• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing Reactors Selection and Sequencing: Minimum Cost versus Minimum Volume

    2014-07-18 12:09:48RachidChebbiDepartmentofChemicalEngineeringAmericanUniversityofSharjahSharjah26666UnitedArabEmirates

    Rachid Chebbi*Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates

    Optimizing Reactors Selection and Sequencing: Minimum Cost versus Minimum Volume

    Rachid Chebbi*
    Department of Chemical Engineering, American University of Sharjah, Sharjah 26666, United Arab Emirates

    The present investigation targets minimum cost of reactors in series for the case of one single chemical reaction, considering plug flow and stirred tank reactor(s) in the sequence of flow reactors. Using Guthrie’s cost correlations three typical cases were considered based on the profile of the reaction rate reciprocal versus conversion. Significant differences were found compared to the classical approach targeting minimum total reactor volume.

    cost, optimization, flow reactor, reactors in series, reactor selection

    1 INTRODUCTION

    Sequencing of chemical reactors is a typical reaction engineering problem. For ideal reactors, steady-state mole balances yield the volumes of the CSTR (continuous stirred tank reactor) and PFR (plug flow reactor) required to increase conversion in the case of one single reaction occurring [1-3]. Levenspiel plots [1-3] are obtained by plotting the inlet flow rate of the limiting reactant over the rate of disappearance versus conversion. The CSTR volume is represented by the area of a rectangle, whereas the PFR volume is given by the area under the curve. Levenspiel plots can be used to find the optimum reactors sequencing that provides the minimum total area (volume). An analytical approach [4] was proposed to resolve the optimum reactors sequencing problem using the same criterion: minimum total reactor volume. This led to results consistent with those using Levenspiel plots.

    Different computational methods have been formulated to synthesize reactor networks. Superstructures incorporate anticipated process options and interconnections. A review was given by Smith [5], and complex superstructures were considered by Kokossis and Floudas [6, 7]. Reaching adequate superstructure complexity cannot be guaranteed; a concept, initially introduced by Horn [8], defined the attainable region (AR) as the points in concentration space that can be attained through reaction and mixing. The infinite dimensional state space (IDEAS) was introduced to find the AR and to synthesize reactor networks [9, 10]. Recent reviews and formulation of cost-oriented synthesis was given by Bedenik et al. [11] and Zhou and Manousiouthakis [12]. Use of a superstructure to minimize/maximize the total annual cost/profit was considered [13-15]. The concept of economic region (ER) obtained from concentration attainable region (AR) was introduced by Bedenik et al. [11], leading to a hybrid approach for mixed-integer nonlinear programming (MINLP) superstructure synthesis based on the ER concept. A cost minimization methodology using the IDEAS framework was introduced for isothermal reactor networks synthesis by Zhou and Manousiouthakis [12]. To avoid mathematical complication, a geometric approach based on areas comparison was given by Chen and Feng [16] for synthesizing reactors network targeting waste reduction. A combination of superstructure-based optimization with semantic models and analytical tools was introduced by Labrador-Darder et al. [17] to provide a progressive change in the superstructure along with a simplified design and interpretation. To reduce hydrogen waste in a refinery, Khajehpour et al. [18] used heuristic rules to reduce the superstructure followed by a genetic algorithm to solve the MINLP problem. A combination of linear programming and stochastic optimization was used by Jin et al. [19] for a superstructure composed of CSTRs and PFRs in order to reduce the complexity of solving the non-linear programming problem. The network considered here is less general and consists of PFRs/CSTRs in series with one chemical reaction taking place; however, a simple methodology is reached. The cost of manufacture is a function of fixed capital investment, costs of utilities, operating labor, raw materials and water treatment [20]. The cost of raw materials is the same for the different selection and sequencing options, and the only costs that are expected to change significantly are the fixed capital investment and cost of utilities. Since intercooling or inter-heating between the adiabatic reactors is not included in the present work and is deferred to further investigations, the objective is reactor cost minimization. Guthrie’s cost correlation [21] is used to estimate the cost of the installed reactors. The objective is different from minimization of the total reactor volume [1, 4]. Both approaches are compared in the following cases: constant f(X) (example: isothermal zero-order reaction), increasing function f (X) (example: isothermal positive order reaction) and function f(X) showing a minimum (example: autocatalytic and adiabatic exothermic reactions).

