• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes*

    2014-07-18 12:09:48TIANWende田文德HUMinggang胡明剛andLIChuankun李傳坤CollegeofChemicalEngineeringQingdaoUniversityofScienceTechnologyQingdao6604ChinaZiboWeichuangPetrochemicalDesignCoLtdZibo55400ChinaStateKeyLaboratoryofChemicalsSafetyQingdaoSafet

    TIAN Wende (田文德)**, HU Minggang (胡明剛)and LI Chuankun (李傳坤)College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 6604, ChinaZibo Weichuang Petrochemical Design Co., Ltd, Zibo 55400, ChinaState Key Laboratory of Chemicals Safety, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 6607 China

    Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes*

    TIAN Wende (田文德)1,**, HU Minggang (胡明剛)2and LI Chuankun (李傳坤)31College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China2Zibo Weichuang Petrochemical Design Co., Ltd, Zibo 255400, China3State Key Laboratory of Chemicals Safety, Qingdao Safety Engineering Institute, SINOPEC, Qingdao 266071, China

    This paper combines grey model with time series model and then dynamic model for rapid and in-depth fault prediction in chemical processes. Two combination methods are proposed. In one method, historical data is introduced into the grey time series model to predict future trend of measurement values in chemical process. These predicted measurements are then used in the dynamic model to retrieve the change of fault parameters by model based diagnosis algorithm. In another method, historical data is introduced directly into the dynamic model to retrieve historical fault parameters by model based diagnosis algorithm. These parameters are then predicted by the grey time series model. The two methods are applied to a gravity tank example. The case study demonstrates that the first method is more accurate for fault prediction.

    fault prediction, dynamic model, grey model, time series model

    1 INTRODUCTION

    Chemical processes frequently involve flammable and explosive chemicals and operate under high temperature and pressure conditions. Its accidents not only result in huge economic losses but also threaten operator’s life. Detecting minor abnormal symptom and predicting its trend in time is a key to guarantee chemical production safety [1]. Some severe accidents can be avoided if operators take advantage of early warnings to detect and separate possible system faults. Fault diagnosis and fault prediction are two main methods for improving the safety of chemical industry. Fault diagnosis analyzes the data collected from chemical processes to determine whether a fault currently occurs in the process [2-4], while fault prediction utilizes the running state of chemical processes and some non-first principles model to forecast possible fault development in the near future [5-7]. In these different time domains, none of them can fulfill monitoring task completely.

    The fault prediction models in literature can be classified as qualitative trend analysis, support vector regression, kernel regression, linear regression model, grey model, and time series model [8-14]. The grey model requires a small amount of data and can give an accurate trend prediction, but has a poor adaptability to data fluctuation [15-17]. In this paper, the grey model is combined with the time series model in series to correct its residuals and improve its adaptability to data oscillation. In addition, based on our earlier work on dynamic simulation based fault diagnosis [18, 19], we combine the dynamic model with grey time series model to form a hybrid fault prediction model. We will predict non-measurable fault parameters that are critical to reflect the running state of chemical process in the near future [20-22]. The two methods of combination are discussed and their effectiveness is demonstrated with a gravity tank example.

    2 FAULT PREDICTION MODEL

    2.1 Multi-variable grey model

    General steps to build multi-variable grey model for prediction are as follows [21].

    (1) Generate original sequence using untreated data

    (2) Calculate the following sequence by summarizing the original sequence

    where ngdenotes the number of variables and Ngdenotes the sampling number for each variable. abouWte can establish continuous-time state-space model

    where

    In Eqs. (23) to (25), k is the order of criterion function and Ntis the number of sampling data. The value of k that minimizes criterion function is the suitable order for Eq. (16), so that the time series model has the best prediction accuracy.

    2.3 Combination of grey model with time series model and then dynamic model

    Grey model accumulates untreated data [Eq. (2)] to average variations between adjacent-time data and smoothes the data slightly. It excels overall trend prediction but may introduce lagging time responding to data variation. In time series model, each data at time t is considered as a linear combination of n pieces of data before time t. Because the combination reserves variation trend between adjacent-time data as much as possible, it benefits local trend prediction greatly. The combining point between grey model and time series model lies in overall smooth trend predicted by the former plus local fluctuation trend predicted by the latter to give complete data prediction.

    Grey model and time series model are good at prediction of smoothly changed data and frequently changed data, respectively. Therefore, hybrid grey time series model is proposed to utilize their advantages. It uses the grey model to predict the overall trend of data and uses the time series model to correct the prediction error produced by grey model. The prediction is done through two steps: (1) untreated data are predicted by grey model to obtain errors; (2) future data predicted by grey model plus future errors predicted by time series model are equal to final prediction values. The combination formula is The main structure of combination model is depicted in Fig. 1.

