• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CO2Leakage Identification in Geosequestration Based on Real Time Correlation Analysis Between Atmospheric O2and CO2*

    2014-07-18 12:09:48MADenglong馬登龍DENGJianqiang鄧建強andZHANGZaoxiao張早校StateKeyLaboratoryofMultiphaseFlowinPowerEngineeringXianJiaotongUniversityXian70049ChinaSchoolofChemicalEngineeringandTechnologyXianJiaotongUniversityXian70049China

    MA Denglong (馬登龍), DENG Jianqiang (鄧建強)and ZHANG Zaoxiao (張早校),**State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 70049, ChinaSchool of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 70049, China

    CO2Leakage Identification in Geosequestration Based on Real Time Correlation Analysis Between Atmospheric O2and CO2*

    MA Denglong (馬登龍)1,2, DENG Jianqiang (鄧建強)2and ZHANG Zaoxiao (張早校)1,2,**
    1State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China2School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China

    The paper describes a method for monitoring CO2leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux (ALF), is presented to monitor abnormal CO2leakage, which can be calculated by atmospheric CO2and O2data. The computation shows that all ALF values are close to zero-line without the leakage. With a step change or linear perturbation of concentration to the initial CO2concentration data with no leakage, ALF will deviate from background line. Perturbation tests prove that ALF method is sensitive to linear perturbation but insensitive to step change of concentration. An improved method is proposed based on real time analysis of surplus CO2concentration in least square regression process, called apparent leakage flux from surplus analysis (ALFs), which is sensitive to both step perturbation and linear perturbations of concentration. ALF is capable of detecting concentration increase when the leakage occurs while ALFs is useful in all periods of leakage. Both ALF and ALFs are potential approaches to monitor CO2leakage in geosequestration project. Keywords CO2monitor, carbon storage, gas leakage, O2/CO2exchange, correlation analysis

    1 INTRODUCTION

    Carbon capture and sequestration (CCS) is considered for reduction of increase rate of atmospheric CO2. In CCS project, geological storage of CO2is one of the most promising options for carbon mitigation [1-9]. While the purpose of geologic carbon sequestration is to trap CO2underground, CO2could migrate away from the storage site into the shallow subsurface and atmosphere because of permeable pathways such as well bores or faults [7, 8]. Due to the negative impacts of CO2leakage on the sequestration and near-surface environment, it is suggested that the leakage should be monitored as a critical part in geologic carbon sequestration. Many techniques are available to measure near-surface CO2, such as gas chromatograph [10], seismic monitoring [11, 12], eddy covariance (EC) method [13, 14], soil gas sampling [13], tracer gas [15], and carbon stable isotopes measurement [16], but it is very difficult for most of these methods to detect abnormal condition in time and obtain leakage flux simultaneously due to the large difference in CO2fluxes and concentrations of natural background, within which a small CO2anomaly may be hidden.

    Fessenden et al. [17] designed an O2/CO2measurement system to identify CO2subsurface seepage. They used long-term atmosphere monitor data before and during injection to compute and compare the variation of O2/CO2ratio between the two periods. However, it may be a problem that the O2/CO2ratio is regarded as a constant in the whole monitoring period because the ratio varies diurnally and seasonally. Therefore, a real-time monitoring method and a quantified evaluation parameter for CO2leakage flux are necessary for CO2geosequestration.

    The main purpose of this study is to develop a real-time monitor model to detect CO2leakage in geosequestration based on O2/CO2ratio measurement and present a real time assessment parameter, apparent leakage flux (ALF), which is calculated from atmospheric O2and CO2concentrations, to estimate the CO2seepage and leakage.

    2 DISPERSION OF LEAKAGE CO2FROM GEOSEQUESTRATION

    In order to study the character of leakage CO2perturbation to the background CO2in atmosphere, the unsteady state atmosphere dispersion of leakage CO2from geosequestration is simulated by computational fluid dynamics [16, 18, 19], Fluent 13.0.

    The leakage rate is assumed to be 1000 tons per year. A 3-D model is built within the distance of 200.0 m downwind (x direction), 50.0 m crosswind (y direction, y=0 is the midline) and 10.0 m height above the ground (z direction). The leakage CO2disperses over the bare soil surface and roughness height is 0.0 m. The wind speed is 5.0 m·s?1. Fig. 1 shows the dispersion at 100.0 m downwind along the midline at 1.5 m above the ground. The concentration increases with time at the beginning of leakage and gets to a peak concentration at some time, and then decreases so slightly that the concentration can be treated as a stable value. Therefore, the trend of concentration caused by leakage can be considered as a step perturbation of concentration relative to the background variation. In the initial stage of dispersion, the concentration increases.

    Figure 1 Unstable dispersion of leakage CO2at 100 m downwind along the midline at 1.5 meter above the ground (wind speed: 5 m·s?1; atmospheric stable length: 13 m)

    3 MEASUREMENT OF O2/CO2RATIO

    The variation of background CO2in the air is very complex, which is affected by moisture, temperature, barometric pressure, solar insulation, vegetations, fossil-fuel burning and so on [20, 21], so it is very difficult to detect the leakage CO2. It may be a feasible way to solve this problem by analyzing the relationship between CO2and O2in the air.

    O2and CO2exchange ratio (?ΔO2/ΔCO2) is typically equivalent to one mole O2per mole CO2approximately as expected for respiration or photosynthesis. The main factors that produce different ratios are fossil-fuel burning and air-sea exchange [22-24]. When the ocean uptake is neglected in short period and smaller spatial scales, sinks and sources of O2and CO2mainly involve two processes, fossil-fuel burning and biomass metabolism including respiration and assimilation, which can be expressed as

    where H2CO represents the approximate composition of biomass or organic matter. O2is consumed and CO2is produced in respiration process and inversely in photosynthesis [22, 25]. For aerobic respiration, m=1; for anaerobic respiration, m=0. The soil respiration and decay of organic matter in the soil should be considered though they are very small. As this process is reversible, the exchange ratio of O2and CO2is stabilized around 1. Assimilation and respiration fluxes from the terrestrial biosphere are assumed to have an O2/CO2exchange ratio of about 1.1 [26, 27].

