• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Selective Moving Window Partial Least Squares Method and Its Application in Process Modeling☆

    2014-07-17 09:10:23OuguanXuYongfengFuHongyeSuLijuanLi3ZhijiangCollegeZhejiangUniversityofTechnologyHangzhou3004China

    Ouguan Xu*,Yongfeng FuHongye Su,Lijuan Li3Zhijiang College,Zhejiang University of Technology,Hangzhou 3004,China

    2State Key Laboratory of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China

    3College of Automation and Electrical Engineering,Nanjing University of Technology,Nan jing 210009,China

    A Selective Moving Window Partial Least Squares Method and Its Application in Process Modeling☆

    Ouguan Xu1,*,Yongfeng Fu1,Hongye Su2,Lijuan Li31Zhijiang College,Zhejiang University of Technology,Hangzhou 310024,China

    2State Key Laboratory of Industrial Control Technology,Institute of Cyber-Systems and Control,Zhejiang University,Hangzhou 310027,China

    3College of Automation and Electrical Engineering,Nanjing University of Technology,Nan jing 210009,China

    A R T I C L E I N F O

    Article history:

    Received 15May 2013

    Received in revised form 14 September 2013

    Accepted 16 October 2013

    Available on line 20 June 2014

    SMW-PLS

    Hydro-isomerization process

    Selective updating strategy

    Soft sensor

    A selective moving window partial least squares(SMW-PLS)soft sensor was proposed in this paper and applied to a hydro-isomerization process for on-line estimation of para-xylene(PX)con ten t.Aiming at the high frequency of model updating in previous recursive PLS methods,a selective updating strategy was developed.The model adaptation is activated once the prediction error is larger than a preset threshold,or the model is keptunchanged. Asa result,the frequency of model updating is reduced greatly,while the change of prediction accuracy is minor. The performance of the proposed model is better as compared with that of other PLS-based model.The compromise between prediction accuracy and real-time performance can be obtained by regulating the threshold.The guidelines to determine the model parameters are illustrated.In summary,the proposed SMW-PLS method can deal with the slow time-varying processes effectively.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Partial least squares(PLS)regression has many excellent attributes such as simple model structure,stable and robust performance,and fewer training samples needed[1,2],so it is widely used in process modeling[3,4],process control[5,6],process monitoring and fault diagnosis[2,7,8].However,the PLS model may be locally valid and its performance will be degraded due to high level noise and disturbance in samples or time-varying industrial process such as catalytic decaying, equipment aging,or process drifting[9-13].Many adaptive PLS models [9-16]have been proposed to deal with the dynamic behavior of processes.The basic recursive PLS was first proposed by Helland et al. [9]and then modified by Qin[10].A representation was given for the old data that maintain the in formation without increasing the dimensionality.The b lock-wise recursive PLS algorithm developed by Qin [11]was extended from the basic form with a moving window and a forgetting factor.The algorithm could adapt the model based on new data and the old PLS model,avoiding re-modeling the old data.A fast moving window algorithm[12]was derived to update the kernel PLS model.The proposed approach adapted the parameters of inferential model with the dissimilarity between the new and oldest data.The time varying characteristics of processes could also be dealt with effectively by moving window approach[11].However,the effect of discarded sample on the model could not be evaluated properly.In this case,a new recursive PLS model was developed by Liu[14]through updating the mean and variance of the new sample and old ones,so part of historical in formation of the abandoned sample remained.The effective model was expanded to an on line dual updating method by Mu et al.[15],integrating the model updating and the output offset updating.Since the dual updating strategy takes the advantages of the two methods,it is more effective in adapting process changes.A similar dual updating scheme was proposed by Ahmed et al.[16]for the prediction of melt index of a continuous polymerization process.The recursive PLS models are updated repeatedly either in block-wise or sample-wise once any new sample(s) is available,inducing a heavy load on the model manager or computational machine.In order to improve the real-time performance of the model, the frequency of model updating should be properly controlled.Among the proposed adaptive PLS models,the frequency of model updating is reduced with the dual updating method proposed by Mu et al.[15],since the model updating is activated at regular intervals.Different from the strategy proposed by Muetal.[15],the decision of which updating method to be perform ed is based on the prediction error[16].A novel adaptive modeling method was proposed by Lee et al.[17].Depending on the model performance assessment,partial or complete adaptation is utilized to remodel the PLS method.The adaptive modeling method shows better updating performance and lower updating frequency compared to the block-wise recursive PLS modeling technique.

