• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Local Out lier Probability for Dynamic Process Monitoring☆

    2014-07-17 09:10:27YuxinMaHongboShiMenglingWang

    Yuxin Ma,Hongbo Shi*,MenglingWang

    Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai200237,China

    Adaptive Local Out lier Probability for Dynamic Process Monitoring☆

    Yuxin Ma,Hongbo Shi*,MenglingWang

    Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education,East China University of Science and Technology,Shanghai200237,China

    A R T I C L E I N F O

    Article history:

    Received 24 December 2013

    Received in revised form 28 January 2014

    Accepted 7 February 2014

    Available on line 19 June 2014

    Time-varying

    Complex data distribution

    Local outlier probability

    Multi-mode

    Fault detection

    Complex industrial processes often have multiple operating modes and present time-varying behavior.The data in one mode may follow specific Gaussian or non-Gaussian distributions.In this paper,a numerically efficient moving window local outlier probability algorithm is proposed.Its key feature is the capability to handle complex data distributions and in cursive operating condition changes including slow dynamic variations and instant mode shifts.First,a two-step adaption approach is introduced and some designed updating rules are applied to keep the monitoring model up-to-date.Then,a semi-supervised monitoring strategy is developed with an updating switch rule to deal with mode changes.Based on local probability models,the algorithm has a superior ability in detecting faulty conditions and fast adapting to slow variations and new operating modes.Finally,the utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous stirred tank reactor.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    In industrial processes,operating conditions are usually affected by some slow variations denoted as time-varying characteristics, caused by some dynamic behavior such as seasonal fluctuation, catalyst deactivation,equipment aging,sensor or process drifting, preventive maintenance and cleaning[1].Generally,effects of the time-varying behavior on the mean and covariance of variables cannot be neglected,so there may be m any false alarm s if conventional multivariate statistical process monitoring(MSPM) methods are applied directly[2].In order to maintain process efficiency for a long period of time,numerous adaptive methods have been developed.Recursive MSPM methods and methods based on the moving window strategy are two alternative widely used approaches[3,4].

    Multi modality is another important feature of industrial processes due to changes of market demands,alternations of feedstock or variations of manufacturing strategy.The difference between the characteristics of nearby operating conditions is always significant, so in tensive studies have been carried out with either multiple local models or a single global model[5,6].While it is more practical to accommodate the time-varying behavior and multi mode features together.The developed methods can be divided in to two categories. One is the adaptive clustering methods.Teppo la et al.[7]applied adaptive fuzzy C-means algorithm s on the score values of principle component analysis(PCA)to monitor a wastewater treatment plant.Liu[8]used an adaptive Takagi-Sugeno fuzzy model on PCA subspace to model a large scale nonlinear system containing many operating regions.Since PCA is used as a p reprocessing too l,monitoring results of these two methods more or less depend on and be restricted by the capability of PCA.Petkovi? et al.[9]designed an on-line adaptive clustering method utilizing a generalized in formation potential.Although previously unseen functioning modes can be included by introducing an adaptive expert system,the method suffers from a non negligible detection delay.The other category is adaptive statistical methods.Improved recursive algorithms based on recursive PCA or the signed digraph were proposed with some if-then rules to distinguish process condition changes from disturbances[10-12].Ge and Song[13]introduced the just-in-time-learning strategy to the modeling procedure of local least squares support vector regression and the residuals between the real output and the predicted one was analyzed by a two-step in formation extraction strategy.Xie and Shi[14]and Yu[15]developed two different dynamic fashions of Gaussian mixture model(GMM)separately based on the moving window strategy and a particle filter resampling method.

    The problem of complex data distributions in time-varying and multi mode processes has scarcely been addressed.Although the moving window strategy has been proven to be effective,it still encounters some limitations when incorporated with statistical methods such asPCA,partial least squares(PLS)or GMM.Since the variables of an industrial process may satisfy specified Gaussian or non-Gaussian distributions,and high order statistics are usually helpful to reveal more in formation from the data[16-18],adaptive monitoring algorithm s should be developed,which can explore both Gaussianity and non-Gaussianity of process data.Local outlier probability(LoOP)is an unsupervised data mining technique proposed for outlier detection[19].It combines the idea of local,density-based outlier scoring with a probabilistic,statistically-oriented approach,and assigns the probability of being an outlier to all data records.Since a normalization procedure is included,LoOP is independent of any specific data distribution. Therefore,a combination of LoOP and moving window strategy should be potential to tackle these problems.

    The main contribution of this paper is to propose a numerically efficient moving window LoOP algorithm for monitoring industrial processes with complex data distributions,time-varying property and multiple operating modes.Some designed rules are introduced and incorporated with a two-step adaption approach to ensure that the monitoring model can be updated at a high speed.To cope with the multi mode features,a semi-supervised monitoring strategy is employed,and an update termination rule is developed to prevent the monitoring model contaminated by faults or disturbances. Since the method is based on local probabilistic models,the accuracy of model is higher and it will be much easier to detect faulty conditions.

    2.Adaptive Process Monitoring Based on Moving Window Loop

    For low computation burden and practical applications,it is fast and reasonable to only update the in formation of those samples whose neighbors have changed due to the insertion and discard of samples. The key problems addressed in this section are how to find the affected samples and how to update their in formation.

