• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of LPV Models with Non-uniformly Spaced Operating Points by Using Asymmetric Gaussian Weights☆

    2014-07-17 09:10:22JieYouQinminYangJiangangLuYouxianSun

    Jie You,Qinm in Yang,Jiangang Lu*,Youxian Sun

    State Key Laboratory of Industrial Control Technology,Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    Identification of LPV Models with Non-uniformly Spaced Operating Points by Using Asymmetric Gaussian Weights☆

    Jie You,Qinm in Yang,Jiangang Lu*,Youxian Sun

    State Key Laboratory of Industrial Control Technology,Department of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China

    A R T I c L E IN F o

    Article history:

    Received 5 June 2013

    Received in revised form 4 October 2013 Accepted 12 November 2013

    Available on line 19 June 2014

    Identification

    Multi-model linear parameter varying system

    Asymmetric Gaussian weight

    Continuous stirred tank reactor

    In this paper,asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure.It is not required to select operating points with uniform spacing and more flexibility is achieved.To verify the effectiveness of the proposed approach,several weighting functions,including linear,Gaussian and asymmetric Gaussian weighting functions,are evaluated and compared.It is demonstrated through simulations with a continuous stirred tank reactor model that the proposed approach provides more satisfactory approximation.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Modern industrial processes are operated over a wide operating range and often display strong static and dynamic nonlinearities. The traditional linear models can no longer meet the requirement for model-based control.Accordingly,finding a sound and low cost nonlinear identification approach to approximate nonlinear processes over a broad operating regime is crucial and indispensable[1].

    In the identification of nonlinear systems,several black box modeling approaches characterized by the usage of theoretically sound nonlinear functions such as nonlinear AR(MA)X[2],artificial neural network models[3],and blocked-oriented models such as Hammerstein and Wiener models[4]have been studied.Since these model shave complex structure and need dif fi cu lt computation,their applications to industrial processes are limited.

    Recently,linear parameter varying(LPV)model identification has attracted great attention from academia and industry[5].The terminology of LPV was first introduced by Shamma and Athans[6]in the study of gain scheduling control.The study on LPV systems has been extended to the theory of linear systems[1].Much work has been on the identification of LPV systems[7,8].LPV approaches are also applied to aerospace systems including high performance aircraft,missiles and turbofan engines[9].

    Most available references on input-output LPV are based on parameter interpolation,assuming that the scheduling parameter varies continuously[10].However,nonlinear functions are complex in the denominator of transfer function,which may cause numerical problems during model identification[10].Besides,the input excitation signal for this representation causes too much upset,which may be costly or even unrealistic in practice[11].To circumvent these difficulties,a multimodel LPV model is proposed by interpolating local linear models [10].With local linear models and model interpolation philosophy,the identification method is relatively simple and the stability of this LPV models is guaranteed[12].

    Essentially,p roper weighting functions are required to combine local linear models in to a global LPV model in the multi-model LPV structure.The available options are linear weight function[10]and Gaussian weight function[12].The linear weight functions can be used conveniently,but it is not sufficient to capture the full dynamic behavior of a nonlinear process.Owing to relative small number of para meters and superior performance,Gaussian weighting functions have been widely adopted in the multi-model structures[13]and fuzzy sets[14].A drawback of Gaussian weighting functions is that the operating points for local linear models should have an equal distance,which limits their feasibility and causes large inconvenience in applications.

    To overcome the disadvantage of Gaussian weights,asymmetric Gaussian weighting function is introduced for the identification of multi-model LPV structure in this paper.The locations of operating points can be selected freely.Linear,Gaussian and asymmetric Gaussian functions are used and compared in simulation study of a continuous stirred tank reactor(CSTR)system to demonstrate the accuracy andeffectiveness of the multi-model LPV model with asymmetric Gaussian weighting.

    2.Description of LPV Model

    For a multi-input single-output LPV system,let m inputs be{u1(t),…,um(t)}at time t and the output be y(t).One type of the input-output LPV system can be described as[1]

    where

    is a LPV transfer function from ui(t)to y(t)that is stable,Bi(q,w)and A(q,w)are polynomials of q?1,which denotes unit delay operator,diis the delay from the i th input to the output,v(t)is a stationary stochastic process with zero mean and bounded variance,n is the order of the model,and w(t)is the scheduling variable,which is measurable or can be calculated from other measurable process variables.In this paper,we assume that w(t)∈[wmin,wmax],where wminand wmaxare the low and high limits of w(t),respectively.