    The grey time series model is essentially a history based method, so it predicts according to existing data and cannot find the abnormal changes behind data variation. Dynamic model formulated by identifying the mathematical relationship among variables can accurately reflect the non-steady state characteristics of chemical processes. When some of measured variables change, it determines which inner variable causes such change through this dynamic mathematical relationship. This is the core ideal of fault diagnosis using dynamic model. Although some history data based fault diagnosis methods, such as principal component analysis, has simple models [23, 24], dynamic model based fault diagnosis facilitates the mapping from measurement space to fault parameter space that reflects the operating status of process. Based on our earlier work on dynamic model based fault diagnosis [18, 19], grey time series model is further combined with dynamic model to predict future development of fault when system is currently running in a controllable range. This combination model actually inputs the measurement predicted by grey time series model into dynamic model based fault diagnosis algorithm. Because these two types of model are connected from outer measurement to inner parameter in series, their combination increases fault prediction depth.

    Figure 1 The structure of grey time series model

    Figure 2 Hybrid fault prediction structure of two methods

    There are two methods to combine the grey time series model with the dynamic model, as shown in Fig. 2. In the first method, dynamic model uses the future measurement predicted by grey time series model to predict future development of fault parameters. In the second method, the past fault parameters deduced by dynamic model are used by grey time series model to predict future development of fault parameters. These two methods focus on different type of data, so their prediction of fault parameter has different accuracy. Their effectiveness is demonstrated through thesimulation of a gravity tank example in the next section.

    3 CASE STUDY

    The proposed hybrid fault prediction method is applied to a gravity tank system [25] to test its feasibility for prediction of fault parameters.

    3.1 Example description

    The gravity tank system is described in Fig. 3. It consists of a tank, an inlet pipe and an outlet pipe. The initial level in the tank is 0 m and the initial flow rate of outlet pipe is 0 m3·s?1. The inlet flow rate Fiis constant. The outlet flow rate Foincreases with liquid level h in the tank because Fois directly proportional to the bottom pressure of the tank. The tank reaches a dynamic mass balance when h approaches a value that makes Foequal to Fi.

    Because water temperature is constant in this process, heat balance is not needed and mass balance can be changed to water volume balance

    Figure 3 Diagram of gravity tank system

    Table 1 Parameters for water tank example

    Floor area, S/m2Flow rate coefficient for leaving pipe, Co/m0.5·kg1.5·s?3Water density, ρ /kg·m?3Initial flow rate coefficient for inlet pipe, Ci/m0.5·kg1.5·s?3Ambient pressure, Po/Pa Source pressure for inlet flow, Pi/Pa 1.0 0.08 1000 1.0 1.010×1051.011×105

    where

    Table 1 provides the system parameters in Eqs. (29) to (32). The leakage in the inlet pipeline, represented by the decrease of Ciin Eq. (30) from 1.0 to 0.7 at 20 h, is set as the single fault in this tank system. The measurement of Fiis located before leakage point. Although the leakage does not affect the measured input flow rate Fi, the fault does reduce the true input flow rate to the tank, which is unmeasured. It further affects water level h and output flow rate Fo. The measurement of h comes from dynamic simulation with Eq. (29) solved by fourth order Runge-Kutta algorithm. The simulation period is 60 h. The noise of h is added using normal distribution with mean and stand deviations of 0 and 0.02, respectively. The fault diagnosis and prediction program is coded in Matlab environment and tested in a computer.

    3.2 Data collection

    Data during 60 h are collected when Fi, Fo, and h arrive at steady values, shown as Fig. 4. The tank reaches a dynamic equilibrium when Fois equal to Fi. Foand h begin to decrease at 20 h, but Fikeeps unchanged. However, Eq. (29) indicates that dh/dt should increase, leading to an increasing h when Fodecreases and Fiis fixed. Disagreement between measurement and dynamic model indicates that some fault occurs in the tank system. As measurement values of Foand h conform to Eq. (29) but Fidoes not, leakage is inferred occurring at the entrance pipe of tank.

    3.3 Fault diagnosis model

    Fault diagnosis with the dynamic model in Fig. 2is based on linear square least method. With the differential of h replaced by difference, Eq. (29) can be rearranged to the following linear form

    Figure 4 The data from measurement of tank system

    3.4 Fault prediction model

    In this section, the two methods depicted in Fig. 2 for hybrid fault prediction model are applied to the gravity tank example. After leakage occurs for 20 h, 40 measurement points about h and Foare collected with a sampling interval of 1.0 h. These data, spanning 40 h, constitute training set to build grey model and then time series model. The next 5 measurement points are collected to constitute testing set to verify fault prediction result.

    3.4.1 The first prediction method

    Two-variable grey model about h and Fois built with training set. After estimating its parameters using Eq. (9), the grey prediction model [Eq. (15)] changes to the following formula

    40 measurement points about h and Foare predicted using Eq. (37). The prediction errors are shown in Fig. 5.