    For the purpose of on-line application,more attentions have been paid to the real-time performance of the model.In this paper,a selective modeling strategy is proposed for the moving window PLS to decrease the model adaptation frequency by a p reset threshold.The modelwill be updated if its prediction accuracy exceeds a confidence limit, otherwise,the model remains unchanged.The selective moving window PLS(SMW-PLS)method is applied to an industrial example to predict para-xylene(PX)content in the hydro-isomerization process of C8-aromatics.

    2.SMW-PLS Method

    2.1.PLS method

    Given a pair of input and output datasets X and Y that have been standardized,where X∈?n×mand Y∈?n×l.The linear relationship of the two matrices can be expressed as

    whereβis the coefficient matrix and e is the noise vector.

    The PLS regression builds a linear model by decomposing matrices X and Y in to bilinear term s,

    where E1and F1are the residual matrices,p1and q1are the loading vectors,respectively,and t1and u1are the latent score vectors of the first PLS factors determined by

    where w1and c1are the normalized eigenvectors of corresponding dominant eigenvalue of matrices XTYYTX and YTXXTY,respectively.

    The relationship between t1and u1is

    where b1is the regression coefficient and r1is the residualvector.

    After the calculation of the first factor,if t1and u1do not contain enough in formation,the second factor is calculated by decomposing the residuals E1and F1with the same procedure for the first factor. The procedure is repeated until the model accuracy is satisfied.Finally, the value^βcan be estimated by

    2.2.Moving window PLS method

    Industrial processes often experience time-varying changes,such as catalyst decaying,sensor and process drifting,as well as degradation of efficiency.Several adaptive algorithm s[9,11,15,18]have been proposed to update the model based on new process data that reflect process changes.Xu and Chen[18]have shown that the simple PLS model presents the best real-time performance among the PLS-based models,but its accuracy and tracing performance are the worst.In order to improve the prediction accuracy and tracing performance of the model,the moving window approach is proposed for the simple PLS method.The model will be updated once a new sample is available while the oldest sample is discarded for the training data.As a result,the number of training samples is kept constant.

    2.3.Strategy of selective updating for the moving window PLS method

    The moving window PLS model needs updating repeatedly if any new sample is available.This high updating frequency is time consuming.Hence,an approach to reduce the updating frequency is greatly required.

    A strategy of selective updating for them ode l is proposed.The idea is as follows.If the m ode l predicted value(^yk)is consistent with the actual measurement value(yk)of the process,and the prediction error is less than a preset threshold,that means the current m ode l reflects the behavior of process exactly and does no t need updating.The new sample(a pair of[χk,yk])is added to the training sample set and the oldest one is omitted.Subsequently,the sampling dataset is renewed and the number of training samples remains unchanged.When the erro r between^ykand ykexceeds the p reset threshold,the available pair of[χk,yk]will be incorporated into the training sample set,while the oldest one is abandoned.Then the model updating will be activated with the latest sampling dataset. A relative prediction error bound which is a small positive number, is introduced asa threshold for measurement of complexity conditions. A new sample will be introduced to sampling set and the model is updated once Eq.(7)is satisfied.

    where RE is the absolutely relative error,andδis a predefined positive threshold,which can be set flexibly according to the demands and will be discussed in the next section.

    2.4.Procedure of the on-line algorithm

    With the above moving window PLS model and selective updating strategy,the procedure of on-line modeling of a continuous process can be designed as follow s.

    Step 1.Select the length of training samples,N,and an appropriate

    threshold,δ,given a pair of training datasets XNand YN,where XN∈?N×mand YN∈?N×l.

    Step 2.Calculate the regression coefficient^βby Eq.(6).

    Step 3.Predict the model output with^βand the newly available measurement X by

    Step 4.If a new sample(s)is available,add the new sample(s)in to the training dataset and discard the oldest one(s)to com pose a new sampling dataset,go to Step 5;or return to Step 2.

    Step 5.If Eq.(7)is satisfied,go to Step 2;or return to Step 3.