    2.1.Offline initialization

    To make an initialization and calculate the LoOP value for eachsample χj(j=1,2,…,L)with dimension D in the initial window W1, its k nearest neighbors are found as follows,with its neighborhood set in W1can be recognized as knn1(χj).

    Assuming that samples in knn1(χj)are centered aroundχj,then we can define probabilistic set distance as:

    whereλis a weighted factor usually taken as2.For estimating the density aroundχj,the probabilistic local outlier factor(PLOF)is defined as follows with function E(.)used to com pu te the expectation of PLOF in the current window.

    Finally,by applying the Gaussian error function,the local outlier probability indicating the probability that a sample is an outlier can be calculated as:

    where erf(.)is the Gaussian error function applied to obtain a probabilistic value.

    2.2.On line updating and process monitoring

    By applying the moving window strategy,a two-step adaption procedure is introduced to update the monitoring model.Some more details of the adaption procedure for a window size L are as follows.

    Step 1:discard

    The effect of eliminating the oldest sampleχifrom the previous window Wion the mean and variance can be evaluated as follows.

    where diag(.)is the function used to calculate the diagonal matrix. Eq.(6)describes the updating of the variable mean while Eqs.(7)-(9)describe the updating of the variable variance.

    After moving all the information a bout χifrom the current monitoring model,a se(i>1)is constructed to store the samples,in which χiis one of their k nearest neighbors.

    where knni(χj)represents the neighborhood set of sampleχjin window Wi.Obviously,if,due to the deletion ofχi,the neighborhood set knni(χj)will change. Step 2:insertion

    When a new sampleχi+Lis judged normal and added in to the data matrix,the updated m ean vector and variance in Wi+1are computed as follows.

    To achieve normalization,the aggregate value nPLOF1which can be considered as a standard deviation of PLOF values is obtained:

    Eq.(11)describes the updating of the mean vector while Eqs.(12)-(14)describe the updating of the variance.However, only for those with new sampleχi+Lam ong their k nearestneighbors,their neighborhood set knni(χj)will be updated to knni+1(χj).Therefore,the setcan be augmented to:

    where p≠j andχj∈Wi+1.Since the PLOF of a sample will change not only with the change of its neighbors but also with the change of its probabilistic set distance,two sets?Si?1and Si?1are constructed as:

    where only the samples in Si?1need to update their PLOF values. By incorporating the updated probabilistic set distance,the PLOF and local outlier probability for the new data window Wi+1are computed as:

    Since LoOP assumes no specific data distribution,it will not be proper to apply 0.95 or 0.99 as the confidence limit for judging an outlier as that employed in GMM or other probabilistic methods.For those algorithms without assuming Gaussian distribution,kernel density estimation(KDE)is an effective method widely used in estimating control limits[20].However,it will be time consuming to run the KDE algorithm every time after model updating.Obviously,if the local outlier probability of a sample is zero,it must be a normal one and will have negligible effect on estimating the control limit in the current window. However,the monitoring model must be updated every time when a normal sample is inserted,because new normal samples are appropriate representations of current states of the monitored industrial process and they can always bring useful information to guarantee the accuracy of the monitoring model.Therefore,samples with LoOP value 0 will be used only to update the monitoring model but the control limit will not be reevaluated.

    To cope with the multi-mode problem,model updating is operated through a semi-supervised switch strategy.If am ode change is previously known to occur,an alternative approach will be enabled to fit the transient stage and the new mode by blindly accepting every new sample as a norm alone.However,there should be a termination rule to make the monitoring scheme switch back to its former state for fault detection as soon as possible to prevent the model from adapting to faulty conditions.During this transition,if the local outlier probability of anew sample is0,there must be enough data to construct an accurate local model in the new cluster.Therefore,when the LoOP value of a new sample is0,it is reasonable to say that the model is ready for monitoring the new operating m ode and the period of blind updating can be terminated.

    2.3.Methodology

    The flow diagram of the proposed moving window local outlier probability(MW LoOP)monitoring scheme is shown in Fig.1,with the detailed approach as follows.

    The offline modeling steps are summarized below:

    (1)Collect L samples from the current operating condition to construct the initial window W1.

    (2)Based on the standardized samples,an offline model is built according to Eqs.(1)-(5).

    (3)Specify a confidence level(1?α)%and app ly KDE to estimate a control limit for the LoOP values in the initial window W1.

    By introducing the switch rule,the on line semi-supervised monitoring steps are summarized below.

    (1)For a new sampleχi+L,standardization is first done by using the meanμiand varianceΣiof the window Wi,where i>1.

    (2)Calculate the distance fromχi+Lto samplesχi+1,χi+2,…,and χi+L?1in the window Wiand compute LoOPi(χi+L).

    (3)If am ode change is previously known to occur,the flag value that is initially 0 should be set to 1 by an operator and every new sample is accepted as a normal one.Until the LoOP value of a new sample is 0,the flag will be automatically set back to 0.Go to Step(5).

    (4)If LoOPi(χi+L)>lim it?LoOPi,where limit?LoOPiis the control limit of the window Wi,χi+Lis judged as an outlier,and then the circulation will go for the next new sample.Other wise,it continues to the next step.

    (5)The two-step adaption strategy is adopted to update the current model according to Eqs.(6)-(20)by discarding the oldest sample χiand inserting the newest sampleχi+L.

    (6)If LoOPi(χi+L)>0,the control limit is recalculated by KDE.

    (7)If several consecutive samples are judged as outliers,an alarm is triggered.