    The fuel burning process consumes O2and produces CO2,

    Figure 2 Schematic of sinks and sources of O2and CO2in a system between terrestrial ecosystem and atmosphere

    where x represents the type of fuel [22]. This irreversible process increases CO2in atmosphere but reduces O2. The exchange ratio of O2and CO2depends on the oxidative ratio of organic materials, varying from about 1.1 for coal to 2.0 for methane [22, 27].

    Consequently, sources and sinks of CO2are inversely coupled to those of O2via their exchange ratios. Therefore, combined observations of atmospheric O2and CO2will give more information on carbon fluxes than that from CO2measurements alone.

    Figure 2 shows an air box model, with sources and sinks of O2and CO2in a system between atmosphere and terrestrial ecosystem without considering air-sea exchange [27]. It is a simple model for a column of well-mixed canopy air. Horizontal advection of air is neglected. The net fluxes of O2and CO2in the system can be calculated. Here, Ffand Fb(mol·m?2·s?1) are CO2fluxes in fuel burning process and biomassmetabolism process. Rfand Rbare exchange ratios of O2to CO2in the two processes. With the leakage, a leakage flux (Fl) will be added in the model.

    Without CO2leakage, the fluxes into and out of the box are from net assimilation, respiration of plant and soil, and net burning. Transient changes in CO2and O2in the air box are calculated from following mass balance as expressed in Eq. (3) and Eq. (4).

    where Ma(mol·m?2) is moles of dry air per unit ground area,2COC and2OC (μmol·mol?1) are mole fractions of CO2and O2in an air box of specified height from the soil surface,2COF and2OF are net fluxes (mol·m?2·s?1) of CO2and O2in the air box.

    Combining Eqs. (3) and (4), we have

    where S0is a background ratio, which is a complex function of several environmental processes and is affected by many factors, such as soil moisture and temperature, and daily variation in solar insulation. However, if only terrestrial ecosystem is considered without air-sea exchange, the ratio in short time interval can be considered as constant because of relatively stable biomass metabolism process and less variable fuel composition.

    4 APPARENT LEAKAGE FLUX

    For a geological sequestration project in the terrestrial ecosystem as shown in Fig. 2, a CO2leakage flux, Fl, is added into the air box model. The leakage will change the net flux of CO2in the system but not that of O2. As a result, the transient change in CO2becomes

    The transient O2/CO2ratio is changed to

    where S is the current ratio, with a leakage flux added in the denominator compared with Eq. (5), which will decrease the ratio if the leakage occurs. With Eqs. (5) and (7), we have

    where Fl′=(Fl×106)/Ma(μmol·mol?1·s?1or ppm·s?1). BothlF andlF′ are defined as the apparent leakage flux (ALF).

    Finally, a calculation equation for ALF is obtained

    Equations (9) and (10) are composed of two parts. The first part (1/S?1/S0) represents the difference of O2/CO2ratio with and without leakage. Under normal circumstance,

    Because the direction of net O2flux is always opposite to the net CO2flux in ecosystem, the second part (?dCO2dt or ?FO2) reflects the trend of CO2variance in the environment.

    The unit of ALF in Eq. (9) is mol·m?2·s?1, the amount of leakage CO2per unit area per unit time. It may be obtained by flux measurement, such as EC method, which is not only a direct, in situ measurement, but also has much larger spatial scale (m2-km2) than other ground-based techniques [28]. The unit of ALF in Eq. (10) is μmol·mol?1·s?1, representing the amount of CO2accumulation, which characterizes CO2leakage indirectly and can be obtained by simple atmospheric O2and CO2monitoring.

    When applying the ALF method to monitor leakage signals, the sensors should be located at downwind positions from potential leakage sources. More sensors will give more opportunities to detect leakage. However, when EC monitor instruments are used, the monitor area is mainly dependent on the height of monitor tower and much fewer sensors are required. Complex computation algorithms have to be designed when the EC tower is applied.

    5 RESULTS AND DISCUSSION

    5.1 Real-time leakage flux

    Because S0and S cannot be calculated simultaneously, it is impossible to obtain the apparent leakage flux by directly applying Eq. (9) or Eq. (10). However, S0can be predicted using the data in previous time interval and S can be calculated by the data in current time interval. A recursion equation is

    The first term in the parenthesis is current variation rate in current time step and the second term is the background value in the previous time interval, which are both computed by least square regression (LSR) method. The variation rate of O2concentration with time (dCO2dt) can be also calculated with LSR method.

    Figure 3 Diurnal trend of concentrations of oxygen and carbon dioxide (a) and O2/CO2ratio (b)

    Figure 4 Correlation of atmospheric O2and CO2concentrations for all day (a), daytime (b) and nighttime (c) (slope of line—exchange ratio)

    The relative mole fraction data of atmospheric O2and CO2, measured on 25 and 26 October 1986 in Cambridge, Massachusetts, by Keeling [22], are used to test our real-time CO2leakage method.

    5.2 Relative concentration of atmospheric O2and CO2

    Figure 3 shows mole fractions of CO2and O2and the real time O2/CO2exchange ratio. Ambient CO2increases from 350 μmol·mol?1to 410 μmol·mol?1overnight while O2decreases by a similar amount. The O2/CO2ratio is close to 1 in most of time.

    In order to obtain the correlation between O2and CO2, mole fraction data for all day, daytime and nighttime are selected (Fig. 4). The data yield linear relationship, with slopes close to 1.1, which represent the O2/CO2exchange ratio. It is higher during daytime (1.1288) and lower during nighttime (1.0261) because of stronger photosynthesis. At night, photosynthesis stops, and the variation of exchange ratio is mainly from biomass respiration and soil respiration.