    3.Modeling of a Hydro-isomerization Process

    3.1.Hydro-isomerization process of C8-aromatics

    Fig.1.Schematic diagram of the hydro-isomerization of C8-aromatics process.A301—reactor effluent air condenser;A302—deheptanizer air condenser;A303—recycle overhead air condenser;C301—recycle compressor;E301—reactor feed/effluent exchanger;F301—reactor feed heater;P301—isomerization feed pump;P302—deheptanizer feed pump; R301—isomerizaton reactor;T301—deheptanizer column;T302—recycle column;V301—separator d rum;V302—deheptanizer reflux drum;V303—recycle column reflux drum; V304—recycle compressor K.O.drum.

    In the present work,an industrial hydro-isomerization process of C8-aromatics is studied,which is one of the important parts of PX join t process in a refinery.Its schematic diagram is shown in Fig.1. The raffinate(C8-aromatics with lean PX)from Eluxyl adsorption unit, together with the C8-naphtha and C8-paraffin(C8(N+P))fractions from recycle column T302 and hydrogen from recycle compressor C301,exchange heat in heat exchanger E301 with the effluent from reactor R301.Then the mixture is heated to its required temperature in heater F301 and introduced in to reactor R301,where a nonequilibrium mixture of C8-aromatics is converted in to a com position close to that in thermodynamic equilibrium.The reaction products are delivered to the separator d rum V301 after condensation in air condenser A301.The gas products from separate d rum V301 are utilized as recycle hydrogen while the liquid products are pumped into deheptanizer column T301.The components from the top of column T301,which are hydrocarbons lighter than heptane and C8(N+P), enter reflux drum V302 after condensation by air condenser A302, while a small amount of them flow s back to the top of column T301 and the rest is fed in to recycle column T302 for separation of light isomerate,C8(N+P).The light isomerate is pumped back to the isomerization reactor and the heavy isomerate from column T301 is fed to xylene fractionation unit for separation of heavy aromatics.The components from the top of the recycle column are condensed by condenser A303 and flow in to the reflux drum of recycle column T302.A small amount of them is delivered back to the top of T302,and the rest is pumped to the reforming stabilizer.

    3.2.Selection of input and output variables

    According to the kinetic analysis and industrial experience,many factors affect the isomerization process of C8-aromatics,such as reactor temperature(T),reactor pressure(Pt),weight hourly space velocity (WHSV),ratio of H2to hydrocarbons(CH2/HC),hyd rogen con ten t of recycle hydrogen(CH2),flow rate of feed(Q),and con ten t of PX,MX, OX,EB,C8(N+P),and other componen ts(denoted as A)in the feed [18].The partial pressu re of hydrogen p lays an important ro le in the isomerization reaction,expressed by

    where PH2is the hydrogen partial pressure,MPa;Ptis the reactor pressure,MPa;CH2is the hydrogen content of recycle hydrogen,%; and CH2/HCis the ratio of H2to hydrocarbons,m o l·m ol?1.

    The total feed of the reactor is com posed of two parts,the fresh feed from Eluxyl adsorption unit and the recycle feed from recycle column T302.Accordingly,the components of the total feed are the weighted results of the two parts

    where yi,yniand yciare the con ten t of total feed,fresh feed and recycle feed,respectively,%;Qt,Qnand Qcare the flow rate of total feed,fresh feed,and recycle feed,respectively,kg·h?1.

    Nine variables are selected as inputs of the model.The purpose of isomerization process is to obtain more PX,so the concentration of PX in the feed of deheptanizer column T301 is selected as the output. Accord ingly,the inputs and output of the model are determined and listed in Table 1.

    3.3.Process simulation and discussion

    3.3.1.Performance criteria for the model

    In order to demonstrate the efficiency of SMW-PLS method, three performance indices are introduced for evaluation,i.e.,prediction accuracy,capability to track the process trend and running time(t).Twostatistical criteria,average relative error of prediction(AREP)and relative root mean square error(RMSE),are used to assess the prediction performance of the inferential model,which are

    Table 1Input and output variables of the model

    where Nsis the number of validation samples,ykand^ykare the measured and prediction values,respectively.RMSE is also a performance index to evaluate the capability to track the trend of evolving process. And the running time is a measure of the real-time performance of the model.

    3.3.2.Model performance assessment

    732 data samples were collected continuously from an industrial hyd ro-isomerization process every 8 h per day in 2005.The first 60 samples are used as training set and the rest as validation set.For comparison,PLS,moving window recursive PLS(MW-RPLS)and moving window PLS(MW-PLS)are simulated in add it ion to the proposed SMW-PLS.In these models,the number of latent variables is set as 6.