    Fig.1.Flow diagram of processm onitoring scheme based on MW LoOP.

    3.Case Study

    3.1.Numerical eχample

    To demonstrate the superiority of the proposed method in dealing with complex data distribution and time-varying behavior,a numerical example is employed,which is similar to that used by Lee et al.[21].

    Consider three source variables as follows:

    where k is a sampling index and k=1,2,…,2000.

    Totally 2000 samples are generated with the following system:

    where e=[e1,e2,e3,e4,e5]Tare zero-mean white noises with variance 0.02 and y=[y1,y2,y3,y4,y5]Tare the monitored variables.The first 1-1000 samples are normal ones,while at the 1001st sample,a slow d rift 0.001(k?1000)is added to A(1,2)and A(2,2)to simulate the time-varying behavior that should be adapted by the monitoring methods.Then a step bias ofχ2with magnitude 3 is introduced at the 1501st sample.

    In the moving window strategy,choosing a proper window size is a difficult task for compromising computational efficiency and model accuracy.A smaller window size means a lower computation load while a larger window size means higher model accuracy.As for the number of nearest neighbors,a large value will diminish the difference between normal samples and outliers while a small value will lead to inaccurate expression of local density.To verify the effect of the two parameters on Type I error,two tests on the 1-1500 samples are conducted and the results are shown in Fig.2.Fig.2(a)demonstrates the variant tendency of k versus Type I error with a window size of750 while Fig.2(b)shows the variant tendency of window size versus Type Ierror with the number of neighbors of30.By compromising the trade-off between computation speed and model accuracy,the window size is chosen to be 750 and the number of nearest neighbors is 30 through trial and error method.

    The moving window PCA(MWPCA)applied in this paper is the algorithm proposed in[22],and the number of principle components is determined by the cumulative percentage variance(≥85%).For all methods applied in this paper,the confidence of control limit is set to be 99%.

    A fault occurs due to a step change in the non-Gaussian source variable χ2.As shown in Table 1 and Fig.3,moving window PCA fails to raise an alarm as the fault occurs since it cannot figure out the changes in variables with complex distributions,while conventional LoOP can show an obvious difference between normal and faulty conditions but it makes too m any consecutive false alarm s from the 1300th sample because it cannot hand le the time-varying behaviors.In contrast,the proposed moving window LoOP algorithm has an acceptable Type I error and the best Type II error.The fault is rapidly detected without missing alarms.

    3.2.Non-isothermal continuous stirred tank reactor

    Fig.2.The effect of k and window size on Type I error.

    Table 1Monitoring results of the numerical example

    The proposed method is compared to moving window PCA and conventional LoOP by simulating a non-isotherm alcontinuous stirred tank reactor(CSTR).The process is shown in Fig.4.It is a first order reaction, reactant A premixing with a solvent to product B.It should be noted that only the PI control loop for temperature T is active in this simulation. More details about the simulation condition should be referred to[23]. The nine monitored process variables are:T=outlet temperature, C=outlet concentration,FC=cooling water flow rate,T0=inlet temperature,TC=cooling water temperature,CAA=concentration of pure A,CAS=concentration of solvent,FS=solvent flow,and FA=flow rate of constant A.

    Fig.3.Monitoring results of the numerical example.

    Fig.4.Diagram of CSTR process.

    Table 2Monitoring results for the three faults of CSTR

    Consider a very slow drift in reaction kinetic constant k0to rep resent the time-varying feature of catalyst deactivation.With simulation time 5000 with 2500 samples are generated.The slow d rift is introduced from t=2000m in as k0=k0initial(1?(t?2000)×10?4),while three kinds of fault are introduced from t=4000 m in:Fault 1:a step bias of cooling water temperature sensor with a magnitude of 1.5 K;Fault 2: a random noise of cooling water temperature that obeys uniform distribution U(?4,4);Fault3:a d rift in the sensor of CAAand its slope is d CAA/ d t=0.001 kmol·m?3·m in?1.

    According to the empirical guidance described in Section 3.1 and through trial and error method,the window size is chosen to be 700 and other parameters are the same with those in the numerical sample in Section 3.1.Monitoring results for the three faults are shown in Table 2.Type I errors of conventional LoOP for three faults are as high as 16.20%because it lacks the capability of adapting to time-varying processes.Com pared with moving window PCA,Type I error of MW LoOP is acceptable but it perform s better in Type II error.The reason lies in that with limited data samples,the Gaussian distribution assumptions of PCA cannot be fully satisfied,while the proposed method,which is free of distribution,can achieve a more accurate model.As a result,it is more sensitive to faulty conditions.

    Fig.5.Monitoring results for Fault2 of CSTR.

    Fault 2 is a random non-Gaussian noise added in Tc.Fig.5 shows that the monitoring results of conventional LoOP start to crash after t=3200 m in because it cannot deal with the time-varying behavior in the CSTR process.The SPE statistic of moving window PCA shows an acceptable result in Type II error,but T2does not work well,because PCA is designed for extracting the Gaussian in formation in to its feature space,and the remaining in formation including non-Gaussian features and disturbances will be separated into SPE.For the proposed method, a more accurate model is built with out assuming any specific distribution of data.It seems that a few normal samples are judged as outliers, but they are d is continuous,so no alarm is triggered.Table 2 shows that Type II error of moving window LoOP is the most satisfactory. Therefore,a conclusion can be d raw n that the proposed method is the most effective one compared to moving window PCA and conventional LoOP.