    Polynomial method is a commonly used parameterization method to rep resent the LPV model,with parameters( w)and aj(w)rep laced by polynomial functions of w(t).

    where nαand nβare the orders of polynomial functions.

    Eqs.(1)-(3)form u late the common approach of current LPV methods,called para meter-interpolation input-output LPV model[1]. However,it is not easy to identify parameter-interpolation LPV structure for its complex structure and fails to obtain acceptable performance in a case study[12].

    3.Multi-Model LPV Model Identification

    Motivated by identification practice,Zhu and Xu[10]proposed a simpler LPV model structure,which is called multi-model LPV model by Huang et al.[12].Its basic principle is to identify several local linear models at fixed operating points,and then achieve the global model by interpolation via certain weighting functions.It has been verified [1,11,12]that the multi-model LPV is a good approximation of real processes along its operating-trajectory and the stability of this LPV model can be guaranteed easily[12].

    We choose l operating points:

    The parameters to be estimated for each local model can be written as

    Parameters to be estimated for all l local linear models can be denoted as

    The values of all the parameters in ΘLcan be obtained with linear identifications using the data collected at each operating point test. Several linear identification methods can be used:prediction error method,subspace method and asymptotic method(ASYM)[15].In an operating point test,the scheduling variable is kept constant,while a norm al identification test is perform ed for local linear model identification using small test signals.

    The multi-model global LPV model is obtained by interpolating local linear models,which can be exp ressed as

    To combine all the local linear models in to a global multi-model LPV model in Eq.(8),p roper weighting functions are required for interpolation,which have a large effect on the accuracy of the global model.Some common weighting functions are available in literature,such as linear weight function[10]and Gaussian weight function[12].The structures of weighting functions will be specified later.

    3.1.Multi-model LPV model with linear weights

    The linear weight function is the simplest one that can be p reassigned.The weighting equals to the distance between current scheduling variable and operating points of the local linear models. With^y( t|w( t))to be estimated where wk<w(t)<wk+1,(k=1,2,…, l?1),the weighted output y^( t)is

    Although linear weighting can be used conveniently in the multi model LPV model,it is not accurate enough to capture the full dynamic behavior of nonlinear process.

    3.2.Multi-model LPV model with Gaussian weights

    A p referable choice for deter mining model weights is Gaussian function,which can be written as

    The choice of l is a trade-off of computing cost and model accuracy.

    To identify the multi-model LPV model,local linear models at each fi xed operating point should be determined first.The transfer function of the k th local linear models can be expressed as

    where

    andσkrepresents the width coefficient of the k th local linear model.

    In the realm of multi-model structures[13]and fuzzy sets[14], Gaussian weighting functions have been widely utilized,which haverelatively small number of parameters and natu rally better functions than linear functions.However,a disadvantage of Gaussian weighting functions is that the operating points for local linear models should have identical distance with respect to a scheduling variable,which is inconvenient in practice.

    3.3.Multi-model LPV model with asymmetric Gaussian weights

    To overcome the drawback of the Gaussian weights,asymmetric Gaussian functions are introduced here,which can be written as

    where

    σk,1andσk,2are the left and right variances,respectively,being the width coefficients of the scheduling variable.

    The asymmetric Gaussian function in Eq.(13)is normalized in the range of zero to one,without negative values.Essentially,it maintains the constrained shape and smooth properties of the Gaussian function. Since asymmetric Gaussian function has different left and right variances,the operating points for local linear models may have different distances with respect to a scheduling variable.For traditional symmetric Gaussian functions,the range in w(t)should be divided with equal intervals.

    Obviously,only two parameters need to be defined for each weighting function.The parameter vector for all l weighting functions can be written as

    For a given number of operating points and a given operating range, the selection of operating points is based on trial-and-error method. From the empirical know ledge,if more operating points locate at the p lace where the systemdisp lays strong nonlinearity and parameter varying,more accuracy models can be achieved.Therefore,the flexibility of choosing uneven operation points for local linear models provides an effective approach to improve the accuracy of the LPV model.