    5.3 Real-time apparent leakage flux

    Figure 5 Real-time apparent leakage flux with different intervals

    Figure 5 shows the apparent leakage flux calculated by Eq. (12) with the data of every two, three and four time intervals separately to estimate the background O2/CO2ratio S0in Eq. (10). With more previous points,the prediction is more precise. Without CO2leakage, the apparent leakage fluxes are all close to zero when S0is predicted with four interval data. The daily average ALF is 0.0057 μmol·mol?1·min?1and the average correlation coefficient of CO2to O2is 0.85.

    Figure 6 Apparent leakage flux with concentration perturbation at distance 30 m

    Figure 7 Apparent leakage flux with concentration perturbation at distance 50 m

    5.4 Apparent leakage flux with CO2concentration perturbation

    Based on the dispersion simulation of leakage CO2in Section 2, we assume that the leakage perturbation is a step change or a linear change of concentration, which is added to the initial CO2concentration with no leakage, to study the sensitivity of apparent leakage flux to leakage, and then the real time ALF without and with perturbations are computed. The perturbation functions are as follows

    where Fst(μmol·mol?1) is a step change perturbation function and Flinear(μmol·mol?1) is a linear perturbation function, both are accumulated quantity.

    According to the dispersion simulation results, the step change of concentration Cst(μmol·mol?1) in Eq. (13) is specified as 10 μmol·mol?1·min?1[Fig. 6 (a)], and the linear accumulation rate kc_linear(μmol·mol?1·min?1) in Eq. (14) is 0.1μmol·mol?1·min?1[Fig. 6 (b)] when measurement distance is 30 m, while Cstis 5 μmol·mol?1·min?1[Fig. 7 (a)] and kc_linearis 0.05 μmol·mol?1·min?1[Fig. 7 (b)] at the distance of 50 m.

    ALF deviates from background base-line when a concentration perturbation is added to the initial data with no leakage. The response to the step change perturbation appears in a short period after the perturbation is added (t0) and the abnormal condition disappears rapidly (tf). The average ALF is 0.0086 μmol·mol?1·min?1with 5 μmol·mol?1· step change perturbation and it is 0.0090 μmol·mol?1·min?1with 10μmol·mol?1step change perturbation, while the average ALF of base line is 0.0057 μmol·mol?1·min?1. For linear perturbations, abnormal ALF occurs after the perturbation is added (t=800 min) and retains a certain period. The average ALF with linear perturbation of 0.05 μmol·mol?1·min?1accumulation rate is 0.0470 [Fig. 7 (b)], which is about 8 times that of base line. Therefore, ALF is sensitive to linear perturbation but insensitive to step change perturbation. The reason is that step change perturbation affects the surplus variables in real time linear regression process but not O2/CO2ratio except at t0, while linear perturbation affects O2/CO2ratio during all test time. In order to detect abnormal condition better, average values with every five interval ALF data are computed with 0.01, 0.03, 0.05, 0.08, and 0.1 μmol·mol?1·min?1accumulation rate, as shown in Fig. 8. The real time average ALF gives more significant results than that of single ALF monitoring. Table 1shows the error analysis with different linear accumulation rates. The relative error is less than 20% when accumulation rate is lower than 0.05 μmol·mol?1·min?1. It is more accurate with lower rate (less than 0.05 μmol·mol?1·min?1). Thus, ALF method is useful to detect the leakage at the initial linear increase stage.

    Negative values of ALF in Figs. 6 and 7 may be resulted from unstable background O2/CO2ratio and imperfectly synchronous variation in CO2with O2. The atmospheric data used here may also affect the results. However, the results provide evidence that real time ALF is a potential method to monitor CO2leakage in geosequestration.

    Table 1 Error analysis of ALF with different linear accumulation rates

    Figure 8 Average apparent leakage flux with different linear perturbations

    5.5 Improved ALF method

    Above analysis shows that the variation of CO2in ecosystem is in a good linear relationship with the change of O2, but leakage perturbation will break this relation. According to Eqs. (5) and (7), the relationship between atmosphere CO2and O2in short time scales can be expressed as

    whereBC andBC′ are the surplus concentrations of CO2in atmosphere during different time step, which have no linear correlation with O2. Eq. (15) is the background concentration in previous time step and Kiand Ki′+1, in real time LSR process. It is understandable that the surplus variablesB,tC andB,1tC+′ in real time LSR process will be affected in the same level with linear perturbation. On the other hand, the step change perturbation will only affect surplus variables but not the slopes except a short period after perturbation. These conclusions will be proved as follows.

    For two sets of data (Xi, Yi), LSR is used for fitting [29]. In a linear estimation expression formula Eq. (16) is the current concentration in present step. In the computation process, they are calculated by the surplus variable in real time LSR process.

    ALF can be used to detect the linear increasing perturbation, which corresponds to the variation of slopes, timated slopes, and β? is the estimated surplus variable. β?1and β?0can be calculated by

    Y?iis the predicted value of Yivariable,? is the es-

    step, and n is the number of calculation steps. When a perturbation variable C is added to Yi, the independent variable becomes Yi′= Yi + C . 1

    where 1 ?β′ and 0 ?β

    ′ are estimated slope and surplus variable with perturbation C, respectively. For linear perturbation C, C = C0i , where C0 is a constant, 1 ?β becomes

    When Eqs. (22) and (24) are adopted for monitoring CO2leakage with CO2and O2linear correlation analysis, it is the ALF method. When Eqs. (23) and (25) are used, it is the apparent leakage flux from surplus analysis (ALFs),

    In the ALF method, leakage rate is calculated directly, while in the ALFs method elevated concentration is obtained indirectly.