    For PLS model,the first 60 samples are used to train the model.The parameters of the model are kept constant for the validation.Typical validation results are shown in Fig.2,where the predicted values are compared with the actual ones.The dashed and solid lines denote the measurements and model predictions,respectively.The relative prediction errors varying with time(represented by the number of collected samples)are also presented in Fig.2.For MW-RPLS model,the size of moving window(N)is set as 60.The oldest sample will be discarded once a new one is available.The model is updated through mean and variance of the data.The validation results are shown in Fig.3.For MW-PLS method,the size of moving window(N)is60.The first60 samples are used to train the model.When a new sample is introduced,the oldest sample will be omitted,and the model updating is activated by PLS.The simulation results are shown in Fig.4.As for the parameters in SMW-PLS model,their values are the same as those in MW-PLS model in add it ion to the threshold(δ)of 0.01.The model will be updated once the condition REk>δis satisfied.The validation results are demonstrated in Fig.5.

    Among the four PLS-based models,the prediction accuracy and tracking trend of the PLS are the worst.Other three models show better accuracy,with almost all the absolutely relative prediction errors smaller than2%.These results are attributed to the updating scheme.The intrinsic behavior of the process is reflected exactly by the dynamic models.

    Fig.2.Comparison between actual values and those predicted by the PLS model.

    Fig.3.Comparison between actual values and those predicted by the MW-RPLS model.

    Fig.4.Comparison between actual values and those predicted by the MW-PLSmodel.

    Fig.5.Comparison between actual values and predictions by the SMW-PLS model.

    Table 2Comparison of the performance criteria between the models

    The performance of these models can also be compared directly by ARPE,RMSE and t,as shown in Table 2.The precision of the PLS is worse than that of the other three models.Among the dynamic models, such asMW-RPLS,MW-PLSand SMW-PLS,the difference between their prediction errors is very slight except the case of δ=0.05 for SMW-PLS, while running time differs greatly.Especially,the running time for SMW-PLS is two orders of magnitude smaller than that of MW-PLS method.The proposed model reduces the running time greatly with a minor influence on the prediction accuracy.The advantage of the selective updating strategy is then presented.

    3.3.3.Determination of model parameters

    Three parameters,the size(length)of moving window,N,the number of latent variables,a,and the threshold,δ,need to be determined. The guidelines for appropriate values of these parameters are discussed below.

    For the SMW-PLS soft sensor,the effects of moving window size(N) and the number of latent variables(a)on the prediction performance are shown in Fig.6.More training samples may lead to more robust performance for PLS-based models as more historical information of the process is integrated.However,the weight of new sample may be reduced with more training samples.Hence the behavior of model, such as prediction accuracy,tracking ability and real-time performance, may be degraded.The window size is determined to minimize the estimation error for the validation dataset.In Fig.6,better performance can be found with the window size ranging from 40 to 80.And the number of latent variables is optimized with the same manner.As observed from Fig.6,the estimation error differs slightly with then umber ranging from 2 to 8.

    The effects of the two parameters on running time are investigated. The results are shown in Fig.7.More modeling samples and latent variables need more running time.In order to improve the real-time performance of the model,suitable window size and number of latent variables are suggested to be 60 and 6,respectively.

    Fig.6.The AREP with different window sizes and numbers of latent variables.

    Fig.7.The running time with different window sizes and numbers of latent variables.

    The predefined threshold,δ,is a com promising index between prediction accuracy and running time.With smaller value ofδ,more new samples are introduced and model updating is activated more frequently.In other words,smaller δ gives more accurate prediction but longer running time.The effect of threshold on the model performance is discussed and comparisons of the results are shown in Table 2(with N=60 and a=6).We can conclude that the prediction accuracy of model changes a little as δ increases from 0.01 to 0.03,while the running time is reduced from 0.04 s to 0.0051 s.The running time for=0.03 is almost one order of magnitude smaller than that forδ=0.01.However, forδ>0.03,the accuracy changes a lot,while the running time changes slightly.The SMW-PLS model presents its good real-time performance through regulating the threshold.In fact,determination of the threshold depends generally on the trade-off between prediction accuracy and running time.In practice,δis often chosen less than 0.05.