    Nex t,the ability of the proposed monitoring scheme to deal with mode changes is tested through Scenario 1 described below. The whole operation period consists of three stages.In the first stage t=1-2000m in,the process is operated under mode 1,with the outlet temperature T setting at 368.25 K.In the second stage t=2000-4000 m in,the reaction kinetic constant k0changes as k0=k0initial(1?(t?2000)×10?4).Then the set-point of T changes to 370 K from t=4000 m in and after a while the process reaches steady state and run under mode 2.In the last stage t=4000-5000m in,a step bias of concentration of pure A with a magnitude of2 km ol·m?3is introduced at t=4800m in to simulate a faulty condition.

    Fig.6 shows the monitoring results of moving window PCA and moving window LoOP for scenario 1.The vertical lines rep resent the stable time of the process judged by the dissimilarity index[10]and the stable time of MW LoOP judged by the proposed update termination rule.The statistic of proposed method becomes stable much faster than T2and SPE,which means that the risk of adapting to faulty conditions will bemuch lower.In terms of the 100 faulty samples,Type II error of the proposed method is 5%,while that of T2is 32%and SPE cannot detect this fault.Thus,the local model built by the proposed method is more accurate than the global model built by moving window PCA.From this point of view,the proposed method is much more practical,since it needs fewer samples to build a local model than a global one.

    Fig.6.Monitoring results of Scenario 1.

    4.Conclusions

    The proposed moving window LoOP methodology offers many peculiarities,among which its fault detection capability,adaptive on line implementation,and utility for multi mode processes without prior know ledge requirement are addressed in this paper.To cope with the time-varying behavior,a two-step adaption approach is introduced to update the monitoring model while some updating rules are designed to reduce the computation load.Forh and ling multi-mode characteristics,a semi-supervised switch strategy is incorporated and an update termination rule is designed to prevent the monitoring model fouled by faulty conditions. Due to the superiority of local probabilistic models,the proposed method can achieve a more accurate model and the monitoring efficiency can be easily maintained.Through a numerical example and a non-isothermal CSTR process,the flexibility and effectiveness of the proposed method are validated compared to moving window PCA and conventional LoOP. Future work will be focused on how to isolate faulty variables and how to tackle strong nonlinear property.

    [1]W.H.Li,H.H.Yue,S.V.Cervantes,S.J.Qin,Recursive PCA for adaptive process m onitoring,J.Process Control10(2000)471-486.

    [2]C.Rosen,J.A.Lennox,Mu ltivariate and multi-scale monitoring of wastewater treatment operation,Water Res.35(2001)3402-3410.

    [3]Y.W.Zhang,S.Li,Y.D.Teng,Dynamic process monitoring using recursive kernel principle component analysis,Chem.Eng.Sci.72(2012)78-86.

    [4]X.Q.Liu,U.Kruger,T.Littler,L.Xie,S.Q.Wang,Moving window kernel PCA for adaptive monitoring of nonlinear processes,Chem om.Intell.Lab.Syst.96(2009) 132-143.

    [5]F.L.Wang,S.Tan,J.Peng,Y.Q.Chang,Process monitoring based on mode identification for multi-mode process with transitions,Chemom.Intell.Lab.Syst.110(2012) 144-155.

    [6]H.H.Ma,Y.Hu,H.B.Shi,Fau lt detection and identification based on neighborhood standardized local outlier factor method,Ind.Eng.Chem.Res.52(2013)2389-2402.

    [7]P.Tep po la,S.P.Mu junen,P.Minkkinen,Adaptive fuzzy C-means clustering in process monitoring,Che mom.In tell.Lab.Syst.45(1999)23-38.

    [8]J.L.Liu,Modeling a large-scale nonlinear system using adaptive Takagi-Sugeno fuzzy model on PCA subspace,Ind.Eng.Chem.Res.46(2007)788-800.

    [9]M.Petkovi?,M.R.Rapai?,Z.D.Jeli?i?,A.Pisano,On-line adaptive clustering for process monitoring and fault detection,Eχpert Syst.Appl.39(2012)10226-10235.

    [10]H.D.Jin,Y.H.Lee,G.Lee,C.H.Han,Robust recursive principal component analysis modeling for adaptive monitoring,Ind.Eng.Chem.Res.45(2006)696-703.

    [11]Y.H.Lee,H.D.Jin,C.H.Han,On-line process state classification for adaptive monitoring,Ind.Eng.Chem.Res.45(2006)3095-3107.

    [12]S.W.Choi,E.B.Martin,A.J.Morris,I.B.Lee,Adaptive multivariate statistical process control for m onitoring time-varying processes,Ind.Eng.Chem.Res.45(2006) 3108-3118.

    [13]Z.Q.Ge,Z.H.Song,On line monitoring of nonlinear multiple mode processes based on adaptive local model approach,Control.Eng.Pract.16(2008)1427-1437.

    [14]X.Xie,H.B.Shi,Dynamic multi mode process modeling and monitoring using adaptive Gaussian mixture models,Ind.Eng.Chem.Res.51(2012)5497-5505.

    [15]J.Yu,A particle fi lter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis,J.Process Control22(2012)778-788.

    [16]M.Kermit,O.Tom ic,Independent component analysis applied on gas sensor array measurement data,IEEESens.J.3(2003)218-228.