    In order to test the sensitivity of ALFs method to the linear perturbation, accumulation rates are set as 0.01, 0.03, 0.05, 0.08, and 0.1 μmol·mol?1·min?1. The results are shown in Fig. 9. The ALFs calculated from surplus CO2concentration is able to detect the linear perturbation and the slope of the increasing part reflects the leakage rate. With the step change perturbations 3, 5, 10, and 20 μmol·mol?1added, as shown in Fig. 10, ALFs also responds to the perturbation. The overall trend can be viewed as a step change variation response. The perturbation concentration can be calculated by subtracting background concentration from the surplus CO2concentration.

    Figure 9 Average ALFs with different linear concentration perturbations (accumulation rate: from 0.01 to 0.1 μmol·mol?1·min?1)

    Figure 10 Average ALFs with different step change perturbations

    The error analysis of ALFs to the perturbations is summarized in Table 2. The relative error of ALFs to linear perturbation is lower than 20% when the accumulation rate is larger than 0.01 μmol·mol?1·min?1, while the error is lower than 7% when accumulation rate is larger than 0.03 μmol·mol?1·min?1. Higher excessive accumulation rate decreases the error. Comparison of Tables 1 and 2 shows that the relative error of ALFs is lower than that of ALF with higher accumulation rate (>0.05 μmol·mol?1·min?1). Moreover, the relative error of ALFs to concentration perturbation is lower than 2% in all step change perturbations, while increasing step change concentration will reduce the error.

    According to the above analysis, the ALFs method is sensitive to both linear and step change perturbations, whose application in CO2leakage monitoring is more extensive than ALF method.

    6 CONCLUSIONS

    A real time CO2leakage assessment parameter, ALF, is presented based on atmospheric oxygen and carbon dioxide monitoring. Without leakage, all ALF values are close to background zero-line, while they will deviate from the zero-line with concentrationperturbation. ALF is sensitive to linear perturbation but insensitive to step change of CO2concentration. The relative error of average ALF is less than 20% when test accumulation rate is lower than 0.05 μmol·mol?1·min?1.

    An improved method, ALFs, is proposed by real time surplus CO2concentration calculated in LSR process. It is sensitive to both linear and step change perturbations. The relative error of ALFs to linear perturbation is less than 7% when the accumulation rate is larger than 0.05 μmol·mol?1·min?1, while it is lower than 2% in all tests with step change perturbations.

    Both ALF and ALFs are potential methods to monitor CO2leakage in geosequestration project. They can identify the leakage from complex background variation in real time. The ALF is able to detect the leakage in concentration increasing stage, while the ALFs is useful in whole period of leakage.

    However, these methods cannot determine the real leakage flux and locate leakage source at the same time, which will be our further work. We will improve this method and test it in the laboratory and field experiment.

    Table 2 Error analysis of ALFs with linear and step change perturbations

    NOMENCLATURE

    REFERENCES

    1 Mao, J.F., Wang, B., Dai, Y.J., “Sensitivity of the carbon storage of potential vegetation to historical climate variability and CO2in continental China”, Adv. Atmos. Sci., 26 (1), 87-100 (2009).

    2 Yang, L., Yu, H.B., Wang, S.Q., Wang, H.W, Zhou, Q.B., “Carbon dioxide captured from flue gas by modified ca-based sorbents in fixed-bed reactor at high temperature”, Chin. J. Chem. Eng., 21 (2), 199-204 (2013).

    3 Ye, C.B., Chen, G.W., Yuan, Q., “Process characteristics of CO2absorption by aqueous monoethanolamine in a microchannel reactor”, Chin. J. Chem. Eng., 20 (1), 111-119 (2012).

    4 Yu, Y.S., Li, Y., Lu, H.F., Yan, L.W., Zhang, Z.X., “Performance improvement for chemical absorption of CO2by global field synergy optimization”, Int. J. Greenh. Gas. Con., 5 (4), 649-658 (2011).

    5 Yu, Y.S., Li, Y., Lu, H.F., Dong, R.F., Zhang, Z.X., “Synergy pinch analysis of CO2desorption process”, Ind. Eng. Chem. Res., 50 (24), 13997-14007 (2011).

    6 Yu, Y.S., Liu, W.Q., An, H., Yang, F.S., Wang, G.X., Feng, B., Zhang, Z.X., Rudolph, V., “Modeling of the carbonation behavior of a calcium based sorbent for CO2capture”, Int. J. Greenh. Gas. Con., 10, 510-519 (2012).

    7 Geng, J.H., Dong, L.G., Ma, Z.T., “Ocean bottom nodes time-lapse seismic survey for monitoring oil and gas production and CO2geological storage”, Adv. Earth Sci., 26 (6), 670-676 (2011). (in Chinese)

    8 Dong, H.S., Huang, W.H., “Research of CO2capture, geological storage and leakage technologies”, Resour. Ind., 12 (2), 123-128 (2010). (in Chinese)

    9 Lewicki, J.L., Hilley, G., Oldenburg, C., “An improved strategy to detect CO2leakage for verif i cation of geologic carbon sequestration”, Geophys Res. Lett., 32 (19), L19403 (2005).

    10 Wang, Y.S., Wang, Y.H., “Quick measurement of CH4, CO2and N2O emissions from a short-plant ecosystem”, Adv. Atmos. Sci., 20 (5), 842-844 (2003).

    11 Prestona, C., Monea, M., Jazrawi, W., Lawf, D., Chalaturnykg, R., Rostronh, B., “IEAGHG Weyburn CO2monitoring and storage project”, Fuel. Process. Technol., 86 (14), 1547-1568 (2005).

    12 Hilke, W., Fabian, M., Michael, K., Heidugd, W., Christensene, N.P., Borma, G., Schilling, F.R., “CO2SINK—From site characterization and risk assessment to monitoring and verif i cation: One year of operational experience with the fi eld laboratory for CO2storage at Ketzin, Germany”, Int. J. Greenh. Gas. Con., 4, 938-951 (2010).