    Figure 5 The error of grey prediction model

    Figure 6 The value of BIC criteria function for time series model

    Figure 7 The simulation and prediction result of outlet flow rate

    To build time series model with the prediction errors from the grey model, the order of prediction error of Foand h is first determined by the BIC criteria function. Fig. 6 gives the BIC value versus order and demonstrates a minimum BIC function value when the order is equal to 20. Thus 20 is chosen as the suitable order of time series model [Eq. (16)]. The coefficients in Eq. (16) are estimated by linear least square method and listed in Table 2. Eq. (16) with coefficients listed in Table 2 is combined with Eq. (37) to obtain the grey time series model about outlet flow rate [Eq. (38)] and liquid level [Eq. (39)] of tank. Figs. 7 and 8 depictsimulation result of the 40 measurement points and prediction result for the next 5 measurement points with Eqs. (38) and (39), respectively.

    Table 2 Coefficient estimation of time series model

    Figure 8 The simulation and prediction result of liquid level

    The predicted 5 measurement points about h and Foare put into the dynamic tank model [Eqs. (29) to (32)] and then Cithat reflects leakage extent in entrance pipe are obtained through linear square method [Eq. (36)] and listed in Table 3, which shows that the first type of hybrid prediction model can predict fault parameter accurately.

    Table 3 Predicted Ciusing the first method

    3.4.2 The second prediction method

    In this section, the second method depicted in Fig. 2 is applied in the gravity tank system. After leakage occurs in tank entrance for 20 h, 40 measurement points about h and Foare put into the dynamic model [Eqs. (29) to (32)], and then entrance flow rate coefficients Cifor these time points are calculated, shown as Fig. 9.

    Figure 9 The calculated Cifor past 40 time points

    Because only Cineeds to be predicted, singlevariable grey model is chosen. Using the value of Cigiven in Fig. 9 to get its coefficients, the grey model [Eq. (15)] becomes

    Figure 10 contains the prediction error of Ciwith Eq. (40) for those 40 time points. The error value is put into the time series model [Eq. (16)] to determine its order with BIC function as criteria. Fig. 11 demonstrates the BIC value versus order, showing that BIC function is minimal when the order is equal to 20. Thus 20 is chosen as the suitable order of Eq. (16).

    Figure 10 The prediction error of Ci with grey model with the second method

    Figure 11 The value of BIC criteria function for time series model with the second method

    The time series model with coefficients obtained by linear least square method is combined with the grey model to predict Ci. The grey time series model is

    The values of Cirepresenting leakage extent in the past 40 and next 5 time points are calculated using Eq. (41), as shown in Fig. 12. Prediction error for the next 5 time points is listed in Table 4.

    Figure 12 The simulation and prediction result of of Ci

    Table 4 Predicted Ciusing the second method

    Table 4 shows that the second model also predicts fault parameters accurately. The difference between the two hybrid prediction models is specified by posterior variance test. Let S1and Si2be the variance of untreated data and prediction error, respectively. The ratio of posterior variance C is defined as

    where i denotes prediction model index.

    The ratio C is used to test prediction accuracy for these two methods. The data necessary for evaluation are listed in Table 5, which manifests that C1is less than C2, so the first method presents better prediction accuracy than the second one. Two reasons are behind such difference. The grey time series model amplifies the fault diagnosis error arising from dynamic model in the second method; the multi-variable grey model used in the first method is more accurate than the single-variable grey model used in the second method.

    Table 5 Posterior variance test data

    4 CONCLUSIONS

    Grey model is combined with time series model in series to increase its adaptability to data oscillations for fault prediction. Further, the grey time series model is combined with dynamic model because the former is good at measurement prediction while the latter is good at fault parameter acquisition through fault diagnosis. Two combination methods for such hybrid fault prediction model are proposed and successfully implemented to predict entrance flow rate coefficient in a gravity tank system. The result shows that the first method is more accurate than the second one due to its control on dynamic model error and multi-variable grey model employed. Future research will focus on the application of the first method to large-scale systems.

    NOMENCLATURE

    REFERENCES

    1 Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N., “A review of process fault detection and diagnosis Part I: Quantitative model-based methods”, Comput. Chem. Eng., 27, 293-311 (2003).

    2 Min, H.K., Chang, K.Y., “Multivariate monitoring for time-derivative non-gaussian batch process”, Korean J. Chem. Eng., 25, 947-954 (2008).

    3 Bin Shams, M.A., Budman, H.M., Duever, T.A., “Fault detection, identification and diagnosis using CUSUM based PCA”, Chem. Eng. Sci., 66 (20), 4488-4498 (2011).

    4 Srinivasan, R., Qian, M.S., “Online fault diagnosis and state identification during process transitions using dynamic locus analysis”, Chem. Eng. Sci., 61 (18), 6109-6132 (2006).

    5 Zheng, X.P., Liu, M.T., “An overview of accident forecasting methodologies”, J. Loss Prevent. Proc., 22 (4), 484-491 (2009).

    6 Yoo, C.K., Kim, M.K., Hwang S.J., Jo, Y.M., Oh, J.M., “Online predictive monitoring and prediction model for a periodic process through multiway non-gaussian modeling”, Chin. J. Chem. Eng., 16 (1), 48-51 (2008).