    [17]Z.Q.Ge,Z.H.Song,Process monitoring based on independent component analysisprincipal component analysis(ICA-PCA)and similarity factors,Ind.Eng.Chem.Res. 46(2007)2054-2063.

    [18]C.H.Zhao,F.R.Gao,F.L.Wang,Non linear batch process monitoring using phase based kernel independent component analysis-principal component analysis (KICA-PCA),Ind.Eng.Chem.Res.48(2009)9163-9174.

    [19]H.P.Kriegel,P.Kr?ger,E.Schubert,A.Zim ek,LoOP:Local Outlier Probabilities, Proceedings of the 18th ACM conference on In formation and know ledge manage men t,2009,pp.1649-1652.

    [20]J.S.Lee,B.Y.Kang,S.H.Kang,Integrating independent component analysis and local outlier factor for plant-wide process monitoring,J.Process Control 21(2011) 1011-1021.

    [21]J.M.Lee,S.J.Qin,I.B.Lee,Fault detection and diagnosis based on modified independent com ponen t analysis,AIChEJ.52(2006)3501-3514.

    [22]X.Wang,U.Kruger,G.W.Irwin,Process monitoring approach using fast moving window PCA,Ind.Eng.Chem.Res.44(2005)5691-5702.

    [23]S.Yoon,J.F.MacGregor,Fault diagnosis with multivariate statistical models part I: using steady state fault signatures,J.Process Control 11(2001)387-400.

    ☆Supported by the National Natural Science Foundation of China(61374140),Shanghai Postdoctoral Sustentation Fund(12R21412600),the Fundamental Research Funds for the Central Universities(WH1214039),and Shanghai Pujiang Program(12PJ1402200).

    *Corresponding author.

    E-mailaddress:hbshi@ecust.edu.cn(H.Shi).