    4.Simulation Results and Discussion

    CSTR is one of the common operations in chemical and petrochemical plant,which is used to validate the feasibility of the method.An irreversible,exothermic reaction A→B occurs in a constant-volume reactor cooled by a single coolant stream.The model of the process is as follows [11]

    where CAis the concentration of component A,CA0is the initial concentration,t is the time,qcis the flow rate of coolant,V is the reaction volume,k0is the reaction rate constant,E is the activation energy,R is the universal gas constant,T is the temperature of material,T0and Tc0are the initial temperatures of material and coolant,respectively,ΔH is the heat of reaction,ρandρcare the densities of material and coolant,respectively,Cpand Cpcare the heat capacities of material and coolant,respectively,h is the heat transfer coefficient,and A is the heat transfer area.Their values are the same as those in literature[11].

    The controlled variable is CA(t),mol·L?1,and the manipulated variable is qc(t),L·m in?1.For the LPV model design,coolant flow rate qc(t) is chosen as the scheduling variable,which is in the range of[97,109]. Without loss of generality,four typical operating points for asymmetric Gaussian weight method are pre-determined for qc(t),97,103,107 and 109 L·m in?1,while the counterparts for Gaussian weight method are 97,101,105 and 109 L·m in?1.

    The identification test is performed for the coolant flow rate.The test signal is a generalized binary noise with average switch time of 40m in.output to represent measureable noise.The second order output-error model is identified using the data at each operating point.Their step responses are shown in Fig.1,which implies that the dynamic behavior of the process is distinct at different operating points.In this case,the parameter vector for all asymmetric Gaussian weighting functions is [0.5 0.5 0.5 1 1 2 2 2],while the counterpart for Gaussian weighting functions is[1 1 1 1].

    Fig.2 shows the simulation for identified LPV model using linear, Gaussian and asymmetric Gaussian weights and com pares the simulated outputs with measured data.Table 1 com pares the output errors of LPV models with three weighting functions.The output error is defined as

    One can see that the identified LPV model with asymmetric Gaussian weights is more accurate in cap tu ring the actual nonlinear process dynamics.

    Fig.1.Step responses of local linear models at 4 different operating points.

    Table 1Comparison for model output error

    Fig.2.Comparison of the outputs of identified global LPV models using different weights with that of real process with noise.

    5.Conclusions

    In this paper,the asymmetric Gaussian weighting function is introduced in to nonlinear identification of the multi-model LPV structure. Choosing uneven operating points for local linear models over the scheduling variable,the accuracy of the multi-model LPV model can be improved.To verify the feasibility of the proposed approach,a simulation example for a CSTR is given.It demonstrates that the LPV model with asymmetric Gaussian weighting presents superior performance.

    [1]Y.Zhao,B.Huang,H.Su,J.Chu,Prediction error method for identification of LPV models,J.Process Control22(1)(2012)180-193.

    [2]T.Pro ll,M.N.Karim,Model-predictive pH control using real time NARX approach, AIChEJ.2(40)(1994)269-282.

    [3]S.Piche,B.Sayyar-Rodsari,D.Johnson,M.Gerules,Nonlinear model predictive control using neural networks,IEEE Control.Syst.Mag.3(20)(2000)53-62.

    [4]R.K.Person,M.Pottmann,Gray-box identification of block-oriented nonlinear models,J.Process Control 10(4)(2000)301-315.

    [5]V.Laurain,M.Cilson,R.Toth,H.Garnier,Refined instrumental variable methods for identification for LPV Box-Jenkins models,Auto matica 46(2010)959-967.

    [6]J.Shamma,M.Athans,Guaranteed properties of gain scheduled control for linear parameter varying plants,Auto matica 27(1991)559-564.

    [7]V.Verdult,M.Verhaegen,Subspace identification of multivariable linear parametervarying systems,Auto matica 38(5)(2002)805-814.

    [8]B.Bam ieh,L.Giarre,Identification of linear parameter varying models,Int.J.Robust Nonlinear Control12(2002)841-853.

    [9]J.Y.Shin,Worst-case analysis and linear parameter-varying gain-scheduled control of aerospace systems,(Ph.D.thesis)University of Minnesota,Minneapolis,USA, 2000.

    [10]Y.C.Zhu,Z.Xu,A method of LPV model identification for control,Proceedings of the 17th IFAC World Congress,Seoul,Korea,2008.