    2 COSTING FORMULATION

    The volumes of the CSTR and PFR required to increase conversion from 0 to X are given by [1-3]

    where subscripts C and P represent CSTR and PFR, and the following function f(X) is used to simplify the notations

    The notations FA0andAr? denote the inlet molar flow rate to reactor and the rate of disappearance of the limiting reactant A, respectively. Levenspiel plots [1-3] are obtained by plotting f(X) versus conversion X.

    Guthrie’s cost correlation [21] providing the installed reactor cost is used

    where Fcis a factor accounting for pressure and material of construction and IM&Sis the Marshall and Swift equipment cost index.

    Using the aspect ratio kR(R=C or P), defined as length (H) over diameter D (PFR case) or height H over D (CSTR case) along with the relation between volume V, H and D gives upon substitution into Eq. (4)

    The plug flow reactor aspect ratio kPis obviously larger than kC.

    3 REACTOR VOLUMES AND COSTS

    Figure 1 Plots of f(X) versus X for Cases 1 (a), 2 (b) and 3 (c)

    Table 1 PFR and CSTR volumes for specific functions f(X)

    Figures 1-3 show different profiles for f(X) versus X. Fig. 1 (a) is a case in which f(X) is constant with a typical case of isothermal zero order reaction. Fig. 1 (b) is a more common case where f(X) increases with conversion X, corresponding for instance to the casewhere a decrease in reactant(s) concentration at constant temperature, which leads to smaller reaction rate and increasing f(X) with X. Fig. 1 (c) is typical for autocatalytic and adiabatic exothermic reactions [2].

    For the purpose of calculations, more specific equations for f(X) need to be considered. They are shown in Table 1 along with the corresponding PFR and CSTR volumes. To simplify the analysis, costs are written in the following compact form:

    4 ANALYSIS FOR SMALL CONVERSION X

    Near X=0, PFR and CSTR volumes are given by Maclaurin series expansions

    The ratio kC/kPis smaller than 1; therefore, a CSTR is less costly for small X. Typically, X is high and more analysis is required. In Eqs. (11)-(13), f(0) appears in the denominator. The case f(0)=0 cannot occur since the reaction rate cannot be infinite.

    5 REACTORS SEQUENCING

    The analysis close to X=0 suggests the first reactor is a CSTR.

    5.1 PFR following CSTR

    Whether a PFR following the CSTR provides a lower total cost is investigated using the total cost obtained as a function of the intermediate conversion Xi

    Eq. (16) is a non-linear equation that has only one unknown Xiafter substituting for VP,iand VC,iusing Eq. (15). A better way is to plot the total cost CS=CC,i+CP,ifor a given final conversion X versus Xi, tackling a more general problem: global optimum and cases where the optimum is not in the interior of the interval for Xi.

    Based on the volumes shown in Table 1, the results for the specific cases considered are as follows for a ratio kC/kPof 1.5/10 taken as an example.

    Case 1

    For f(X)=constant, the CSTR and PFR volumes are equal, and the CSTR cost is smaller. The two costs are given by

    Obviously, no PFR following a CSTR is needed in this case. The results are shown in Fig. 2. For a constant reaction rate (Case 1), the CSTR cost is less compared to a PFR, while both require equal volumes for a given required conversion.

    Figure 2 Plots of reactor cost versus X (Case 1)

    Case 2

    Using the volumes from Table 1, the reactor costs are given by

    The results presented in Fig. 3 show that the cost of a PFR is higher than the cost of CSTR up to a conversion of about 0.61, which is in consistency with the local analysis in Section 4. A PFR is less costly at higher conversions. Using a CSTR followed by a PFR does not yield a lower reactor cost as seen from Fig. 3. For a decreasing reaction rate with conversion (Case 2), a PFR is less costly at sufficiently high conversion and a CSTR is more economic at lower conversion, whereas the volume minimization approach favors a PFR in all cases.

    Figure 3 Plots of reactor cost versus X (Case 2)

    Case 3

    Using for simplicity a quadratic function of X, f(X) showing a minimum at Xm, to approximate autocatalytic and exothermic adiabatic reactions, it is possible to get an insight regarding the optimum sequencing features. From the reactor volumes given in Table 1, it is possible to get the costs as Using two values of ω, 1 (Xm=0.5) and 5 (Xm=0.1), along with a typical final conversion Xf=0.9 as an example, the results are shown in Fig. 4. Similar results to the ones for ω=1 are obtained when ω is changed to 2 (Xm=0.25), which indicates that minimum reactor cost is achieved by a PFR for sufficiently small Xmand by a CSTR for most values of ω (intermediate to large values of Xm).