    草草在线视频免费看| 97超视频在线观看视频| ponron亚洲| 精品久久久久久久人妻蜜臀av| 91精品国产九色| 国产精品久久久久久av不卡| 爱豆传媒免费全集在线观看| 精品一区二区三区人妻视频| 国产探花极品一区二区| av黄色大香蕉| 少妇熟女欧美另类| 日本爱情动作片www.在线观看| 国产高潮美女av| 欧美高清成人免费视频www| 99九九线精品视频在线观看视频| 久久久午夜欧美精品| 小说图片视频综合网站| 精品久久久噜噜| 欧美色欧美亚洲另类二区| 最近中文字幕高清免费大全6| 亚洲欧美日韩无卡精品| 一级黄色大片毛片| 日韩成人伦理影院| 天堂影院成人在线观看| 人妻系列 视频| 成人无遮挡网站| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区视频9| 国产精品福利在线免费观看| 国语自产精品视频在线第100页| 国产精品电影一区二区三区| 国产精品一二三区在线看| 国模一区二区三区四区视频| 噜噜噜噜噜久久久久久91| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本一二三区视频观看| 国产一区二区三区在线臀色熟女| 美女国产视频在线观看| 寂寞人妻少妇视频99o| 看十八女毛片水多多多| 国产亚洲精品av在线| 又爽又黄a免费视频| 国产单亲对白刺激| 青春草国产在线视频 | 国产日韩欧美在线精品| 国产v大片淫在线免费观看| 麻豆国产av国片精品| 国产成人影院久久av| 欧美性感艳星| 国产亚洲91精品色在线| 免费电影在线观看免费观看| 草草在线视频免费看| 蜜臀久久99精品久久宅男| 国产一级毛片七仙女欲春2| www.av在线官网国产| 成人欧美大片| 十八禁国产超污无遮挡网站| 久久99热6这里只有精品| 麻豆成人午夜福利视频| 日韩欧美精品免费久久| 免费大片18禁| 亚洲最大成人av| 精品久久久久久久久av| 精品一区二区免费观看| 亚洲欧美日韩无卡精品| 免费看a级黄色片| 国产一级毛片七仙女欲春2| 老熟妇乱子伦视频在线观看| 久久鲁丝午夜福利片| 日韩一区二区视频免费看| 91精品国产九色| 国产单亲对白刺激| 丝袜喷水一区| 久99久视频精品免费| 久久99热6这里只有精品| 三级毛片av免费| 欧美xxxx性猛交bbbb| 男人和女人高潮做爰伦理| 一本久久中文字幕| 卡戴珊不雅视频在线播放| 91久久精品国产一区二区三区| 黑人高潮一二区| 亚洲国产欧美在线一区| www.色视频.com| 少妇丰满av| 色噜噜av男人的天堂激情| eeuss影院久久| 国产极品精品免费视频能看的| 女同久久另类99精品国产91| 亚洲av二区三区四区| 黄色日韩在线| 国产成人一区二区在线| 国产成人a区在线观看| 亚洲美女搞黄在线观看| 狂野欧美白嫩少妇大欣赏| 成人无遮挡网站| 国产精品三级大全| 乱人视频在线观看| 午夜亚洲福利在线播放| av视频在线观看入口| 日本免费a在线| 国产高清有码在线观看视频| 听说在线观看完整版免费高清| 亚洲国产欧美人成| 99在线人妻在线中文字幕| 欧美精品国产亚洲| 亚洲熟妇中文字幕五十中出| 免费看美女性在线毛片视频| 国产男人的电影天堂91| av免费观看日本| 少妇丰满av| 久久精品国产清高在天天线| 久久久久久久久久黄片| 亚洲18禁久久av| 精品午夜福利在线看| 国产精品国产三级国产av玫瑰| 成年女人永久免费观看视频| 成年女人永久免费观看视频| 国产精品爽爽va在线观看网站| 日韩强制内射视频| 综合色av麻豆| 免费看美女性在线毛片视频| 成人漫画全彩无遮挡| 校园人妻丝袜中文字幕| 一区二区三区免费毛片| 国产精品嫩草影院av在线观看| 久久久久网色| 国产精品一二三区在线看| 啦啦啦啦在线视频资源| 国产一级毛片在线| 国产精品久久电影中文字幕| 观看免费一级毛片| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 欧美不卡视频在线免费观看| 精品不卡国产一区二区三区| 1000部很黄的大片| 此物有八面人人有两片| 最新中文字幕久久久久| 日韩欧美一区二区三区在线观看| av免费在线看不卡| 一级毛片电影观看 | 色吧在线观看| 哪里可以看免费的av片| 国产一区二区在线av高清观看| 亚洲最大成人av| 最后的刺客免费高清国语| 欧美色视频一区免费| 国产视频内射| 国产久久久一区二区三区| 又黄又爽又刺激的免费视频.| 一级毛片aaaaaa免费看小| 精品少妇黑人巨大在线播放 | 亚洲性久久影院| 成人高潮视频无遮挡免费网站| 日本成人三级电影网站| 久久精品人妻少妇| 国产真实伦视频高清在线观看| 中文欧美无线码| 久久这里只有精品中国| 99在线人妻在线中文字幕| 综合色丁香网| 国产成人a∨麻豆精品| 亚洲最大成人手机在线| 乱系列少妇在线播放| 亚洲av不卡在线观看| 高清毛片免费看| 亚洲天堂国产精品一区在线| 久久久久久久亚洲中文字幕| 精品国内亚洲2022精品成人| 联通29元200g的流量卡| 亚洲精华国产精华液的使用体验 | 日韩三级伦理在线观看| 精品久久国产蜜桃| 欧美日韩乱码在线| 日日摸夜夜添夜夜爱| av卡一久久| 禁无遮挡网站| 国产成人aa在线观看| 国产精品久久久久久久久免| 欧美另类亚洲清纯唯美| 亚洲国产精品国产精品| 国产欧美日韩精品一区二区| 黄色配什么色好看| 在线天堂最新版资源| 久久欧美精品欧美久久欧美| 国产亚洲5aaaaa淫片| 男人舔女人下体高潮全视频| 亚洲18禁久久av| 一级二级三级毛片免费看| 欧美一区二区亚洲| 亚洲va在线va天堂va国产| 午夜爱爱视频在线播放| 久久99热6这里只有精品| 亚洲av成人精品一区久久| 国产精品不卡视频一区二区| h日本视频在线播放| 色哟哟哟哟哟哟| 日产精品乱码卡一卡2卡三| 久久这里只有精品中国| 久久久久久大精品| 日韩欧美精品免费久久| 日本黄色片子视频| 久久久精品大字幕| 九草在线视频观看| 日本黄大片高清| 男女下面进入的视频免费午夜| 亚洲国产欧美在线一区| 免费看美女性在线毛片视频| 99久国产av精品国产电影| 免费在线观看成人毛片| av黄色大香蕉| 