    [11]X.Jin,B.Huang,D.S.Shook,Multiple model LPV approach to nonlinear process identification with EM algorithm,J.Process Control21(2011)182-193.

    [12]J.Y.Huang,G.L.Ji,Y.C.Zhu,P.V.D.Bosch,Identification of multi-model LPV models with two scheduling variables,J.Process Control 22(7)(2012)1198-1208.

    [13]A.Boukhris,G.Mou rot,J.Ragot,Non-linear dynamic system identification:a multi model approach,Int.J.Control72(1999)591-604.

    [14]D.H.Hong,C.Hwang,C.Ahn,Ridge estimation for regression models with crisp inputs and Gaussian fuzzy output,Fuzzy Sets Syst.142(2004)307-319.

    [15]Y.C.Zhu,Multivariable System Identification for Process Control,Elsevier,London, UK,2001.

    ☆Supported by the National Natural Science Foundation of China(21076179, 61104008),and National Basic Research Program of China(2012CB720500).

    *Corresponding author.

    E-mailaddress:jglu@iipc.zju.edu.cn(J.Lu).

    a级毛片在线看网站| xxx96com| 精品久久久久久久末码| 日韩欧美免费精品| av在线天堂中文字幕| 香蕉丝袜av| 黄频高清免费视频| 亚洲九九香蕉| 亚洲av电影在线进入| 啦啦啦 在线观看视频| 久久久水蜜桃国产精品网| 色综合站精品国产| 波多野结衣高清作品| 久久精品国产清高在天天线| 国产精品久久久久久精品电影 | 亚洲精品久久国产高清桃花| 久久亚洲真实| cao死你这个sao货| 极品教师在线免费播放| 国产成年人精品一区二区| 免费av毛片视频| 亚洲国产精品999在线| 日韩精品青青久久久久久| 精品久久久久久,| 日韩成人在线观看一区二区三区| 久久久久久人人人人人| 一级a爱视频在线免费观看| 国产精品一区二区精品视频观看| 亚洲av成人一区二区三| 日日摸夜夜添夜夜添小说| 精品久久久久久久人妻蜜臀av| 日日夜夜操网爽| 国产精品电影一区二区三区| 一本精品99久久精品77| 国产在线精品亚洲第一网站| 国内久久婷婷六月综合欲色啪| 人妻久久中文字幕网| www.精华液| 欧美大码av| www.精华液| 在线播放国产精品三级| 国产人伦9x9x在线观看| 中文字幕最新亚洲高清| 高潮久久久久久久久久久不卡| 男人舔女人的私密视频| 国产一级毛片七仙女欲春2 | 母亲3免费完整高清在线观看| 最近最新免费中文字幕在线| 亚洲七黄色美女视频| а√天堂www在线а√下载| 男女之事视频高清在线观看| 99国产综合亚洲精品| 国产精品九九99| 19禁男女啪啪无遮挡网站| 午夜免费观看网址| 美女高潮喷水抽搐中文字幕| 久久精品影院6| 亚洲国产欧洲综合997久久, | 老司机福利观看| 国产精品久久电影中文字幕| 淫妇啪啪啪对白视频| 久久热在线av| 在线播放国产精品三级| 国产1区2区3区精品| 欧美乱色亚洲激情| 美女国产高潮福利片在线看| 女同久久另类99精品国产91| 天天躁夜夜躁狠狠躁躁| 亚洲av成人不卡在线观看播放网| 美女大奶头视频| 人人妻人人澡人人看| 午夜成年电影在线免费观看| АⅤ资源中文在线天堂| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产毛片av蜜桃av| www.