    Figure 4 Plots of reactor cost versus X (Case 3)

    In the case where reaction rate increases up to X=Xmand then decreases with conversion (Case 3) approximated by a quadratic function, a CSTR is less costly in most cases. However when Xmis sufficiently small, a PFR is more economic. The results are different from the one using minimum volume as the criterion, leading to the following selection: a CSTR achieving an intermediate conversion of Xm, followed by a PFR to reach the final conversion [1, 4]. Using PFRs in series does not change the total volume required [1], but the cost is higher. For another subcase of interest in Case 3, when a CSTR is a better option than a PFR (Xmnot small), two CSTRs in series were found to enhance the reactor cost.

    5.2 Multiple smaller reactors in series versus one larger reactor of the same type

    Constant Rate or PFRs in Series

    In this case, the volume of a reactor V achieving a given conversion is equal to the sum of the N reactors in series. This is well known in the case of PFRs in series, but it is also valid in the case of CSTRs in series if the reaction rate is constant. In both cases V is given by

    where Vn(n=1, N) is the volume of the small reactor n.

    The cost function of V being concave downward, we have

    meaning that one large reactor is less costly than the Nreactors in series of the same type.

    Non-Constant Rate and CSTRs in Series

    Equation (23) is no longer valid and more analysis is required. For two CSTRs in series C1 and C2 achieving a final conversion X and an intermediate conversion Xi, the total cost is

    The results are shown in Fig. 5 for a selected final conversion Xfof 0.9 and Xm=0.5 (ω=1), showing clearly that one CSTR is less costly than two CSTRs in series.

    6 CONCLUSIONS

    Using Guthrie’s cost correlation, it has been shown that minimizations of the total reactor volume and installed cost do not necessarily concur for the three typical cases considered. When space is a concern, minimizing the total volume can be considered as a proper objective, otherwise, minimum cost can be considered as a more appropriate target.

    Temperature effect on reaction rate is embedded in function f(X). However, when the reactors are not adiabatic the coolers or heaters in the cost analysis require additional theoretical analysis to account for the additional cooling/heating cost.

    NOMENCLATURE

    Superscripts

    Subscripts

    REFERENCES

    1 Levenspiel, O., Chemical Reaction Engineering, Wiley, New York (1972).

    2 Villermaux, J., Chemical Reaction Engineering—Conception and Operation Reactors, TEC & DOC-Lavoisier, Paris, France (1993).

    3 Fogler, H.S., Elements of Chemical Reaction Engineering, Prentice Hall, Upper Saddle River, NJ (2006).

    4 Chebbi, R., “Chemical reactors sequencing”, Computer Applications in Engineering Education, DOI: 10.1002/cae.20545 (2011).

    5 Smith, R., Chemical Process Design and Integration, Wiley, Chichester (2005).

    6 Kokossis, A.C., Floudas, C.A., “Optimization of complex reactor networks: Isothermal operation”, Chemical Engineering Science, 45, 595-614 (1990).

    7 Kokossis, A.C., Floudas, C.A., “Optimization of complex reactor networks: Nonisothermal operation”, Chemical Engineering Science, 49, 1037-1051 (1994).

    8 Horn, F., “Attainable regions in chemical reaction technique”, In: the Third European Symposium on Chemical Reaction Engineering, Pergamon Press (1964).

    9 Burri, J.F., Wilson, S.D., Manousiouthakis, V.I., “Infinite dimensional state-space (IDEAS) approach to reactor network synthesis: Application to attainable region construction”, Computers & Chemical Engineering, 26, 849-862 (2002).

    10 Zhou, W., Manousiouthakis, V.I., “Variable density fluid reactor network synthesis construction of the attainable region through the IDEAS approach”, Chemical Engineering Journal, 129, 91-103 (2007).

    11 Bedenik, N.I., Ropotar, M., Kravanja, Z., “MINLP synthesis of reactornetworks in overall process schemes based on a concept of time-dependent economic regions”, Computers & Chemical Engineering, 31, 657-676 (2007).