    4.Conclusions

    In this paper,a novel adaptive PLS-based model is proposed to deal with time-varying industrial process.Good performance of the SMWPLS method is shown by on-line prediction of PX content for a hydroisomerization process.Compared with other adaptive approaches,the running time of SMW-PLS model is decreased greatly by selective model adaptation.The strategy of selective updating will be activated when the prediction error is larger than the preset threshold.The proposed selective modeling scheme offers better adaptation performance and lower updating frequency than the previous methods.

    [1]S.Wold,Multi-way principal components and PLS-analysis,J.Chem ometr.l(1) (1987)41-56.

    [2]J.F.MacGregor,C.Jaeckle,C.Kiparissides,M.Koutoudi,Process monitoring and diagnosis by multiblock PLS methods,AIChEJ.40(5)(1994)826-838.

    [3]P.Facco,F.Dop licher,F.Bezzo,M.Barolo,Moving average PLS soft sensor for on line product quality estimation in an industrial batch polymerization process,J.Process Control19(3)(2009)520-529.

    [4]T.Komulainen,M.Sou rander,S.L.Jam sa-Jounela,An on line application of dynamic PLS to a dearom atization process,Com put.Chem.Eng.28(12)(2004)2611-2619.

    [5]H.J.Galicia,Q.P.He,J.Wang,Comparison of the performance of a reduced-order dynamic PLS soft sensor with different updating schemes for digester control, Control.Eng.Pract.20(8)(2012)747-760.

    [6]S.K.S.Fan,Y.J.Chang,Multiple-input multiple-output double exponentially weighted moving average controller using partial least squares,J.Process Control20(6)(2010) 734-742.

    [7]J.L.Godoy,J.R.Vega,J.L.Marchetti,A fault detection and diagnosis technique for multivariate processes using a PLS-de composition of the measurement space, Chemom.Intell.Lab.Syst.128(2013)25-36.

    [8]S.J.Qin,Survey on data-d riven industrial process monitoring and diagnosis,Annu. Rev.Control.36(2)(2012)220-234.

    [9]K.Helland,H.E.Berntsen,O.S.Borgen,H.Martens,Recursive algorithm for partial least squares regression,Chemom.Intell.Lab.Syst.14(1-3)(1992)129-137.

    [10]S.J.Qin,A recursive PLS algorithm for system identification,AIChEAnnual Meeting, St.Louis,USA,1993.

    [11]S.J.Qin,Recursive PLS algorithms for adaptive data modeling,Com put.Chem.Eng.22 (4-5)(1998)503-514.

    [12]J.Liu,D.S.Chen,J.F.Shen,Development of self-validating soft sensors using fast moving window partial least squares,Ind.Eng.Chem.Res.49(22)(2010)11530-11546.

    [13]S.Kim,R.Okajim a,M.Kano,S.Hasebe,Development of soft-sensor using locally weighted PLS with adaptive similarity measure,Che mom.Intell.Lab.Syst.124(2013) 43-49.

    [14]R.Liu,Some Studies on Soft Sensor Technology and Their Applications to Industry Process,(Ph.D.Thesis)Zhejiang University,Hangzhou,China,2004.(in Chinese).

    [15]S.Mu,Y.Zeng,R.Liu,P.W u,H.Su,J.Chu,On line dual updating with recursive PLS model and its application in predicting crystal size of purified terephthalic acid (PTA)process,J.Process Control16(6)(2006)557-566.

    [16]F.Ahm ed,S.Nazir,Y.Yeo,A recursive PLS-based soft sensor for prediction of the melt index during grade change operations in HDPE plants,Korean J.Chem.Eng. 26(1)(2009)14-20.

    [17]Y.H.Lee,M.Kim,Y.H.Chu,C.Han,Adaptive multivariate regression modeling based on model performance assessment,Chem om.Intell.Lab.Syst.78(2005)63-73.

    [18]O.Xu,X.Chen,Recu rsive PLS soft-sensor with moving window of fixed length and it commercial application,J.Chem.Eng.Chin.Univ.23(6)(2009)1044-1050 (in Chinese).

    ☆Supported by the National Natural Science Foundation of China(61203133, 61203072),and the Open Project Program of the State Key Laboratory of Industrial Control Technology(ICT1214).