精华液| 搡老妇女老女人老熟妇| 久久人人精品亚洲av| 久久 成人 亚洲| 国产色视频综合| 免费高清视频大片| 国产成人欧美| 中文字幕久久专区| 久久九九热精品免费| 国产成年人精品一区二区| 亚洲成人免费电影在线观看| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 999精品在线视频| 国内精品久久久久精免费| 1024手机看黄色片| 亚洲无线在线观看| 欧美不卡视频在线免费观看 | 99久久久亚洲精品蜜臀av| 丝袜在线中文字幕| 日韩免费av在线播放| 久久久久久免费高清国产稀缺| 久热爱精品视频在线9| 亚洲午夜精品一区,二区,三区| 免费看美女性在线毛片视频| 午夜免费鲁丝| 国产久久久一区二区三区| 久久伊人香网站| 精品久久久久久成人av| 精品午夜福利视频在线观看一区| 十分钟在线观看高清视频www| 美女 人体艺术 gogo| 男人操女人黄网站| 在线观看日韩欧美| 一进一出抽搐动态| bbb黄色大片| 后天国语完整版免费观看| 一边摸一边抽搐一进一小说| 国产一区二区激情短视频| 久久精品aⅴ一区二区三区四区| 亚洲精品在线观看二区| 在线观看www视频免费| 成人特级黄色片久久久久久久| 香蕉久久夜色| 成人永久免费在线观看视频| 色av中文字幕| av福利片在线| 99精品久久久久人妻精品| 一边摸一边抽搐一进一小说| 99久久国产精品久久久| av片东京热男人的天堂| 国产麻豆成人av免费视频| 91国产中文字幕| 国产伦人伦偷精品视频| 欧美午夜高清在线| 亚洲真实伦在线观看| 一边摸一边做爽爽视频免费| 欧美乱色亚洲激情| 亚洲av片天天在线观看| 中文字幕最新亚洲高清| 欧美乱妇无乱码| 在线天堂中文资源库| 999久久久国产精品视频| 亚洲国产精品合色在线| 丁香六月欧美| 亚洲天堂国产精品一区在线| 99久久精品国产亚洲精品| 色播亚洲综合网| 国产精品,欧美在线| 欧美又色又爽又黄视频| 精品不卡国产一区二区三区| 亚洲中文日韩欧美视频| 色av中文字幕| 中亚洲国语对白在线视频| 香蕉丝袜av| 亚洲国产欧洲综合997久久, | 一夜夜www| 美女高潮到喷水免费观看| 久久精品aⅴ一区二区三区四区| 日韩精品青青久久久久久| 国产99白浆流出| 黑人巨大精品欧美一区二区mp4| www日本在线高清视频| 亚洲av中文字字幕乱码综合 | 国产精品影院久久| 亚洲中文字幕一区二区三区有码在线看 | 一夜夜www| 欧美黑人巨大hd| 亚洲五月天丁香| 免费搜索国产男女视频| 亚洲七黄色美女视频| 午夜亚洲福利在线播放| 视频区欧美日本亚洲| 深夜精品福利| 久久99热这里只有精品18| 亚洲自拍偷在线| 午夜福利在线在线| 大型黄色视频在线免费观看| 国产一区二区三区视频了| 中文亚洲av片在线观看爽| 少妇 在线观看| 色老头精品视频在线观看| 国产成+人综合+亚洲专区| 国产精品免费视频内射| 国产精品久久久久久亚洲av鲁大| 一级a爱片免费观看的视频| 欧美又色又爽又黄视频| 亚洲专区中文字幕在线| 欧美又色又爽又黄视频| 丁香欧美五月| 国产精品,欧美在线| 久久精品影院6| 国产欧美日韩一区二区精品| 一本一本综合久久| 欧美成狂野欧美在线观看| 午夜福利在线观看吧| 俺也久久电影网| 亚洲人成电影免费在线| 国产成人欧美在线观看| 成年女人毛片免费观看观看9| 法律面前人人平等表现在哪些方面| www.