黄色一级大片看看| 久久国产乱子免费精品| 亚洲精品色激情综合| 欧美日韩乱码在线| 人妻少妇偷人精品九色| 中文字幕免费在线视频6| 少妇的逼水好多| 亚洲成人av在线免费| 男人舔奶头视频| 99热只有精品国产| 能在线免费看毛片的网站| 高清在线视频一区二区三区 | 国产精品久久久久久av不卡| 亚洲精品粉嫩美女一区| 国产人妻一区二区三区在| 中文在线观看免费www的网站| 欧美人与善性xxx| 天天躁夜夜躁狠狠久久av| 亚州av有码| 欧美成人一区二区免费高清观看| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 国内精品美女久久久久久| 免费电影在线观看免费观看| 亚洲婷婷狠狠爱综合网| 色视频www国产| 国产在线男女| 不卡一级毛片| 99久久精品热视频| 91久久精品国产一区二区成人| 99热这里只有是精品在线观看| 久久久久久久亚洲中文字幕| 岛国毛片在线播放| 日韩欧美 国产精品| 亚洲18禁久久av| 欧美在线一区亚洲| 热99re8久久精品国产| 国产精品永久免费网站| 人妻制服诱惑在线中文字幕| 日韩一本色道免费dvd| av免费在线看不卡| 亚洲欧美日韩卡通动漫| 精品无人区乱码1区二区| 国产日韩欧美在线精品| 人人妻人人澡人人爽人人夜夜 | 国产一区亚洲一区在线观看| 色播亚洲综合网| 麻豆精品久久久久久蜜桃| 国产大屁股一区二区在线视频| 国产探花极品一区二区| 又粗又爽又猛毛片免费看| 丰满人妻一区二区三区视频av| 亚洲aⅴ乱码一区二区在线播放| 亚洲av免费高清在线观看| 亚洲久久久久久中文字幕| 免费看光身美女| 蜜臀久久99精品久久宅男| 少妇的逼好多水| 99久久精品国产国产毛片| 欧洲精品卡2卡3卡4卡5卡区| 国产午夜精品论理片| 久久久久久九九精品二区国产| 丰满的人妻完整版| 美女xxoo啪啪120秒动态图| 欧美成人一区二区免费高清观看| 久久久国产成人精品二区| 黄色欧美视频在线观看| h日本视频在线播放| 色噜噜av男人的天堂激情| 日韩强制内射视频| 简卡轻食公司| 精品久久久久久久久久久久久| 中文资源天堂在线| 国产爱豆传媒在线观看| 国产成人91sexporn| 久久6这里有精品| 免费看日本二区| 在线播放无遮挡| 欧美又色又爽又黄视频| 久久精品夜夜夜夜夜久久蜜豆| 国产精品爽爽va在线观看网站| 好男人在线观看高清免费视频| 国产精品久久电影中文字幕| 亚洲欧美日韩东京热| 亚洲精品成人久久久久久| 听说在线观看完整版免费高清| 能在线免费观看的黄片| av专区在线播放| 国产黄片美女视频| 26uuu在线亚洲综合色| 国产一区亚洲一区在线观看| 国产精品嫩草影院av在线观看| 男女那种视频在线观看| av天堂中文字幕网| 18禁黄网站禁片免费观看直播| 亚洲最大成人av| 99热6这里只有精品| 99热精品在线国产| 亚洲一区二区三区色噜噜| 国产精品国产三级国产av玫瑰| 国模一区二区三区四区视频| 国产av一区在线观看免费| 岛国毛片在线播放| 男女下面进入的视频免费午夜| 一级二级三级毛片免费看| 久久精品夜色国产| kizo精华| 亚洲精品亚洲一区二区| 高清日韩中文字幕在线| 在线观看午夜福利视频| 国产精品久久电影中文字幕| 国内精品一区二区在线观看| 黄片wwwwww| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 又粗又爽又猛毛片免费看| 夜夜爽天天搞| 午夜视频国产福利| 亚洲精品成人久久久久久| 亚洲七黄色美女视频| 久久久国产成人精品二区| 色5月婷婷丁香| 国产 一区精品| 欧美一区二区亚洲| 欧美3d第一页| 内射极品少妇av片p| 91av网一区二区| 69av精品久久久久久| 99热这里只有精品一区| 久久精品国产亚洲av涩爱 | 亚洲成人久久爱视频| 99久久精品一区二区三区| 我的老师免费观看完整版| 久久久久久伊人网av| 最近手机中文字幕大全| 十八禁国产超污无遮挡网站| 不卡一级毛片| 91久久精品国产一区二区三区| 国产69精品久久久久777片| 国产午夜精品论理片| 欧美一区二区精品小视频在线| 床上黄色一级片| 国产人妻一区二区三区在| 波多野结衣巨乳人妻| 2022亚洲国产成人精品| 亚洲av一区综合| 欧美另类亚洲清纯唯美| 国语自产精品视频在线第100页| 精品国产三级普通话版| 美女内射精品一级片tv| 在线播放国产精品三级| 在线观看免费视频日本深夜| 久久精品夜夜夜夜夜久久蜜豆| av卡一久久| 老师上课跳d突然被开到最大视频| 三级经典国产精品| 亚洲一级一片aⅴ在线观看| 欧美成人一区二区免费高清观看| 亚洲在线自拍视频| 成人毛片60女人毛片免费| 亚洲在线自拍视频| 12—13女人毛片做爰片一| 国产精品日韩av在线免费观看| 可以在线观看的亚洲视频| 亚洲成av人片在线播放无| 91av网一区二区| 亚洲va在线va天堂va国产| 成人午夜精彩视频在线观看| 国产真实伦视频高清在线观看| 性插视频无遮挡在线免费观看| 十八禁国产超污无遮挡网站| 22中文网久久字幕| 69人妻影院| 亚洲国产精品国产精品| 1000部很黄的大片| 欧美一区二区国产精品久久精品| 亚洲成a人片在线一区二区| 内射极品少妇av片p| 婷婷六月久久综合丁香| 禁无遮挡网站| 亚洲人成网站在线观看播放| av在线观看视频网站免费| 久久6这里有精品| 国产亚洲av片在线观看秒播厂 | 五月伊人婷婷丁香| 我要搜黄色片| 国产精品久久电影中文字幕| 99久久九九国产精品国产免费| 男女做爰动态图高潮gif福利片| 欧美成人一区二区免费高清观看| 国产日韩欧美在线精品| 中文字幕av成人在线电影| 美女xxoo啪啪120秒动态图| 国产精品伦人一区二区| 国产老妇女一区| 亚州av有码| 夜夜夜夜夜久久久久| 国产黄片美女视频| 麻豆国产97在线/欧美| 免费在线观看成人毛片| 三级经典国产精品| 国产黄a三级三级三级人| 夜夜夜夜夜久久久久| 全区人妻精品视频| 中国国产av一级| 日韩欧美国产在线观看| 欧美+亚洲+日韩+国产| 亚洲高清免费不卡视频| 成人美女网站在线观看视频| 日本与韩国留学比较| 