    12 Zhou, W., Manousiouthakis, V.I., “Global capital/total annualized cost minimization of homogeneous and isothermal reactor networks”, Industrial & Engineering Chemistry Research, 47, 3771-3782 (2008).

    13 Kokossis, A.C., Floudas, C.A., “Synthesis of isothermal reactorseparator-recycle Systems”, Chemical Engineering Science, 46, 1361-1383 (1991).

    14 Luyben, M.L., Luyben, W.L., “Design and control of a complex process involving two reaction steps, three distillation columns, and two recycle streams”, Industrial & Engineering Chemistry Research, 34, 3885-3898 (1995).

    15 Bedenik, N.I., Pahor, B., Kravanja, Z., “An integrated strategy for the hierarchical multilevel MINLP synthesis of overall process flowsheets using the combined synthesis/analysis approach”, Computers & Chemical Engineering, 28, 693-706 (2004).

    16 Chen, Q., Feng, X., “Reactor network synthesis for waste reduction using instantaneous value of environmental index”, Chinese Journal of Chemical Engineering, 16 (1), 155-158 (2008).

    17 Labrador-Darder, C., Cecelja, F., Kokossis, A.C., Linke, P., “Integration of superstructure-based optimization and semantic models for the synthesis of reactor networks”, Computer Aided Chemical Engineering, 26, 865-870 (2009).

    18 Khajehpour, M., Farhadi, F., Pishvaie, M.R., “Reduced superstructure solution of MINLP problem in refinery hydrogen management”, International Journal of Hydrogen Energy, 34 (22), 9233-9238 (2009).

    19 Jin, S., Li, X., Tao, S., “Globally optimal reactor network synthesis via the combination of linear programming and stochastic optimization approach”, Chemical Engineering Research and Design, 90 (6), 808-813 (2012).

    20 Turton, R., Baillie, R.C., Whiting, W.B., Shaeiwitz, J.A., Analysis, Synthesis, and Design of Chemical Processes, Prentice Hall, New Jersey (2003).

    21 Douglas, J.M., Conceptual Design of Chemical Processes, McGraw-Hill, New York (1988).

    2012-06-24, accepted 2013-01-20.