    7 Kim, M.J., Jiang, R., Makis, V., Lee, C.G., “Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure”, Eur. J. Oper. Res., 214 (2), 331-339 (2011).

    8 Suo, R.X., Wang, F.L., “The application of combination forecasting model in Chinese energy consumption”, Mathematics in Practice and Theory, 40 (18), 80-85 (2010).

    9 Wu, Y.G., Zhu, X.F., Shi, B.H., “Control study of long time delay process based on grey predictive model”, Control Engineering of China, 14 (3), 278-280 (2007).

    10 Wang, H.Z., Yang, J.P., Yu, N., “A fault prediction based on a grey nonlinear regression model”, Journal of Ordnance Engineering College, 22 (1), 46-48 (2010).

    11 Wang, Z., Wang, Y., Zhang, J., “Grey correlation analysis of corrosion on oil atmospheric distillation equipment”, In: Proceedings of the 5th International Conference on Fuzzy System and Knowledge Discovering, Yin, Y.L., ed., IEEE, Jinan, China, 13-17 (2008).

    12 Gao, D., Wu, C.G., Zhang, B.K., Ma, X., “Signed directed graph and qualitative trend analysis based fault diagnosis in chemical industry”, Chin. J. Chem. Eng., 18 (2), 265-276 (2010).

    13 Zhang, X., Ma, S.L., Yan, W.W., Zhao, X., Shao, H.H., “A novel systematic method of quality monitoring and prediction based on FDA and kernel regression”, Chin. J. Chem. Eng., 17 (3), 427-436 (2009).

    14 Lahiri, S.K., Ghanta, K.C., “Prediction of pressure drop of slurry flow in pipeline by hybrid support vector regression and genetic algorithm model”, Chin. J. Chem. Eng., 16 (6), 841-848 (2008).

    15 Liu, S.F., Forrest, J., “The role and position of grey system theory in science development”, The Journal of Grey System, 9 (4), 351-356 (1997).

    16 Hsu, C.C., Chen, C.Y., “Applications of improved grey prediction model for power demand forecasting”, Energ. Convers. Manage., 44 (14), 2241-2249 (2003).

    17 Mao, M.Z., Chirwa, E.C., “Application of grey model GM(1, 1) to vehicle fatality risk estimation”, Technological and Social Change, 73 (5), 588-605 (2006).

    18 Tian, W. D., Sun, S.L., “On-line dynamic model correction based fault diagnosis in chemical processes”, The Chinese Journal of Process Engineering, 7 (5), 952-959 (2007).

    19 Tian, W.D., Guo, Q.J., Sun, S.L., “Dynamic simulation based fault detection and diagnosis for distillation column”, Korean J. Chem. Eng., 29, 9-17 (2012).

    20 Isermann, R., “Model-based fault detection and diagnosis—Status and application”, Annual Reviews in Control, 29, 71-85 (2005).

    21 Zhang, Z.D., Hu, S.S., “A new method for fault prediction of model-unknown nonlinear system”, Journal of the Franklin Institute, 345 (2), 136-153 (2008).

    22 Frank, P.M., Ding, S.X., Marcu, T., “Model-based fault diagnosis in technical processes”, Transactions of the Institute of Measurement and Control, 22 (1), 57-101 (2000).

    23 Li, R.Y., Rong, G.Z., “Fault isolation by partial dynamic principal component analysis in dynamic process”, Chin. J. Chem. Eng., 14 (4), 486-493 (2006).

    24 Wang, Z.F., Yuan, J.Q., “Online supervision of penicillin cultivations based on rolling MPCA”, Chin. J. Chem. Eng., 15 (1), 92-96 (2007). 25 Chiang, L.H., Russel, E.L., Braatz, R.D., “Parameter estimation”, In: Fault Detection and Diagnosis in Industrial Systems, China Machine Press, Beijing, 179-189 (2003).

    2013-08-13, accepted 2013-11-13.

    * Supported by the Shandong Natural Science Foundation (ZR2013BL008).