    *Corresponding author.

    E-mailaddress:ogxu@zjut.edu.cn(O.Xu).

    热99久久久久精品小说推荐| 精品欧美一区二区三区在线| 91精品伊人久久大香线蕉| 国产精品1区2区在线观看. | 午夜老司机福利片| 大片免费播放器 马上看| 亚洲精品在线美女| 欧美午夜高清在线| 桃红色精品国产亚洲av| 亚洲国产精品一区三区| 秋霞在线观看毛片| 欧美激情 高清一区二区三区| 亚洲黑人精品在线| 国产男人的电影天堂91| 国产精品久久久久久精品电影小说| 久久精品国产a三级三级三级| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 男女高潮啪啪啪动态图| 777久久人妻少妇嫩草av网站| 国产精品久久久av美女十八| 亚洲一码二码三码区别大吗| 午夜成年电影在线免费观看| 侵犯人妻中文字幕一二三四区| 欧美97在线视频| 香蕉丝袜av| 日韩制服骚丝袜av| 日韩免费高清中文字幕av| 日韩欧美国产一区二区入口| 99国产综合亚洲精品| 午夜老司机福利片| 免费在线观看视频国产中文字幕亚洲 | 少妇被粗大的猛进出69影院| 亚洲国产精品一区二区三区在线| 各种免费的搞黄视频| 在线观看舔阴道视频| 亚洲专区中文字幕在线| 天天添夜夜摸| 亚洲成国产人片在线观看| 99久久99久久久精品蜜桃| 欧美亚洲日本最大视频资源| 性高湖久久久久久久久免费观看| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 新久久久久国产一级毛片| 久久女婷五月综合色啪小说| 一本—道久久a久久精品蜜桃钙片| 午夜91福利影院| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| www.精华液| a 毛片基地| 国产淫语在线视频| 日韩大码丰满熟妇| 亚洲国产精品一区三区| 成年av动漫网址| www.av在线官网国产| 69精品国产乱码久久久| 亚洲成人手机| 黑人巨大精品欧美一区二区蜜桃| 精品国产乱码久久久久久男人| 性少妇av在线| www日本在线高清视频| 国产在线观看jvid| 交换朋友夫妻互换小说| 久久午夜综合久久蜜桃| 天堂俺去俺来也www色官网| 国产91精品成人一区二区三区 | av天堂久久9| 99热全是精品| 日韩,欧美,国产一区二区三区| 国产av又大| 黄色a级毛片大全视频| 新久久久久国产一级毛片| 亚洲av电影在线进入| 久久这里只有精品19| 一区二区三区四区激情视频| 亚洲精品一区蜜桃| av网站免费在线观看视频| 午夜久久久在线观看| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 如日韩欧美国产精品一区二区三区| 天堂8中文在线网| 亚洲精品国产区一区二| 国产精品av久久久久免费| 亚洲av男天堂| www日本在线高清视频| 日韩精品免费视频一区二区三区| 亚洲av国产av综合av卡| 美女福利国产在线| 日韩 欧美 亚洲 中文字幕| 国产成人精品无人区| 最近中文字幕2019免费版| 亚洲av男天堂| 黄色视频在线播放观看不卡| 他把我摸到了高潮在线观看 | 国产一区二区 视频在线| 韩国高清视频一区二区三区| 一个人免费在线观看的高清视频 | 美女视频免费永久观看网站| 叶爱在线成人免费视频播放| 一级毛片电影观看| 伊人久久大香线蕉亚洲五| 日韩视频一区二区在线观看| 男女国产视频网站| 成年av动漫网址| 国产精品av久久久久免费| 亚洲综合色网址| 老司机在亚洲福利影院| 亚洲精品美女久久av网站| 免费在线观看黄色视频的| av在线播放精品| 欧美+亚洲+日韩+国产| 久久女婷五月综合色啪小说| 亚洲精品国产一区二区精华液| 国产日韩欧美视频二区| 国产精品二区激情视频| 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| www.999成人在线观看| 国产极品粉嫩免费观看在线| 老司机影院成人| 一区二区日韩欧美中文字幕| 男人操女人黄网站| 91精品伊人久久大香线蕉| av在线老鸭窝| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 在线亚洲精品国产二区图片欧美| 