精华液| 高潮久久久久久久久久久不卡| 丁香六月欧美| 老熟妇乱子伦视频在线观看| 999精品在线视频| 黄色 视频免费看| 国产精品久久久久久亚洲av鲁大| 草草在线视频免费看| 国产欧美日韩精品亚洲av| 午夜福利免费观看在线| 免费搜索国产男女视频| 国产色视频综合| 99久久精品国产亚洲精品| 欧美成人免费av一区二区三区| 观看免费一级毛片| 国产激情欧美一区二区| 一本大道久久a久久精品| 精品少妇一区二区三区视频日本电影| 国产野战对白在线观看| 久久婷婷人人爽人人干人人爱| 色综合亚洲欧美另类图片| 国产精品免费一区二区三区在线| 99热只有精品国产| av有码第一页| 黄色视频不卡| 极品教师在线免费播放| 日韩欧美免费精品| 色播亚洲综合网| 亚洲五月婷婷丁香| 在线观看免费日韩欧美大片| 久久精品成人免费网站| 高清毛片免费观看视频网站| 青草久久国产| 1024手机看黄色片| av福利片在线| 夜夜夜夜夜久久久久| 色av中文字幕| 一本精品99久久精品77| 久久热在线av| 亚洲在线自拍视频| 淫妇啪啪啪对白视频| 丁香六月欧美| 亚洲av成人一区二区三| 一本综合久久免费| 亚洲av五月六月丁香网| 夜夜看夜夜爽夜夜摸| 老汉色∧v一级毛片| 亚洲真实伦在线观看| 午夜福利免费观看在线| 久久九九热精品免费| 最新美女视频免费是黄的| 成人欧美大片| 国产伦一二天堂av在线观看| 女同久久另类99精品国产91| 自线自在国产av| 亚洲成人精品中文字幕电影| 1024香蕉在线观看| 国产一区二区在线av高清观看| 亚洲七黄色美女视频| 久久久久久亚洲精品国产蜜桃av| 久久热在线av| 久久精品国产综合久久久| 老汉色∧v一级毛片| 欧美激情 高清一区二区三区| 久久中文字幕人妻熟女| 亚洲精华国产精华精| 免费在线观看成人毛片| 精品久久久久久成人av| 亚洲国产欧美网| 老司机在亚洲福利影院| 99久久久亚洲精品蜜臀av| 精品国产一区二区三区四区第35| 国产av一区二区精品久久| 美女高潮到喷水免费观看| 日韩av在线大香蕉| 精品熟女少妇八av免费久了| 成人亚洲精品av一区二区| 亚洲第一电影网av| 看片在线看免费视频| 国产精品1区2区在线观看.| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 色综合站精品国产| 一本久久中文字幕| 欧美日韩亚洲国产一区二区在线观看| 一二三四在线观看免费中文在| 精华霜和精华液先用哪个| 亚洲精品美女久久久久99蜜臀| 国产精品自产拍在线观看55亚洲| 成人手机av| 夜夜躁狠狠躁天天躁| 一进一出抽搐gif免费好疼| 99热只有精品国产| 禁无遮挡网站| 午夜日韩欧美国产| 妹子高潮喷水视频| 19禁男女啪啪无遮挡网站| 非洲黑人性xxxx精品又粗又长| 91老司机精品| 18禁观看日本| 51午夜福利影视在线观看| 国产97色在线日韩免费| 白带黄色成豆腐渣| 久久婷婷人人爽人人干人人爱| 夜夜爽天天搞| 亚洲国产精品久久男人天堂| 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 久久久国产成人免费| 黄片播放在线免费| 亚洲午夜精品一区,二区,三区| 欧美+亚洲+日韩+国产| 亚洲熟妇熟女久久| 欧美乱妇无乱码| 脱女人内裤的视频| 男人舔奶头视频| 18禁美女被吸乳视频| 成人18禁在线播放| 777久久人妻少妇嫩草av网站| 一级a爱片免费观看的视频| 叶爱在线成人免费视频播放| 18美女黄网站色大片免费观看| 在线播放国产精品三级| 国产精品一区二区精品视频观看| 欧美黑人精品巨大| 麻豆av在线久日| √禁漫天堂资源中文www| 激情在线观看视频在线高清| 国产av一区二区精品久久| 母亲3免费完整高清在线观看| 正在播放国产对白刺激| 麻豆成人av在线观看| 日韩欧美三级三区| 午夜福利视频1000在线观看| 50天的宝宝边吃奶边哭怎么回事| 成人av一区二区三区在线看| 国产精品一区二区精品视频观看| 欧美又色又爽又黄视频| 露出奶头的视频| 成年女人毛片免费观看观看9| 亚洲一区二区三区色噜噜| 日韩三级视频一区二区三区| 免费在线观看成人毛片| 国产亚洲精品一区二区www| 午夜福利18| 制服丝袜大香蕉在线| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| 国产av一区在线观看免费| 一区二区三区高清视频在线| 亚洲性夜色夜夜综合| 欧洲精品卡2卡3卡4卡5卡区| 久久久久国产精品人妻aⅴ院| 91麻豆精品激情在线观看国产| 亚洲成av人片免费观看| 