    ** To whom correspondence should be addressed. E-mail: tianwd@qust.edu.cn

    国产亚洲最大av| 久久99热6这里只有精品| 青春草国产在线视频| 美女视频免费永久观看网站| 日韩在线高清观看一区二区三区| 纵有疾风起免费观看全集完整版| 久久久久久久久大av| 美女xxoo啪啪120秒动态图| 最后的刺客免费高清国语| 青春草国产在线视频| 黄色欧美视频在线观看| 大陆偷拍与自拍| 欧美日韩视频精品一区| 久久久精品94久久精品| 女性被躁到高潮视频| 国产91av在线免费观看| 中文字幕久久专区| 看免费成人av毛片| 国产 一区精品| 激情 狠狠 欧美| 国产精品久久久久久精品电影小说 | 纯流量卡能插随身wifi吗| 国产爽快片一区二区三区| 日韩视频在线欧美| 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| 久久久精品94久久精品| 午夜激情福利司机影院| 联通29元200g的流量卡| av在线蜜桃| 一本—道久久a久久精品蜜桃钙片| 偷拍熟女少妇极品色| 插阴视频在线观看视频| 99热这里只有精品一区| 免费看光身美女| 亚洲精品aⅴ在线观看| 搡女人真爽免费视频火全软件| 亚洲国产欧美人成| 久久精品国产亚洲网站| 亚洲人成网站在线观看播放| 成人毛片a级毛片在线播放| 免费高清在线观看视频在线观看| 91久久精品国产一区二区三区| 夜夜骑夜夜射夜夜干| 晚上一个人看的免费电影| 夜夜爽夜夜爽视频| 国产永久视频网站| 色哟哟·www| 亚洲欧美中文字幕日韩二区| 日韩电影二区| 婷婷色麻豆天堂久久| 一本色道久久久久久精品综合| 美女福利国产在线 | 成人毛片a级毛片在线播放| www.色视频.com| 六月丁香七月| 亚洲av成人精品一区久久| 看免费成人av毛片| 一区二区av电影网| 久久国内精品自在自线图片| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 亚洲av国产av综合av卡| 成人漫画全彩无遮挡| 丝袜脚勾引网站| 日韩电影二区| 亚洲精品视频女| 亚洲丝袜综合中文字幕| 亚洲精品乱码久久久v下载方式| 欧美日韩视频高清一区二区三区二| 一边亲一边摸免费视频| 亚洲精品国产成人久久av| 舔av片在线| 精品久久久久久久末码| 日日啪夜夜爽| 欧美精品一区二区大全| 夫妻午夜视频| 欧美丝袜亚洲另类| 国产精品.久久久| 亚洲欧洲国产日韩| 18禁裸乳无遮挡免费网站照片| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 亚洲欧美日韩无卡精品| 人人妻人人添人人爽欧美一区卜 | 黄色一级大片看看| 国产伦精品一区二区三区视频9| 精品少妇久久久久久888优播| a级毛色黄片| 蜜桃在线观看..| 国产精品福利在线免费观看| 国产黄片视频在线免费观看| 国产视频内射| 亚洲成色77777| 免费播放大片免费观看视频在线观看| 精品一区在线观看国产| 日本与韩国留学比较| 国产欧美亚洲国产| 交换朋友夫妻互换小说| 日韩伦理黄色片| 成人特级av手机在线观看| 免费久久久久久久精品成人欧美视频 | 91午夜精品亚洲一区二区三区| 国产女主播在线喷水免费视频网站| 美女主播在线视频| 男女国产视频网站| 欧美少妇被猛烈插入视频| 亚洲av电影在线观看一区二区三区| 色视频在线一区二区三区| 欧美xxxx黑人xx丫x性爽| 国产黄色视频一区二区在线观看| 欧美3d第一页| 国产免费又黄又爽又色| 99热这里只有精品一区| 日韩视频在线欧美| 一个人看视频在线观看www免费| 免费黄频网站在线观看国产| 丝袜脚勾引网站| 男人狂女人下面高潮的视频| 亚洲精品成人av观看孕妇| 五月天丁香电影| 久久精品夜色国产| 国产爽快片一区二区三区| 国产精品国产av在线观看| 美女中出高潮动态图| 亚洲人成网站高清观看| tube8黄色片| 欧美97在线视频| 在线播放无遮挡| 91精品一卡2卡3卡4卡| 如何舔出高潮| 国产欧美日韩一区二区三区在线 | 久久久久久久久久成人| 久久精品国产鲁丝片午夜精品| 国产精品久久久久久精品古装| 麻豆精品久久久久久蜜桃| 在现免费观看毛片| 国产精品一区www在线观看| 午夜老司机福利剧场| 女人十人毛片免费观看3o分钟| 人人妻人人添人人爽欧美一区卜 | 水蜜桃什么品种好| 久久精品夜色国产| 免费看av在线观看网站| 99热这里只有是精品在线观看| 久久精品国产亚洲网站| 亚洲欧美日韩另类电影网站 | 国产日韩欧美在线精品| 一级爰片在线观看| 小蜜桃在线观看免费完整版高清| 日韩欧美一区视频在线观看 | 在线观看一区二区三区激情| av黄色大香蕉| 日韩电影二区| 一个人看视频在线观看www免费| 黄色一级大片看看| 欧美日韩综合久久久久久| 天堂中文最新版在线下载| 人体艺术视频欧美日本| 色5月婷婷丁香| 少妇高潮的动态图| 熟女电影av网| 我的老师免费观看完整版| 欧美日韩一区二区视频在线观看视频在线| 日本-黄色视频高清免费观看| 身体一侧抽搐| 国产一区亚洲一区在线观看| av免费观看日本| www.