    * To whom correspondence should be addressed. E-mail: rchebbi@aus.edu

    亚洲色图av天堂| 舔av片在线| 午夜影院日韩av| 亚洲在线观看片| 精品一区二区三区av网在线观看| 日韩欧美在线乱码| 搞女人的毛片| 亚洲精品在线美女| 亚洲精品日韩av片在线观看 | 国产高清激情床上av| 亚洲av日韩精品久久久久久密| 女生性感内裤真人,穿戴方法视频| 日本a在线网址| 国产精华一区二区三区| 久久久国产成人精品二区| 国产激情欧美一区二区| 国产免费男女视频| 搞女人的毛片| 精品电影一区二区在线| eeuss影院久久| 黄色视频,在线免费观看| 免费大片18禁| 日韩亚洲欧美综合| 国产成人欧美在线观看| 一卡2卡三卡四卡精品乱码亚洲| 美女高潮的动态| www.熟女人妻精品国产| av专区在线播放| 日本熟妇午夜| 99久久九九国产精品国产免费| 国内精品美女久久久久久| 亚洲国产精品sss在线观看| 亚洲精品色激情综合| 香蕉丝袜av| 一本久久中文字幕| 欧美3d第一页| 中文在线观看免费www的网站| 天堂网av新在线| 一本综合久久免费| 一区二区三区激情视频| av中文乱码字幕在线| 亚洲激情在线av| 午夜福利免费观看在线| 成人午夜高清在线视频| 亚洲国产色片| 亚洲第一欧美日韩一区二区三区| 欧美乱码精品一区二区三区| 91av网一区二区| 制服丝袜大香蕉在线| e午夜精品久久久久久久| 在线国产一区二区在线| 日韩成人在线观看一区二区三区| 丝袜美腿在线中文| 亚洲久久久久久中文字幕| 手机成人av网站| 少妇丰满av| 69av精品久久久久久| 特大巨黑吊av在线直播| 欧美区成人在线视频| 男人舔女人下体高潮全视频| 亚洲精品色激情综合| 免费电影在线观看免费观看| 1024手机看黄色片| 国产高清videossex| 少妇熟女aⅴ在线视频| 看免费av毛片| 午夜两性在线视频| 久久久成人免费电影| av视频在线观看入口| www.www免费av| 国产成人啪精品午夜网站| 淫妇啪啪啪对白视频| 搡老熟女国产l中国老女人| 久99久视频精品免费| 变态另类丝袜制服| av视频在线观看入口| 久久草成人影院| 91在线观看av| 99国产极品粉嫩在线观看| 国产一区二区激情短视频| 欧美成狂野欧美在线观看| 亚洲第一欧美日韩一区二区三区| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 久久久久久久久久黄片| 91在线精品国自产拍蜜月 | 可以在线观看毛片的网站| 免费人成在线观看视频色| 人人妻人人看人人澡| 黄色成人免费大全| 不卡一级毛片| 九色国产91popny在线| 免费看光身美女| 免费看a级黄色片| 90打野战视频偷拍视频| 日韩欧美免费精品| 国产亚洲av嫩草精品影院| 欧美一级毛片孕妇| 亚洲中文日韩欧美视频| 变态另类成人亚洲欧美熟女| 男女午夜视频在线观看| 不卡一级毛片| 欧美黑人欧美精品刺激| 日韩欧美精品免费久久 | 夜夜夜夜夜久久久久| 久久久久久久亚洲中文字幕 | 一区二区三区激情视频| 免费看a级黄色片| 色吧在线观看| 少妇裸体淫交视频免费看高清| tocl精华| 国产69精品久久久久777片| 精品久久久久久久人妻蜜臀av| 日本成人三级电影网站| 亚洲乱码一区二区免费版| 哪里可以看免费的av片| 天天躁日日操中文字幕| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频| 国产老妇女一区| 亚洲欧美日韩无卡精品| 天堂动漫精品| 一个人免费在线观看电影| 成年女人毛片免费观看观看9| 久久精品国产亚洲av涩爱 | 欧美成人a在线观看| 最新美女视频免费是黄的| 亚洲成人久久性| 露出奶头的视频| 久久久国产成人精品二区| 免费无遮挡裸体视频| 18禁国产床啪视频网站| 午夜激情福利司机影院| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| www国产在线视频色| 国产精品99久久99久久久不卡| 亚洲av美国av| 首页视频小说图片口味搜索| 日韩中文字幕欧美一区二区| 久久香蕉国产精品| 校园春色视频在线观看| 国产爱豆传媒在线观看| 国产精品久久久久久人妻精品电影| 精品久久久久久久久久久久久| 悠悠久久av| 久久久精品欧美日韩精品| 国产精品久久久久久久久免 | 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 欧美国产日韩亚洲一区| 欧美日韩黄片免| 色综合站精品国产| www.