    13 Lewicki, J.L., Fischer, M.L., Hilley, G.E., “Six-week time series of eddy covariance CO2flux at Mammoth Mountain, California: Performance evaluation and role of meteorological forcing”, J. Volcanol. Geoth. Res., 171 (3), 178-190 (2008).

    14 Liu, H.P., “A re-examination of density effects in eddy covariance measurements of CO2fluxes”, Adv. Atmos. Sci., 26 (1), 9-16 (2009). 15 Ray, L., David, E., Ashok, L., Bronwyn, D., “Atmospheric monitoring and verif i cation technologies for CO2geosequestration”, Int. J. Greenh. Gas. Con., 2 (3), 401-414 (2008).

    16 John, D.A., Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill Education, USA (1995).

    17 Fessenden, J.E., Clegg, S., Rahn, T., Humphries, S., Baldridge, W.,“Novel MVA tools to track CO2seepage, tested at the ZERT controlled release site in Bozeman. MT”, Enviro. Earth. Sci., 60 (2), 325-334 (2010).

    18 Hanna, S.R., Briggs, G.A., Hosker, R.P., Handbook on atmospheric diffusion, USA Department of Energy, Tech. Inf. Cent., USA, DOE/TIC-11223 (DE82002045) (1982).

    19 Ma, D.L., Deng, J.Q., Zhang, Z.X., “Numerical study on unsteady state dispersion of leakage CO2from geological sequestration”, J. Xi’an Jiaotong Univ., 46 (9), 102-107 (2012). (in Chinese)

    20 Zhao, M., Pitman, A.J., “The relative impact of regional scale land cover change and increasing CO2over China”, Adv. Atmos. Sci., 22 (1), 58-68 (2005).

    21 Klusman, R.W., “Comparison of surface and near-surface geochemical methods for detection of gas microseepage from carbon dioxide sequestration”, Int. J. Greenh. Gas. Con., 5, 1369-1392 (2011).

    22 Keeling, R.F., “Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: A preliminary study in urban air”, J. Atmos. Chem., 7, 153-176 (1988).

    23 Keeling, R.F., Najjar, R.P., Bender, M.L., Pieter, P.T., “What atmospheric oxygen measurements can tell us about the global carbon cycle”, Global. Biogeochem. Cy., 7 (1), 37-67 (1993).

    24 Keeling, R.F., Manning, A.C., Manvendra, K.D., “The atmospheric signature of carbon capture and storage”, Philos. T. Roy. Soc. A, 369 (1943), 2113-2132 (2011).

    25 Manning, A.C., “Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: Tools for studying the global carbon cycle”, Ph.D. Thesis, Univ. Calif., San Diego, USA (2001).

    26 Severinghaus, J.P., “Studies of the terrestrial O2and carbon cycles in sand dune gases and in Biosphere”, Ph.D. Thesis, Columbia Univ., New York, USA (1995).

    27 Seibt, U., Brand, W.A., Heimann, M., Lloyd, J., Severinghaus, J.P., Wingate, L., “Observations of O2︰CO2exchange ratios during ecosystem gas exchange”, Global Biogeochem Cycl., 18, GB4024, 1-18 (2004).

    28 Lee, X., Massman, W., Law, B., Handbook of Micrometeorology, Kluwer Academic Publishers, Netherlands (2004).

    29 Graybill, F.A., Iyer, H.K., Regression Analysis: Concepts and Applications, Duxbury Press, Belmont, California, USA (1994).

    2013-04-08, accepted 2013-06-07.

    * Supported by the National Natural Science Foundation of China (51276141, 20936004).