成人无遮挡网站| 免费人成在线观看视频色| 自拍偷自拍亚洲精品老妇| 欧美成人一区二区免费高清观看| 欧美潮喷喷水| 男女做爰动态图高潮gif福利片| 国产片特级美女逼逼视频| 成人高潮视频无遮挡免费网站| 99热只有精品国产| 老司机福利观看| 国产极品精品免费视频能看的| 一级毛片电影观看 | 成年女人永久免费观看视频| 亚洲一区高清亚洲精品| 一个人看视频在线观看www免费| 免费不卡的大黄色大毛片视频在线观看 | 色播亚洲综合网| 直男gayav资源| 精品人妻偷拍中文字幕| 亚洲精品影视一区二区三区av| 免费人成在线观看视频色| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av成人av| 99久久人妻综合| 国产乱人视频| 午夜免费激情av| a级一级毛片免费在线观看| 久久99热这里只有精品18| 成人性生交大片免费视频hd| 欧美日韩乱码在线| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 国产精品乱码一区二三区的特点| 亚洲综合色惰| 国产精品一二三区在线看| av.在线天堂| 午夜亚洲福利在线播放| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观| 久久久久久大精品| av黄色大香蕉| 2022亚洲国产成人精品| 一级毛片我不卡| 国产精品99久久久久久久久| 国产高清视频在线观看网站| 久久久国产成人精品二区| 欧美一区二区精品小视频在线| 男女视频在线观看网站免费| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 校园春色视频在线观看| 日韩av不卡免费在线播放| 久久午夜福利片| 麻豆成人av视频| 我的女老师完整版在线观看| 婷婷色av中文字幕| 中文字幕av成人在线电影| 一边摸一边抽搐一进一小说| 欧美人与善性xxx| 九色成人免费人妻av| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲网站| 亚洲一区二区三区色噜噜| 国产成人a∨麻豆精品| 97超碰精品成人国产| av又黄又爽大尺度在线免费看 | 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线免费观看不下载黄p国产| 亚洲成人久久性| 一级毛片我不卡| 看十八女毛片水多多多| 嫩草影院新地址| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 亚洲精品影视一区二区三区av| 中国美白少妇内射xxxbb| a级毛片a级免费在线| 天堂网av新在线| 97超视频在线观看视频| 天堂影院成人在线观看| 国内揄拍国产精品人妻在线| 老司机福利观看| 精品人妻视频免费看| 美女 人体艺术 gogo| 三级国产精品欧美在线观看| 亚洲婷婷狠狠爱综合网| 亚洲国产精品合色在线| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| 欧美性猛交黑人性爽| 久久这里有精品视频免费| 又粗又硬又长又爽又黄的视频 | 日本成人三级电影网站| 性插视频无遮挡在线免费观看| 日本熟妇午夜| 欧美日韩乱码在线| 亚洲,欧美,日韩| 一个人免费在线观看电影| 久久久久免费精品人妻一区二区| 丰满乱子伦码专区| 久久久久久久久中文| a级毛片a级免费在线| 麻豆一二三区av精品| 我的女老师完整版在线观看| 亚洲国产精品国产精品| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 久久99精品国语久久久| 少妇人妻精品综合一区二区 | 哪里可以看免费的av片| 国产又黄又爽又无遮挡在线| 国产成人91sexporn| 国产精品久久电影中文字幕| av免费观看日本| 国产单亲对白刺激| 免费观看a级毛片全部| 男人狂女人下面高潮的视频| 亚洲精品自拍成人| 一进一出抽搐动态| 欧美+亚洲+日韩+国产| 能在线免费观看的黄片| 成人毛片60女人毛片免费| 日韩亚洲欧美综合| 人体艺术视频欧美日本| 亚洲精品国产av成人精品| 亚洲成人av在线免费| 国模一区二区三区四区视频| 国产精品1区2区在线观看.| 精品久久久久久久末码| 国产老妇女一区| 一级毛片我不卡| 人体艺术视频欧美日本| 精品久久久久久久末码| av福利片在线观看| videossex国产| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 性插视频无遮挡在线免费观看| 亚洲经典国产精华液单| 亚洲高清免费不卡视频| 一个人看的www免费观看视频| 中国美女看黄片| 国产熟女欧美一区二区| 最近手机中文字幕大全| av.在线天堂| 麻豆成人午夜福利视频| 日韩av不卡免费在线播放| 成年免费大片在线观看| 91aial.com中文字幕在线观看| 极品教师在线视频| 热99在线观看视频| 亚洲av电影不卡..在线观看| 久久精品久久久久久噜噜老黄 | av黄色大香蕉| 精品午夜福利在线看| 久久人妻av系列| 免费不卡的大黄色大毛片视频在线观看 | 国产精品国产高清国产av| 好男人视频免费观看在线| 国产极品精品免费视频能看的| 精品人妻熟女av久视频| 只有这里有精品99| 中文字幕制服av| 国产精品,欧美在线| 亚洲人成网站高清观看| 日韩三级伦理在线观看| 可以在线观看毛片的网站| 嫩草影院精品99| 91狼人影院| 色播亚洲综合网| 成人特级黄色片久久久久久久| 午夜精品在线福利| 日韩av不卡免费在线播放| 人妻系列 视频| 黄片wwwwww| 中文在线观看免费www的网站| 99热只有精品国产| 国产欧美日韩精品一区二区| 亚洲最大成人av| 岛国毛片在线播放| 欧美xxxx黑人xx丫x性爽| 成人毛片a级毛片在线播放| 欧美色欧美亚洲另类二区| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 久久人人爽人人爽人人片va| 赤兔流量卡办理| 偷拍熟女少妇极品色| 欧美最新免费一区二区三区|