色视频.com| 免费av中文字幕在线| 一级毛片久久久久久久久女| 免费观看性生交大片5| 啦啦啦中文免费视频观看日本| 国产高清有码在线观看视频| 人人妻人人添人人爽欧美一区卜 | 精品人妻熟女av久视频| 少妇人妻精品综合一区二区| 男人爽女人下面视频在线观看| 性色av一级| 亚洲精品一区蜜桃| 国产日韩欧美亚洲二区| 欧美 日韩 精品 国产| 纯流量卡能插随身wifi吗| 亚洲国产成人一精品久久久| 免费看av在线观看网站| 蜜桃久久精品国产亚洲av| 欧美高清性xxxxhd video| 国产 一区 欧美 日韩| 国产精品麻豆人妻色哟哟久久| 丝袜喷水一区| 久久这里有精品视频免费| 另类亚洲欧美激情| 色综合色国产| 久久人妻熟女aⅴ| 欧美亚洲 丝袜 人妻 在线| 亚洲精品日韩av片在线观看| 一区在线观看完整版| 黄片无遮挡物在线观看| 在线观看av片永久免费下载| 欧美精品一区二区大全| 久久久久久九九精品二区国产| 两个人的视频大全免费| 日本免费在线观看一区| 熟女电影av网| 亚洲精品视频女| 国产一区二区三区av在线| 日本与韩国留学比较| 欧美亚洲 丝袜 人妻 在线| 国产极品天堂在线| 观看av在线不卡| 少妇人妻久久综合中文| 97超视频在线观看视频| 又粗又硬又长又爽又黄的视频| 成人国产麻豆网| 日本vs欧美在线观看视频 | 国产 一区精品| 观看av在线不卡| 日韩大片免费观看网站| 深夜a级毛片| 精品国产三级普通话版| 免费播放大片免费观看视频在线观看| 成人18禁高潮啪啪吃奶动态图 | 黄色视频在线播放观看不卡| 在现免费观看毛片| 欧美丝袜亚洲另类| 97在线人人人人妻| 日韩一区二区视频免费看| 午夜免费观看性视频| 国产又色又爽无遮挡免| 欧美高清成人免费视频www| 欧美老熟妇乱子伦牲交| 亚洲国产精品999| 亚洲色图av天堂| 亚洲av日韩在线播放| 日本黄大片高清| 日产精品乱码卡一卡2卡三| 国产午夜精品久久久久久一区二区三区| 最新中文字幕久久久久| 亚洲伊人久久精品综合| 久久久久视频综合| 成人18禁高潮啪啪吃奶动态图 | 久久精品国产亚洲网站| 亚洲人成网站在线播| 老熟女久久久| 国产伦精品一区二区三区四那| 91精品一卡2卡3卡4卡| 中文资源天堂在线| 纵有疾风起免费观看全集完整版| 亚洲综合色惰| 美女内射精品一级片tv| 少妇猛男粗大的猛烈进出视频| 插阴视频在线观看视频| 国产精品99久久99久久久不卡 | 我要看黄色一级片免费的| 国产精品久久久久久精品电影小说 | 精品99又大又爽又粗少妇毛片| 亚洲图色成人| 另类亚洲欧美激情| 国产精品久久久久久久电影| 一级毛片aaaaaa免费看小| 人人妻人人看人人澡| 久久热精品热| 麻豆国产97在线/欧美| 国产精品精品国产色婷婷| 女性被躁到高潮视频| 亚洲av在线观看美女高潮| 在线观看免费视频网站a站| 欧美人与善性xxx| 欧美xxⅹ黑人| 男女下面进入的视频免费午夜| 国产一区亚洲一区在线观看| 欧美一区二区亚洲| 亚洲欧美清纯卡通| 久久久久久久国产电影| 一级毛片aaaaaa免费看小| 成人免费观看视频高清| 国产av码专区亚洲av| 午夜福利网站1000一区二区三区| 国产精品无大码| 黑人猛操日本美女一级片| 久久 成人 亚洲| 热re99久久精品国产66热6| 老师上课跳d突然被开到最大视频| 99久久精品一区二区三区| 看十八女毛片水多多多| 亚洲精品日韩在线中文字幕| 高清日韩中文字幕在线| 91aial.com中文字幕在线观看| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久久久按摩| 3wmmmm亚洲av在线观看| 高清av免费在线| 亚洲欧美清纯卡通| 纯流量卡能插随身wifi吗| 久久婷婷青草| 国产免费福利视频在线观看| 哪个播放器可以免费观看大片| 一本色道久久久久久精品综合| 夫妻午夜视频| 性色avwww在线观看| 狂野欧美激情性bbbbbb| 国产精品久久久久久久久免| 老女人水多毛片| 色5月婷婷丁香| 午夜福利网站1000一区二区三区| 