    ** To whom correspondence should be addressed. E-mail: zhangzx@mail.xjtu.edu.cn

    国产熟女欧美一区二区| 性欧美人与动物交配| 亚洲高清免费不卡视频| 日本爱情动作片www.在线观看| 色播亚洲综合网| 一个人观看的视频www高清免费观看| 中国美女看黄片| 亚洲四区av| 国产日本99.免费观看| 国产精品久久电影中文字幕| 亚洲av成人精品一区久久| 欧美变态另类bdsm刘玥| 国内精品一区二区在线观看| 中文亚洲av片在线观看爽| 中文字幕av成人在线电影| 18禁黄网站禁片免费观看直播| 国产精品久久久久久亚洲av鲁大| 日本色播在线视频| 国产私拍福利视频在线观看| 国产精品三级大全| 国产黄片视频在线免费观看| 一级毛片我不卡| 国产黄色视频一区二区在线观看 | 精品无人区乱码1区二区| 99久国产av精品| 国内久久婷婷六月综合欲色啪| 男人狂女人下面高潮的视频| 亚洲国产色片| 女人被狂操c到高潮| 色尼玛亚洲综合影院| 中文字幕久久专区| 麻豆成人av视频| 女同久久另类99精品国产91| 亚洲激情五月婷婷啪啪| 亚洲欧美成人综合另类久久久 | av在线天堂中文字幕| 国产精品久久视频播放| 简卡轻食公司| 晚上一个人看的免费电影| 日本一本二区三区精品| 国产成人一区二区在线| 亚洲中文字幕日韩| 日韩av不卡免费在线播放| 久久婷婷人人爽人人干人人爱| 99久久中文字幕三级久久日本| 久久久久久大精品| 午夜福利视频1000在线观看| 中出人妻视频一区二区| 特大巨黑吊av在线直播| 蜜桃久久精品国产亚洲av| 欧美丝袜亚洲另类| 中出人妻视频一区二区| 久久久国产成人精品二区| 精品久久久久久久末码| 国产亚洲av嫩草精品影院| 亚洲av成人av| 一级毛片电影观看 | 精品一区二区免费观看| 国产精品三级大全| 日日摸夜夜添夜夜爱| 日韩亚洲欧美综合| 日本黄色片子视频| 精品久久久久久久久久久久久| 日韩一区二区视频免费看| 国产毛片a区久久久久| 麻豆久久精品国产亚洲av| 成人三级黄色视频| 国产男人的电影天堂91| 日本av手机在线免费观看| 欧美xxxx性猛交bbbb| 老女人水多毛片| 欧美最黄视频在线播放免费| av在线亚洲专区| 亚洲欧美日韩东京热| 国产精品爽爽va在线观看网站| 日韩欧美精品免费久久| 麻豆成人午夜福利视频| 精品99又大又爽又粗少妇毛片| 久久久久久久久中文| 国产老妇女一区| www日本黄色视频网| 美女国产视频在线观看| 亚洲av.av天堂| АⅤ资源中文在线天堂| 老师上课跳d突然被开到最大视频| 伦精品一区二区三区| 亚洲成人av在线免费| 亚洲自拍偷在线| 亚洲熟妇中文字幕五十中出| 亚洲精品国产av成人精品| 国产精品久久电影中文字幕| www.av在线官网国产| 欧美精品一区二区大全| 97人妻精品一区二区三区麻豆| 国产一区二区激情短视频| 精品免费久久久久久久清纯| 午夜福利在线观看吧| 麻豆国产av国片精品| 51国产日韩欧美| 欧美成人免费av一区二区三区| 99精品在免费线老司机午夜| 色综合色国产| 亚洲精品日韩在线中文字幕 | 亚洲国产精品成人久久小说 | 久久婷婷人人爽人人干人人爱| a级毛片免费高清观看在线播放| 一个人观看的视频www高清免费观看| 一进一出抽搐动态| 国产色爽女视频免费观看| 麻豆成人av视频| 国产精品久久久久久亚洲av鲁大| 国产精品一区二区三区四区久久| 久久精品国产亚洲网站| 网址你懂的国产日韩在线| 久久精品国产亚洲av香蕉五月| 一边摸一边抽搐一进一小说| 国产在线男女| 少妇丰满av| 精品久久久久久久末码| 欧美变态另类bdsm刘玥| 午夜a级毛片| 99riav亚洲国产免费| av在线老鸭窝| 成人毛片a级毛片在线播放| 久久久久久大精品| 蜜桃久久精品国产亚洲av| 国产熟女欧美一区二区| 亚洲精品粉嫩美女一区| 久久人人爽人人片av| 久久久久久久久久成人| 精品久久久久久久久亚洲| 日韩欧美一区二区三区在线观看| 午夜精品一区二区三区免费看| 国产伦理片在线播放av一区 | 欧美三级亚洲精品| 日韩大尺度精品在线看网址| www.av在线官网国产| 成人毛片60女人毛片免费| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| 午夜亚洲福利在线播放| 国产亚洲5aaaaa淫片| 99在线人妻在线中文字幕| 美女内射精品一级片tv| 人妻久久中文字幕网| 亚洲最大成人av| 亚洲va在线va天堂va国产| 日本三级黄在线观看| 人人妻人人看人人澡| ponron亚洲| 国产精品日韩av在线免费观看| 亚洲欧美中文字幕日韩二区| 亚洲第一电影网av| 久久久久久久久久成人| 亚洲精品乱码久久久久久按摩| 国产高清视频在线观看网站| 一区二区三区免费毛片| 高清在线视频一区二区三区 | 六月丁香七月| 中出人妻视频一区二区| kizo精华| 大型黄色视频在线免费观看| 日韩欧美三级三区| 欧美xxxx黑人xx丫x性爽| 99久国产av精品| 久久久欧美国产精品| 日韩欧美 国产精品| 免费不卡的大黄色大毛片视频在线观看 | 亚洲国产精品成人久久小说 | 变态另类丝袜制服| 国产中年淑女户外野战色| 国产av麻豆久久久久久久| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 晚上一个人看的免费电影| 夜夜看夜夜爽夜夜摸| 色综合站精品国产| 国产乱人偷精品视频| 午夜福利高清视频| 国产精品久久视频播放| 尾随美女入室| 最好的美女福利视频网| 亚洲精品国产成人久久av| 国产中年淑女户外野战色| 中文字幕av在线有码专区| 久久久午夜欧美精品| 九九热线精品视视频播放| 狂野欧美白嫩少妇大欣赏| 亚洲精华国产精华液的使用体验 | a级毛色黄片| 国产成人一区二区在线| 人人妻人人澡欧美一区二区| 一级二级三级毛片免费看| 国产真实乱freesex| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久久久毛片| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 