一级毛片女人18水好多| 欧美三级亚洲精品| 一二三四社区在线视频社区8| 99久久国产精品久久久| 亚洲精品一卡2卡三卡4卡5卡| 久久天堂一区二区三区四区| 视频在线观看一区二区三区| 黄色丝袜av网址大全| 亚洲人成网站在线播放欧美日韩| 丰满的人妻完整版| 亚洲黑人精品在线| 久久人妻av系列| 亚洲精品在线美女| 露出奶头的视频| 午夜福利视频1000在线观看| 黄色丝袜av网址大全| 亚洲人成网站在线播放欧美日韩| 国产欧美日韩一区二区三| 成年人黄色毛片网站| 99国产精品99久久久久| 色在线成人网| 国产黄a三级三级三级人| 好男人在线观看高清免费视频 | 十分钟在线观看高清视频www| 国产亚洲精品综合一区在线观看 | 少妇熟女aⅴ在线视频| 美女大奶头视频| 欧美日韩亚洲综合一区二区三区_| 国产精品美女特级片免费视频播放器 | 黄色a级毛片大全视频| ponron亚洲| 久久久久久大精品| 国产亚洲欧美精品永久| 女同久久另类99精品国产91| 久久久久久久久久黄片| 国内精品久久久久久久电影| 亚洲国产欧美网| 久久人人精品亚洲av| 色精品久久人妻99蜜桃| 观看免费一级毛片| 50天的宝宝边吃奶边哭怎么回事| 黄网站色视频无遮挡免费观看| 亚洲男人天堂网一区| 欧美成狂野欧美在线观看| 久久精品亚洲精品国产色婷小说| 男人舔女人下体高潮全视频| 桃红色精品国产亚洲av| 成人一区二区视频在线观看| 午夜免费成人在线视频| 久久久久久久精品吃奶| 国产激情欧美一区二区| 伊人久久大香线蕉亚洲五| 国产一区二区在线av高清观看| 久久九九热精品免费| 两个人看的免费小视频| 亚洲精品在线美女| 久久人妻福利社区极品人妻图片| 级片在线观看| 又紧又爽又黄一区二区| АⅤ资源中文在线天堂| 欧美日韩一级在线毛片| 亚洲一区中文字幕在线| or卡值多少钱| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 90打野战视频偷拍视频| 免费看日本二区| av免费在线观看网站| 国产三级黄色录像| 成年女人毛片免费观看观看9| 亚洲一区中文字幕在线| 国产精品免费一区二区三区在线| 精品熟女少妇八av免费久了| 中文字幕精品免费在线观看视频| 久久亚洲精品不卡| 成人手机av| 亚洲专区字幕在线| 精品乱码久久久久久99久播| 在线观看免费午夜福利视频| 亚洲午夜精品一区,二区,三区| 欧美日韩中文字幕国产精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| 免费在线观看黄色视频的| 麻豆成人av在线观看| 成人午夜高清在线视频 | 国产蜜桃级精品一区二区三区| 国内精品久久久久久久电影| 亚洲av中文字字幕乱码综合 | 一本久久中文字幕| 精品久久久久久久人妻蜜臀av| www日本黄色视频网| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| АⅤ资源中文在线天堂| 免费在线观看亚洲国产| 国产亚洲精品av在线| 男人舔女人下体高潮全视频| 一本久久中文字幕| 精品卡一卡二卡四卡免费| 色在线成人网| av超薄肉色丝袜交足视频| 久久人妻av系列| 少妇粗大呻吟视频| 俄罗斯特黄特色一大片| 亚洲男人的天堂狠狠| 在线观看66精品国产| 国产精品久久久久久精品电影 | 在线观看免费视频日本深夜| 黄片播放在线免费| 欧美日韩瑟瑟在线播放| 久久中文看片网| 麻豆av在线久日| 免费一级毛片在线播放高清视频| 男女午夜视频在线观看| 母亲3免费完整高清在线观看| 黄片播放在线免费| 国产av在哪里看| 免费人成视频x8x8入口观看| 国产在线精品亚洲第一网站| 欧美一区二区精品小视频在线| 一夜夜www| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人澡欧美一区二区| 99国产精品一区二区蜜桃av| 黄片播放在线免费| 精华霜和精华液先用哪个| 禁无遮挡网站| 一本综合久久免费| 欧美黑人欧美精品刺激| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看.