亚洲真实伦在线观看| 精品久久久久久电影网| 精品久久久久久久久av| 国国产精品蜜臀av免费| av国产精品久久久久影院| 深爱激情五月婷婷| 亚洲精品国产成人久久av| 天天躁日日操中文字幕| 亚洲精品日本国产第一区| 最近的中文字幕免费完整| 国产在线一区二区三区精| 日日摸夜夜添夜夜添av毛片| 亚洲无线观看免费| 国内少妇人妻偷人精品xxx网站| 少妇人妻一区二区三区视频| 草草在线视频免费看| 久久久成人免费电影| 深爱激情五月婷婷| 久久久久国产精品人妻一区二区| 亚洲av在线观看美女高潮| 亚洲精品一二三| 久久热精品热| 国产亚洲91精品色在线| 91精品伊人久久大香线蕉| 啦啦啦啦在线视频资源| 亚洲av中文字字幕乱码综合| 欧美区成人在线视频| 日本vs欧美在线观看视频 | 日韩av免费高清视频| 好男人视频免费观看在线| 国产精品久久久久久久久免| 日韩欧美一区视频在线观看 | 久久鲁丝午夜福利片| 日韩人妻高清精品专区| xxx大片免费视频| 欧美成人一区二区免费高清观看| 极品教师在线视频| 欧美老熟妇乱子伦牲交| 成人毛片a级毛片在线播放| 一级毛片 在线播放| 国产成人免费无遮挡视频| 免费黄色在线免费观看| 最近最新中文字幕大全电影3| 亚洲色图av天堂| 视频区图区小说| 99久久综合免费| 中文字幕人妻熟人妻熟丝袜美| 亚洲久久久国产精品| 欧美区成人在线视频| 亚洲天堂av无毛| 国产免费一区二区三区四区乱码| 国产精品久久久久成人av| 水蜜桃什么品种好| 免费看不卡的av| 欧美精品一区二区免费开放| xxx大片免费视频| 女性被躁到高潮视频| 久久久a久久爽久久v久久| 成人亚洲欧美一区二区av| 3wmmmm亚洲av在线观看| 国产黄片视频在线免费观看| 色婷婷久久久亚洲欧美| 欧美一级a爱片免费观看看| 九草在线视频观看| 黄片wwwwww| 免费观看无遮挡的男女| 国产成人aa在线观看| 国产高清三级在线| 国产av码专区亚洲av| 性高湖久久久久久久久免费观看| 亚洲精品,欧美精品| 激情五月婷婷亚洲| 国产精品国产三级国产专区5o| 99久久精品一区二区三区| 永久免费av网站大全| 啦啦啦在线观看免费高清www| 国语对白做爰xxxⅹ性视频网站| 日本黄色片子视频| 大香蕉久久网| 亚洲伊人久久精品综合| videossex国产| 亚洲三级黄色毛片| 国内少妇人妻偷人精品xxx网站| 丰满乱子伦码专区| 妹子高潮喷水视频| 大香蕉久久网| 色吧在线观看| 久久久久精品性色| 91精品一卡2卡3卡4卡| 久久热精品热| 中国国产av一级| 免费看av在线观看网站| 亚洲精华国产精华液的使用体验| 国产高潮美女av| 国产男女内射视频| 国产精品一二三区在线看| 亚洲精品一二三| 久久国产乱子免费精品| 久久精品久久精品一区二区三区| 国产爽快片一区二区三区| 国产精品一区二区在线观看99| 日日撸夜夜添| 国产精品99久久99久久久不卡 | 国产精品国产av在线观看| 国产精品成人在线| 久久99热这里只频精品6学生| 精品99又大又爽又粗少妇毛片| 成人亚洲精品一区在线观看 | 天美传媒精品一区二区| 男人狂女人下面高潮的视频| 亚洲性久久影院| 99久久中文字幕三级久久日本| 熟妇人妻不卡中文字幕| 欧美人与善性xxx| 亚洲国产精品专区欧美| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 亚洲电影在线观看av| 国产亚洲午夜精品一区二区久久| 99热这里只有是精品在线观看| 国产精品99久久久久久久久| 国产黄频视频在线观看| 免费观看性生交大片5| 国产在线一区二区三区精| 成人免费观看视频高清| 爱豆传媒免费全集在线观看| 成年人午夜在线观看视频| av视频免费观看在线观看| 久久99蜜桃精品久久| 免费大片18禁| 国产 一区 欧美 日韩| 两个人的视频大全免费| 精品久久国产蜜桃| 特大巨黑吊av在线直播| 久久国产精品大桥未久av | 少妇丰满av| 女性被躁到高潮视频| 日韩欧美一区视频在线观看 | 中文字幕av成人在线电影| 青春草亚洲视频在线观看| 亚洲精品中文字幕在线视频 | 91精品国产九色| 看十八女毛片水多多多| 欧美一区二区亚洲| 久久久欧美国产精品| 亚洲精品乱久久久久久| 亚洲欧洲日产国产| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 欧美国产精品一级二级三级 | 高清不卡的av网站| kizo精华| 99热网站在线观看| 美女视频免费永久观看网站| 亚洲精品456在线播放app| 高清毛片免费看| 亚洲精品第二区| 