又爽又黄无遮挡网站| 中文资源天堂在线| 最好的美女福利视频网| 黄色视频,在线免费观看| 少妇人妻精品综合一区二区 | 亚洲精品久久久久久婷婷小说 | 久久99热这里只有精品18| 毛片一级片免费看久久久久| 国产久久久一区二区三区| 网址你懂的国产日韩在线| 精品一区二区免费观看| 99久久精品国产国产毛片| 国产欧美日韩精品一区二区| 国产精品福利在线免费观看| 免费大片18禁| 国产精品爽爽va在线观看网站| 精品久久国产蜜桃| 亚洲四区av| 啦啦啦观看免费观看视频高清| 中国美白少妇内射xxxbb| 99国产极品粉嫩在线观看| av免费在线看不卡| 亚洲aⅴ乱码一区二区在线播放| 嘟嘟电影网在线观看| 国产精品乱码一区二三区的特点| 国产真实伦视频高清在线观看| 欧美性感艳星| 亚洲一区高清亚洲精品| 亚洲性久久影院| 亚洲欧美精品专区久久| 最近视频中文字幕2019在线8| 麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 午夜福利在线在线| 黄色视频,在线免费观看| 久久精品久久久久久久性| 黄色配什么色好看| 国产高清激情床上av| 一级毛片我不卡| 日本一本二区三区精品| 亚洲色图av天堂| 亚洲一区高清亚洲精品| 久久这里有精品视频免费| 国产高潮美女av| 久久精品影院6| 久久国内精品自在自线图片| 99久国产av精品| 欧美激情国产日韩精品一区| eeuss影院久久| 中国美女看黄片| 亚洲人成网站高清观看| 国产成人精品久久久久久| 国产av不卡久久| 美女 人体艺术 gogo| 亚洲成av人片在线播放无| 亚洲欧美日韩无卡精品| 校园春色视频在线观看| 国产黄片美女视频| 免费不卡的大黄色大毛片视频在线观看 | 精品久久久久久久末码| 精品久久久久久久久久久久久| 亚洲经典国产精华液单| 日韩欧美一区二区三区在线观看| 一本久久精品| 久久久精品大字幕| 天天躁夜夜躁狠狠久久av| 99riav亚洲国产免费| 老女人水多毛片| 2022亚洲国产成人精品| 99国产精品一区二区蜜桃av| 日本一本二区三区精品| 身体一侧抽搐| АⅤ资源中文在线天堂| 国产黄色视频一区二区在线观看 | kizo精华| 五月伊人婷婷丁香| 中国美女看黄片| 亚洲在线观看片| 亚洲av中文av极速乱| 免费观看人在逋| 最近2019中文字幕mv第一页| 亚洲,欧美,日韩| 国产日本99.免费观看| 国产探花极品一区二区| 免费不卡的大黄色大毛片视频在线观看 | 亚洲一区高清亚洲精品| 一级黄色大片毛片| 亚洲自偷自拍三级| 成年免费大片在线观看| 免费av不卡在线播放| 国产亚洲91精品色在线| 免费看av在线观看网站| 人妻制服诱惑在线中文字幕| 99热网站在线观看| 精品久久久久久久末码| 欧美一级a爱片免费观看看| 免费观看a级毛片全部| 久久久久九九精品影院| av专区在线播放| 亚洲精品成人久久久久久| 亚洲五月天丁香| 国产精品野战在线观看| 蜜臀久久99精品久久宅男| 我要看日韩黄色一级片| 久久久久久久久久久丰满| 日韩精品青青久久久久久| av视频在线观看入口| 男人狂女人下面高潮的视频| 免费观看的影片在线观看| 97超碰精品成人国产| 欧美日韩精品成人综合77777| 六月丁香七月| 国产久久久一区二区三区| 亚洲四区av| 99久久人妻综合| 成人毛片60女人毛片免费| 最近中文字幕高清免费大全6| 一本精品99久久精品77| 国产亚洲5aaaaa淫片| 99久久无色码亚洲精品果冻| 99久久精品一区二区三区| 男人舔女人下体高潮全视频| 午夜免费激情av| 国产成人午夜福利电影在线观看| 男女做爰动态图高潮gif福利片| 国产麻豆成人av免费视频| 日本熟妇午夜| 色综合亚洲欧美另类图片| 人妻少妇偷人精品九色| 国产成人一区二区在线| 成人国产麻豆网| 亚洲高清免费不卡视频| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 日本av手机在线免费观看| 高清在线视频一区二区三区 | 麻豆一二三区av精品| eeuss影院久久| 99国产精品一区二区蜜桃av| 精品99又大又爽又粗少妇毛片| av天堂中文字幕网| 有码 亚洲区| 婷婷色av中文字幕| 亚洲成人av在线免费| 超碰av人人做人人爽久久| 国内精品久久久久精免费| 欧美日韩在线观看h| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 又爽又黄a免费视频| 只有这里有精品99| 午夜福利视频1000在线观看| 99热这里只有是精品50| 国产高潮美女av| 青青草视频在线视频观看| 91精品国产九色| 黄色日韩在线| 九色成人免费人妻av| 国产一级毛片在线| 免费观看在线日韩| 欧美一区二区亚洲| 乱码一卡2卡4卡精品| 亚洲精品日韩在线中文字幕 | 大香蕉久久网| 亚洲自偷自拍三级| 成人二区视频| 色哟哟哟哟哟哟| 日本免费a在线| 久久久a久久爽久久v久久| 国产av在哪里看| 插阴视频在线观看视频| 91精品一卡2卡3卡4卡| 美女黄网站色视频| 人妻系列 视频| 永久网站在线| 男插女下体视频免费在线播放| 国产亚洲精品久久久久久毛片| 99riav亚洲国产免费| 美女脱内裤让男人舔精品视频 | 国产探花极品一区二区| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| 日日干狠狠操夜夜爽| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 白带黄色成豆腐渣| 久久午夜福利片| 女同久久另类99精品国产91| 给我免费播放毛片高清在线观看| 91久久精品电影网| 秋霞在线观看毛片| 国产一区二区三区av在线 | 国产精品,欧美在线| av黄色大香蕉| 色吧在线观看| 老师上课跳d突然被开到最大视频| 国产精品一及| 日本一本二区三区精品| 色哟哟·www| 免费一级毛片在线播放高清视频| 国产一区二区三区在线臀色熟女| 久久久久久久久久成人| 免费搜索国产男女视频| 插逼视频在线观看| 精品一区二区三区视频在线| 国产精品久久久久久亚洲av鲁大| 亚洲精品456在线播放app| 国产 一区精品| 午夜福利成人在线免费观看| 日日撸夜夜添| 丝袜喷水一区| 亚洲国产欧美在线一区| 天堂av国产一区二区熟女人妻| 91久久精品国产一区二区三区| 国产成人午夜福利电影在线观看| 搡老妇女老女人老熟妇| 免费av不卡在线播放| 亚洲精品国产av成人精品| 国内精品美女久久久久久| 国产片特级美女逼逼视频| 一区二区三区高清视频在线| 国产日本99.