熟女人妻精品国产| 亚洲精品一区av在线观看| 欧美激情在线99| 两个人看的免费小视频| 丁香欧美五月| 午夜精品久久久久久毛片777| 国产亚洲精品av在线| av欧美777| 午夜精品在线福利| 亚洲一区二区三区不卡视频| 99精品欧美一区二区三区四区| 51国产日韩欧美| 欧美绝顶高潮抽搐喷水| 十八禁网站免费在线| 国产日本99.免费观看| 免费无遮挡裸体视频| 长腿黑丝高跟| 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 两个人视频免费观看高清| 男女那种视频在线观看| 亚洲精品日韩av片在线观看 | 99久久九九国产精品国产免费| 亚洲av免费在线观看| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 亚洲熟妇熟女久久| 丰满人妻熟妇乱又伦精品不卡| 1000部很黄的大片| 黄色视频,在线免费观看| 成人性生交大片免费视频hd| 免费在线观看日本一区| 国产高潮美女av| 男人舔女人下体高潮全视频| 免费大片18禁| 精品一区二区三区视频在线 | 人人妻人人澡欧美一区二区| 久久精品影院6| tocl精华| 高潮久久久久久久久久久不卡| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 欧美中文综合在线视频| 激情在线观看视频在线高清| av欧美777| 母亲3免费完整高清在线观看| www国产在线视频色| 日本熟妇午夜| 免费看a级黄色片| 乱人视频在线观看| 久久天躁狠狠躁夜夜2o2o| 亚洲美女黄片视频| 国产一区二区在线av高清观看| 亚洲黑人精品在线| 亚洲人成网站在线播| 中文资源天堂在线| 国产午夜福利久久久久久| 88av欧美| 久久九九热精品免费| 中文字幕久久专区| 国内少妇人妻偷人精品xxx网站| 哪里可以看免费的av片| 国产淫片久久久久久久久 | 久久久久九九精品影院| 国产在视频线在精品| 日本成人三级电影网站| 丰满人妻一区二区三区视频av | 成人一区二区视频在线观看| 色哟哟哟哟哟哟| 99在线人妻在线中文字幕| 精品一区二区三区视频在线 | 最近在线观看免费完整版| 久久精品国产亚洲av涩爱 | 国产精品美女特级片免费视频播放器| 久久久久国产精品人妻aⅴ院| 国产精品一区二区三区四区久久| 亚洲av不卡在线观看| 我的老师免费观看完整版| 亚洲av一区综合| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| 久久午夜亚洲精品久久| 欧美最新免费一区二区三区 | 免费大片18禁| 免费在线观看成人毛片| 真人做人爱边吃奶动态| 好男人电影高清在线观看| 久久久精品欧美日韩精品| 成人鲁丝片一二三区免费| 免费看光身美女| 亚洲av二区三区四区| 成人18禁在线播放| 法律面前人人平等表现在哪些方面| 欧美不卡视频在线免费观看| 亚洲av成人av| 俺也久久电影网| 尤物成人国产欧美一区二区三区| 欧美激情久久久久久爽电影| 3wmmmm亚洲av在线观看| 中国美女看黄片| 精品一区二区三区av网在线观看| 亚洲精品在线观看二区| av视频在线观看入口| 国产成人a区在线观看| 91久久精品电影网| 亚洲av日韩精品久久久久久密| bbb黄色大片| 亚洲在线自拍视频| 久久精品91蜜桃| 久久久久久大精品| 亚洲精品456在线播放app | 国产精品日韩av在线免费观看| 日韩有码中文字幕| 成人精品一区二区免费| 午夜影院日韩av| 免费人成视频x8x8入口观看| 天堂网av新在线| 在线观看av片永久免费下载| 国产三级中文精品| 听说在线观看完整版免费高清| 很黄的视频免费| 免费av观看视频| 国内揄拍国产精品人妻在线| 国产精品嫩草影院av在线观看 | 中文字幕熟女人妻在线| 内地一区二区视频在线| 成人av一区二区三区在线看| 国产精品自产拍在线观看55亚洲| 久久草成人影院| 日韩中文字幕欧美一区二区| 波多野结衣高清作品| 国产精品久久久久久人妻精品电影| 美女高潮的动态| 老司机在亚洲福利影院| 国产精品一及| 久久久色成人| 99国产精品一区二区三区| 久久久久久久久久黄片| 成年免费大片在线观看| 欧美日韩瑟瑟在线播放| 亚洲精品色激情综合| aaaaa片日本免费| 亚洲av中文字字幕乱码综合| 午夜影院日韩av| 亚洲精品久久国产高清桃花| 午夜日韩欧美国产| 中文字幕人成人乱码亚洲影| 久久午夜亚洲精品久久| 国产伦一二天堂av在线观看| 宅男免费午夜| 最近最新免费中文字幕在线| 亚洲国产中文字幕在线视频| 国产99白浆流出| 欧美日韩乱码在线| 国产在视频线在精品| 全区人妻精品视频| 国产高清激情床上av| 日韩高清综合在线| 免费一级毛片在线播放高清视频| 亚洲中文字幕一区二区三区有码在线看| 天天添夜夜摸| 亚洲av电影不卡..