高清午夜精品一区二区三区| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美 | 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆| 国产视频内射| av在线老鸭窝| 久久热精品热| 毛片一级片免费看久久久久| 97在线人人人人妻| 男女边摸边吃奶| 亚洲国产最新在线播放| 国产成人a区在线观看| 亚洲真实伦在线观看| 久久97久久精品| 国产欧美日韩精品一区二区| 久久韩国三级中文字幕| 内地一区二区视频在线| 成人亚洲精品一区在线观看 | 国产精品人妻久久久影院| 99热6这里只有精品| 尾随美女入室| 在线观看一区二区三区| 中文字幕精品免费在线观看视频 | 欧美老熟妇乱子伦牲交| 日本与韩国留学比较| 一区二区三区四区激情视频| 国产欧美日韩一区二区三区在线 | 久久国产亚洲av麻豆专区| 亚洲av在线观看美女高潮| 1000部很黄的大片| 亚洲成人手机| 亚洲久久久国产精品| 大码成人一级视频| 九九爱精品视频在线观看| 日本黄大片高清| 在线观看免费高清a一片| 一级毛片aaaaaa免费看小| 九九久久精品国产亚洲av麻豆| 51国产日韩欧美| 亚洲成人av在线免费| 国产国拍精品亚洲av在线观看| 国产精品久久久久久久久免| 午夜福利网站1000一区二区三区| 欧美zozozo另类| 亚洲性久久影院| 国产精品爽爽va在线观看网站| av在线app专区| 国产精品成人在线| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 有码 亚洲区| 99热这里只有精品一区| 网址你懂的国产日韩在线| 多毛熟女@视频| 亚洲第一av免费看| 亚洲欧美成人综合另类久久久| 国产精品嫩草影院av在线观看| 日韩电影二区| 国内揄拍国产精品人妻在线| av国产久精品久网站免费入址| 狂野欧美激情性bbbbbb| 中文字幕久久专区| 日韩制服骚丝袜av| 麻豆精品久久久久久蜜桃| 日韩国内少妇激情av| 高清日韩中文字幕在线| 最近的中文字幕免费完整| 亚洲人成网站在线播| 亚洲电影在线观看av| 综合色丁香网| 亚洲人成网站在线观看播放| 精品一区二区免费观看| 最近的中文字幕免费完整| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| 乱码一卡2卡4卡精品| 欧美日韩视频精品一区| 免费黄色在线免费观看| av福利片在线观看| 午夜免费鲁丝| 亚洲欧美成人精品一区二区| 中文欧美无线码| 在线免费观看不下载黄p国产| 人体艺术视频欧美日本| 在线观看美女被高潮喷水网站| 欧美3d第一页| 这个男人来自地球电影免费观看 | 中国国产av一级| 成人美女网站在线观看视频| 只有这里有精品99| 国产黄色视频一区二区在线观看| 久久女婷五月综合色啪小说| 黑人猛操日本美女一级片| 精品亚洲成a人片在线观看 | 熟女人妻精品中文字幕| 老司机影院毛片| 午夜福利视频精品| 人妻制服诱惑在线中文字幕| 一边亲一边摸免费视频| 国产乱人偷精品视频| 这个男人来自地球电影免费观看 | 男女边吃奶边做爰视频| 久久精品国产鲁丝片午夜精品| 日韩一本色道免费dvd| 日本av手机在线免费观看| 久久婷婷青草| 中文精品一卡2卡3卡4更新| 女的被弄到高潮叫床怎么办| 亚洲av中文av极速乱| 欧美成人一区二区免费高清观看| 国产精品人妻久久久久久| 亚洲自偷自拍三级| tube8黄色片| 日韩大片免费观看网站| 中文字幕制服av| 亚洲熟女精品中文字幕| 少妇人妻精品综合一区二区| 成年美女黄网站色视频大全免费 | 91狼人影院| 欧美性感艳星| 人人妻人人看人人澡| 七月丁香在线播放| 亚洲av成人精品一区久久| 菩萨蛮人人尽说江南好唐韦庄| 秋霞在线观看毛片| 国产永久视频网站| 男人和女人高潮做爰伦理| 五月开心婷婷网| 欧美zozozo另类| 成人免费观看视频高清| 综合色丁香网| 国产成人freesex在线| 国产高清国产精品国产三级 | 久久99热这里只有精品18| 免费看日本二区| 观看av在线不卡| 在线亚洲精品国产二区图片欧美 | 男人和女人高潮做爰伦理| 国产高清不卡午夜福利| 国精品久久久久久国模美| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 国产高清三级在线| 黑人高潮一二区| 日韩电影二区| 狠狠精品人妻久久久久久综合| 亚洲精品,欧美精品| 亚洲欧美日韩另类电影网站 | 99久久精品热视频| 高清在线视频一区二区三区| 欧美日韩精品成人综合77777| 99热这里只有是精品在线观看|