| 国产欧美日韩精品亚洲av| 亚洲免费av在线视频| 亚洲五月色婷婷综合| 国产午夜精品久久久久久| 少妇的丰满在线观看| 久久久久久人人人人人| 久久久久久久午夜电影| 九色国产91popny在线| 国产不卡一卡二| 给我免费播放毛片高清在线观看| 免费一级毛片在线播放高清视频| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 成人欧美大片| 午夜a级毛片| 中文字幕人妻熟女乱码| 亚洲最大成人中文| 亚洲熟妇中文字幕五十中出| 可以免费在线观看a视频的电影网站| 国产亚洲av高清不卡| 亚洲av电影在线进入| 天堂影院成人在线观看| 日本五十路高清| 一本久久中文字幕| 欧美绝顶高潮抽搐喷水| 国产91精品成人一区二区三区| 免费在线观看亚洲国产| 在线观看免费视频日本深夜| 日韩欧美免费精品| 中文字幕久久专区| 国产av一区二区精品久久| 亚洲人成伊人成综合网2020| 欧美成人午夜精品| av在线天堂中文字幕| 最新美女视频免费是黄的| 亚洲国产精品sss在线观看| 夜夜爽天天搞| 国产亚洲精品av在线| 欧美黄色片欧美黄色片| 久久久国产成人精品二区| 久久婷婷成人综合色麻豆| 亚洲一码二码三码区别大吗| 亚洲精品av麻豆狂野| 草草在线视频免费看| 国产日本99.免费观看| 精品不卡国产一区二区三区| 免费观看人在逋| 窝窝影院91人妻| 久久天堂一区二区三区四区| 国产97色在线日韩免费| 老汉色∧v一级毛片| a级毛片在线看网站| 亚洲国产日韩欧美精品在线观看 | 午夜福利高清视频| 午夜福利在线观看吧| 一本大道久久a久久精品| 日本精品一区二区三区蜜桃| 熟女少妇亚洲综合色aaa.| 动漫黄色视频在线观看| 欧美在线一区亚洲| 国产亚洲精品av在线| 亚洲精品美女久久久久99蜜臀| 校园春色视频在线观看| 人人妻人人澡欧美一区二区| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久99久久久不卡| 亚洲性夜色夜夜综合| 人妻丰满熟妇av一区二区三区| 两个人免费观看高清视频| 久久久久久亚洲精品国产蜜桃av| 身体一侧抽搐| 亚洲五月天丁香| 国产精品乱码一区二三区的特点| 岛国视频午夜一区免费看| 欧美中文综合在线视频| 午夜影院日韩av| 午夜老司机福利片| 人妻久久中文字幕网| 亚洲精品国产区一区二| 亚洲黑人精品在线| 成人永久免费在线观看视频| 女生性感内裤真人,穿戴方法视频| 中文字幕久久专区| 亚洲成人国产一区在线观看| 精品久久久久久成人av| 亚洲国产精品sss在线观看| 老司机午夜十八禁免费视频| 国产一区二区三区视频了| 久久久久国内视频| www日本在线高清视频| 视频区欧美日本亚洲| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 欧美另类亚洲清纯唯美| 国产精品久久久av美女十八| 精品一区二区三区四区五区乱码| 99久久久亚洲精品蜜臀av| 国产精华一区二区三区| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 欧美日韩黄片免| 久久精品成人免费网站| 手机成人av网站| 午夜亚洲福利在线播放| 欧美日本视频| 淫秽高清视频在线观看| 国产激情欧美一区二区| 天堂动漫精品| 亚洲欧洲精品一区二区精品久久久| 国产成人系列免费观看| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 欧美色视频一区免费| 精品国产超薄肉色丝袜足j| 国产成人影院久久av| 一级a爱视频在线免费观看| 最近最新中文字幕大全免费视频| 国产精品亚洲美女久久久| 极品教师在线免费播放| 韩国av一区二区三区四区| 亚洲无线在线观看| 国产精品野战在线观看| 一二三四社区在线视频社区8| xxx96com| 岛国视频午夜一区免费看| 91大片在线观看| 国产91精品成人一区二区三区| 欧美国产日韩亚洲一区| 午夜福利一区二区在线看| xxx96com| 淫秽高清视频在线观看|