免费观看| 少妇人妻一区二区三区视频| 亚洲美女搞黄在线观看| 久久中文看片网| 久久久久久久亚洲中文字幕| 久久久久久国产a免费观看| 在线播放无遮挡| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 免费人成视频x8x8入口观看| 日本黄色视频三级网站网址| 成人av在线播放网站| 男女啪啪激烈高潮av片| 欧美3d第一页| av国产免费在线观看| 欧美另类亚洲清纯唯美| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产av在哪里看| 中出人妻视频一区二区| 久久久久久久久大av| 久久久精品大字幕| 舔av片在线| 人妻制服诱惑在线中文字幕| 一本久久精品| 国产精品综合久久久久久久免费| 麻豆av噜噜一区二区三区| 亚洲成人中文字幕在线播放| 一级av片app| 波野结衣二区三区在线| 最近视频中文字幕2019在线8| 精品人妻一区二区三区麻豆| 亚洲自拍偷在线| 能在线免费观看的黄片| 日本成人三级电影网站| 免费大片18禁| 精品久久久久久久人妻蜜臀av| 国产精品免费一区二区三区在线| 国产一级毛片在线| 国产三级中文精品| 99久国产av精品国产电影| 欧美性猛交╳xxx乱大交人| 熟妇人妻久久中文字幕3abv| 中国美女看黄片| 1000部很黄的大片| 美女高潮的动态| 热99在线观看视频| 中文字幕久久专区| 国产精品精品国产色婷婷| 九草在线视频观看| 亚洲精品国产av成人精品| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 一进一出抽搐gif免费好疼| 国产精品久久久久久av不卡| 亚洲在线自拍视频| 91av网一区二区| 99热全是精品| 久久热精品热| 成人av在线播放网站| 国产成人精品久久久久久| 最近手机中文字幕大全| 三级男女做爰猛烈吃奶摸视频| 卡戴珊不雅视频在线播放| 少妇熟女aⅴ在线视频| 国国产精品蜜臀av免费| 国产在线精品亚洲第一网站| 久久这里只有精品中国| 亚洲av不卡在线观看| 国产一区二区三区av在线 | 日韩精品青青久久久久久| 熟女人妻精品中文字幕| 不卡一级毛片| 国产成人影院久久av| 亚洲av二区三区四区| 日日摸夜夜添夜夜爱| 少妇熟女aⅴ在线视频| 日本爱情动作片www.在线观看| av在线亚洲专区| 国产视频首页在线观看| 国产在线男女| 嫩草影院精品99| h日本视频在线播放| 色综合站精品国产| 亚洲三级黄色毛片| 成人特级av手机在线观看| 人妻制服诱惑在线中文字幕| 精品欧美国产一区二区三| 日本与韩国留学比较| 国产精品永久免费网站| 欧美性猛交黑人性爽| 三级经典国产精品| 能在线免费观看的黄片| 看非洲黑人一级黄片| 亚洲欧美日韩高清在线视频| 搡老妇女老女人老熟妇| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 久久久久久久久久黄片| 国产精品99久久久久久久久| 日韩高清综合在线| 日日啪夜夜撸| 久久久久久久久久久丰满| 欧美性猛交黑人性爽| 亚洲av二区三区四区| 国产麻豆成人av免费视频| 久久亚洲精品不卡| 午夜视频国产福利| 性插视频无遮挡在线免费观看| 中文字幕av成人在线电影| 亚洲人成网站在线播| 国产一区二区在线av高清观看| 天天一区二区日本电影三级| 欧美色视频一区免费| 婷婷色综合大香蕉| 国产精品电影一区二区三区| 少妇猛男粗大的猛烈进出视频 | 日韩成人av中文字幕在线观看| 午夜亚洲福利在线播放| av在线老鸭窝| 床上黄色一级片| 欧美变态另类bdsm刘玥| 国产精品爽爽va在线观看网站| 日韩在线高清观看一区二区三区| 久久久精品欧美日韩精品| 中国美白少妇内射xxxbb| 超碰av人人做人人爽久久| 国产精品99久久久久久久久| 欧美日韩乱码在线| 九草在线视频观看| 美女内射精品一级片tv| 熟女电影av网| 久久久国产成人免费| 欧美一区二区精品小视频在线| 国产麻豆成人av免费视频| 蜜臀久久99精品久久宅男| 久久草成人影院| 国内揄拍国产精品人妻在线| 午夜久久久久精精品| 亚洲国产欧美在线一区| 天堂av国产一区二区熟女人妻| av在线天堂中文字幕| 黄色一级大片看看| 性色avwww在线观看| 日本黄大片高清| 最近的中文字幕免费完整| 国产午夜精品久久久久久一区二区三区| 蜜桃亚洲精品一区二区三区| 亚洲欧美成人综合另类久久久 | 国产精品久久久久久久久免| 三级经典国产精品| 久久久成人免费电影| 日韩欧美国产在线观看| 久久人人爽人人爽人人片va| 免费人成在线观看视频色| 国产一区二区亚洲精品在线观看| 日韩大尺度精品在线看网址| 亚洲18禁久久av| 亚洲欧美日韩高清在线视频| 欧美性猛交黑人性爽| 国产午夜精品论理片| 亚洲欧美日韩卡通动漫| 国产高清不卡午夜福利| 亚洲欧美日韩高清专用| 亚洲av中文av极速乱| 国产精品伦人一区二区| 色综合亚洲欧美另类图片| 日韩视频在线欧美| 我要看日韩黄色一级片| 大香蕉久久网| 99久国产av精品国产电影| 亚洲精品自拍成人| 一级av片app| 丰满的人妻完整版| 免费人成在线观看视频色| 欧美一区二区亚洲| av福利片在线观看| 国产真实乱freesex| 人人妻人人澡欧美一区二区| 欧美高清性xxxxhd video| 久久中文看片网| 中文字幕av在线有码专区| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看 | 国内久久婷婷六月综合欲色啪| 国产精品女同一区二区软件| 国产精品一区二区性色av| 别揉我奶头 嗯啊视频| 在线观看美女被高潮喷水网站| 1000部很黄的大片| 国产av一区在线观看免费| 国产黄片视频在线免费观看| 精品人妻偷拍中文字幕| 真实男女啪啪啪动态图|