在线观看| 欧美日本视频| 久久精品国产自在天天线| 69av精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 欧美乱码精品一区二区三区| 亚洲自拍偷在线| 有码 亚洲区| 18禁黄网站禁片午夜丰满| 免费看光身美女| 国产精品免费一区二区三区在线| 美女 人体艺术 gogo| 少妇高潮的动态图| 亚洲18禁久久av| 色视频www国产| 成人特级黄色片久久久久久久| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 日韩欧美精品免费久久 | 日本五十路高清| 可以在线观看的亚洲视频| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 夜夜看夜夜爽夜夜摸| 免费看十八禁软件| 中文亚洲av片在线观看爽| 国模一区二区三区四区视频| 小说图片视频综合网站| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 色噜噜av男人的天堂激情| 蜜桃亚洲精品一区二区三区| 午夜福利欧美成人| 欧美另类亚洲清纯唯美| 久久婷婷人人爽人人干人人爱| 老司机福利观看| 18禁黄网站禁片免费观看直播| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 免费在线观看亚洲国产| 免费看a级黄色片| xxxwww97欧美| 国产成人系列免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品成人久久久久久| 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 欧美色欧美亚洲另类二区| 久久欧美精品欧美久久欧美| 在线看三级毛片| 精品人妻1区二区| 99热6这里只有精品| 久久欧美精品欧美久久欧美| 成人鲁丝片一二三区免费| 久久人人精品亚洲av| e午夜精品久久久久久久| 人人妻人人澡欧美一区二区| 中出人妻视频一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲欧美精品综合久久99| 欧美在线黄色| 黄色片一级片一级黄色片| 国产精品国产高清国产av| 欧美激情在线99| 中文资源天堂在线| 亚洲内射少妇av| 观看免费一级毛片| 亚洲内射少妇av| 亚洲av中文字字幕乱码综合| 亚洲性夜色夜夜综合| 一本综合久久免费| 欧美zozozo另类| 日韩精品中文字幕看吧| 久久天躁狠狠躁夜夜2o2o| 日本成人三级电影网站| 精品欧美国产一区二区三| 国产高潮美女av| bbb黄色大片| 神马国产精品三级电影在线观看| 欧美中文日本在线观看视频| 欧美bdsm另类| 中文在线观看免费www的网站| 国产欧美日韩一区二区三| 中文在线观看免费www的网站| 精品乱码久久久久久99久播| 免费观看精品视频网站| 一个人免费在线观看的高清视频| 在线观看舔阴道视频| 少妇裸体淫交视频免费看高清| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 好男人在线观看高清免费视频| 久久久久久九九精品二区国产| 国产成人aa在线观看| 亚洲精品在线观看二区| 欧美成人免费av一区二区三区| 日本 av在线| www.熟女人妻精品国产| 亚洲18禁久久av| 99久久精品一区二区三区| 久久久久久久午夜电影| 欧美绝顶高潮抽搐喷水| 久久精品91无色码中文字幕| 精品一区二区三区视频在线观看免费| 欧美日韩福利视频一区二区| 色在线成人网| 色尼玛亚洲综合影院| 在线免费观看的www视频| 99热精品在线国产| 欧美一区二区亚洲| 免费无遮挡裸体视频| 最后的刺客免费高清国语| 亚洲 欧美 日韩 在线 免费| 一进一出抽搐动态| 日韩成人在线观看一区二区三区| 欧美国产日韩亚洲一区| АⅤ资源中文在线天堂| 亚洲无线观看免费| 丝袜美腿在线中文| 麻豆成人av在线观看| 欧美乱妇无乱码| 老熟妇仑乱视频hdxx| 中文字幕精品亚洲无线码一区| 亚洲乱码一区二区免费版| 校园春色视频在线观看| 欧美黄色片欧美黄色片| 人人妻人人看人人澡| 搡老妇女老女人老熟妇| av福利片在线观看| 好男人在线观看高清免费视频| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| 在线免费观看的www视频| 日日摸夜夜添夜夜添小说| 中文字幕熟女人妻在线| 成熟少妇高潮喷水视频| 精品国产亚洲在线| 美女 人体艺术 gogo| 国产成人系列免费观看| 中文字幕人妻熟人妻熟丝袜美 | 在线观看舔阴道视频| 亚洲av熟女| 欧美日韩综合久久久久久 | 老鸭窝网址在线观看| 级片在线观看| 日韩 欧美 亚洲 中文字幕| 久久久国产成人精品二区| 亚洲成人精品中文字幕电影| 国产精品美女特级片免费视频播放器| 日韩中文字幕欧美一区二区| 免费看十八禁软件| 亚洲欧美日韩东京热| 黄色视频,在线免费观看| 丁香六月欧美| 午夜免费观看网址| 亚洲国产精品久久男人天堂| 丁香欧美五月| 亚洲欧美激情综合另类| 日本免费一区二区三区高清不卡| 亚洲av免费高清在线观看| 黄色成人免费大全| 成人午夜高清在线视频| 亚洲一区二区三区不卡视频| a级毛片a级免费在线| 欧美最黄视频在线播放免费| 18禁国产床啪视频网站| svipshipincom国产片| 深爱激情五月婷婷| 亚洲av中文字字幕乱码综合| 亚洲精品国产精品久久久不卡| 国产色婷婷99| 欧美黄色片欧美黄色片| 观看免费一级毛片| 91麻豆精品激情在线观看国产| 久久久久精品国产欧美久久久| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 级片在线观看| 高清日韩中文字幕在线| 尤物成人国产欧美一区二区三区| 19禁男女啪啪无遮挡网站| 老司机深夜福利视频在线观看| 在线观看午夜福利视频| 日韩欧美国产一区二区入口| 内地一区二区视频在线| 有码 亚洲区| 欧美日韩瑟瑟在线播放| 久9热在线精品视频| 欧美av亚洲av综合av国产av| 国产在线精品亚洲第一网站| 偷拍熟女少妇极品色| 精品不卡国产一区二区三区| 国内精品久久久久久久电影| 国产高清激情床上av| 窝窝影院91人妻| 最近最新中文字幕大全免费视频| 日本黄大片高清| 色视频www国产| 欧美午夜高清在线| 日韩欧美在线乱码| 免费看十八禁软件| 日韩欧美国产一区二区入口| 在线播放国产精品三级| 色综合站精品国产| av天堂中文字幕网| 在线免费观看不下载黄p国产 | 成人国产一区最新在线观看| 国产成人啪精品午夜网站| 有码 亚洲区| 婷婷亚洲欧美| 女警被强在线播放| 国产高清激情床上av| 国产av麻豆久久久久久久| 欧美激情在线99| 久久久久久人人人人人| 亚洲久久久久久中文字幕| 女生性感内裤真人,穿戴方法视频| 日韩精品中文字幕看吧| av女优亚洲男人天堂| 人人妻人人澡欧美一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费高清视频大片| 欧美日韩瑟瑟在线播放| 亚洲人成电影免费在线| 国产精品av视频在线免费观看| 国产伦精品一区二区三区四那| 亚洲aⅴ乱码一区二区在线播放| 老汉色∧v一级毛片| 特大巨黑吊av在线直播| 国产精品三级大全| 亚洲专区国产一区二区| 非洲黑人性xxxx精品又粗又长| www.色视频.com| 国产亚洲精品av在线| 国模一区二区三区四区视频| 2021天堂中文幕一二区在线观| 天堂影院成人在线观看| 日韩欧美免费精品| 999久久久精品免费观看国产| 老司机午夜福利在线观看视频| 国产欧美日韩精品亚洲av| 国产毛片a区久久久久| 可以在线观看的亚洲视频| 亚洲美女视频黄频| 久久精品国产综合久久久| 一本久久中文字幕| 丁香欧美五月| 国产精品野战在线观看| 色精品久久人妻99蜜桃| 欧美+亚洲+日韩+国产| 丰满人妻熟妇乱又伦精品不卡| 乱人视频在线观看| 国产一级毛片七仙女欲春2| 99久久精品国产亚洲精品| 欧美午夜高清在线| 又黄又粗又硬又大视频| 一个人观看的视频www高清免费观看| 在线观看免费视频日本深夜| 真人一进一出gif抽搐免费| 国产av在哪里看| 亚洲精品乱码久久久v下载方式 | 久久国产精品人妻蜜桃| 亚洲精品粉嫩美女一区| 无限看片的www在线观看| 中国美女看黄片| 久久精品人妻少妇| 亚洲人成网站在线播| 五月玫瑰六月丁香| 国产熟女xx| 久久香蕉国产精品| 老司机深夜福利视频在线观看| 色精品久久人妻99蜜桃| 我的老师免费观看完整版| 国产日本99.免费观看| eeuss影院久久| 两个人看的免费小视频| 精品久久久久久久毛片微露脸| 老熟妇乱子伦视频在线观看| 日韩亚洲欧美综合| 午夜福利18| 级片在线观看| 久久久久久久午夜电影| 99国产精品一区二区三区| 18禁裸乳无遮挡免费网站照片| 成人av一区二区三区在线看| 国产69精品久久久久777片| 国产蜜桃级精品一区二区三区| 啦啦啦韩国在线观看视频| 老汉色av国产亚洲站长工具| 午夜日韩欧美国产| 91久久精品国产一区二区成人 | 深夜精品福利| 一级毛片高清免费大全| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 欧美成人免费av一区二区三区| 亚洲av美国av|