人网| 亚洲欧美日韩另类电影网站| 这个男人来自地球电影免费观看| 妹子高潮喷水视频| 国产高清不卡午夜福利| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 精品亚洲乱码少妇综合久久| 9色porny在线观看| 成人免费观看视频高清| 中文字幕精品免费在线观看视频| 日本午夜av视频| 亚洲av成人不卡在线观看播放网 | 久久热在线av| 亚洲成av片中文字幕在线观看| 啦啦啦视频在线资源免费观看| 两个人免费观看高清视频| 亚洲成人手机| 肉色欧美久久久久久久蜜桃| 亚洲精品一卡2卡三卡4卡5卡 | 国产精品 国内视频| 亚洲中文字幕日韩| 国产熟女午夜一区二区三区| 国产淫语在线视频| 日本猛色少妇xxxxx猛交久久| 亚洲男人天堂网一区| 国产老妇伦熟女老妇高清| 母亲3免费完整高清在线观看| 另类精品久久| 婷婷丁香在线五月| 精品人妻一区二区三区麻豆| 欧美人与性动交α欧美精品济南到| 国产精品偷伦视频观看了| 91老司机精品| 久久久欧美国产精品| 成人国产av品久久久| 亚洲av成人精品一二三区| 国产亚洲av片在线观看秒播厂| xxx大片免费视频| 国产一卡二卡三卡精品| 日韩大码丰满熟妇| 免费在线观看影片大全网站 | 国产精品秋霞免费鲁丝片| 五月天丁香电影| 久久久国产精品麻豆| 欧美精品av麻豆av| 日本五十路高清| 18在线观看网站| 国产精品久久久久成人av| 老汉色av国产亚洲站长工具| 久久久久精品国产欧美久久久 | 国产成人精品久久二区二区免费| 十八禁人妻一区二区|