国产精品自产拍在线观看55亚洲 | 国产熟女午夜一区二区三区| 正在播放国产对白刺激| 亚洲九九香蕉| 在线看a的网站| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 亚洲av电影在线观看一区二区三区| 精品卡一卡二卡四卡免费| 在线观看www视频免费| 巨乳人妻的诱惑在线观看| 日韩三级视频一区二区三区| 狠狠婷婷综合久久久久久88av| 91国产中文字幕| 中文字幕色久视频| 精品国内亚洲2022精品成人 | 国产精品二区激情视频| 亚洲国产欧美在线一区| 欧美成人午夜精品| 久久人妻福利社区极品人妻图片| 国产高清国产精品国产三级| 97在线人人人人妻| 超色免费av| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久人妻精品电影 | 久久国产精品人妻蜜桃| 丁香六月天网| 成人手机av| 欧美日韩国产mv在线观看视频| 在线观看一区二区三区激情| 国产黄频视频在线观看| 亚洲欧美清纯卡通| 国产精品二区激情视频| 亚洲精品国产一区二区精华液| 久久久精品区二区三区| 成年美女黄网站色视频大全免费| 50天的宝宝边吃奶边哭怎么回事| 在线观看一区二区三区激情| 国产熟女午夜一区二区三区| 日韩 亚洲 欧美在线| 国产欧美日韩精品亚洲av| 老司机午夜十八禁免费视频| 亚洲精品第二区| 黄色视频不卡| 亚洲欧洲精品一区二区精品久久久| 久久久久久人人人人人| 大型av网站在线播放| 久久人人爽av亚洲精品天堂| 国产精品香港三级国产av潘金莲| 精品国产一区二区久久| 亚洲欧美日韩另类电影网站| 国产精品av久久久久免费| 伦理电影免费视频| 精品亚洲乱码少妇综合久久| 中文欧美无线码| 久久精品国产综合久久久| 精品人妻在线不人妻| 后天国语完整版免费观看| 一本大道久久a久久精品| 欧美激情 高清一区二区三区| 日韩制服骚丝袜av| 亚洲精品中文字幕在线视频| 伊人亚洲综合成人网| 一级毛片女人18水好多| 两个人免费观看高清视频| 18禁黄网站禁片午夜丰满| 亚洲午夜精品一区,二区,三区| 国产精品二区激情视频| 免费av中文字幕在线| 国产高清视频在线播放一区 | 丰满饥渴人妻一区二区三| 国产av精品麻豆| 欧美大码av| 97在线人人人人妻| av福利片在线| 777久久人妻少妇嫩草av网站| 欧美日韩中文字幕国产精品一区二区三区 | 日本一区二区免费在线视频| 秋霞在线观看毛片| 高清黄色对白视频在线免费看| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 午夜精品久久久久久毛片777| 久久精品亚洲熟妇少妇任你| 视频区欧美日本亚洲| 国产精品免费大片| 天天躁狠狠躁夜夜躁狠狠躁| 久久精品亚洲av国产电影网| 欧美日韩av久久| 国产三级黄色录像| 久久影院123| 女人高潮潮喷娇喘18禁视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产日韩欧美视频二区| 国产精品久久久久久人妻精品电影 | av不卡在线播放| 捣出白浆h1v1| 国产片内射在线| 午夜免费成人在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 人妻一区二区av| 国产欧美日韩综合在线一区二区| xxxhd国产人妻xxx| 美女视频免费永久观看网站| 19禁男女啪啪无遮挡网站| 后天国语完整版免费观看| 精品卡一卡二卡四卡免费| 欧美午夜高清在线| 国产成人啪精品午夜网站| 自线自在国产av| 国产黄色免费在线视频| 欧美性长视频在线观看| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 美女中出高潮动态图| 一区二区av电影网| 婷婷成人精品国产| a在线观看视频网站| 无限看片的www在线观看| 91麻豆精品激情在线观看国产 | 亚洲国产精品999| 狂野欧美激情性xxxx| 老汉色∧v一级毛片| 国产福利在线免费观看视频| 国产亚洲精品一区二区www | 久久精品国产亚洲av香蕉五月 | av福利片在线| 久久久久久免费高清国产稀缺| 精品免费久久久久久久清纯 | 制服人妻中文乱码| 成年动漫av网址| 国产精品秋霞免费鲁丝片| 啦啦啦啦在线视频资源| 在线看a的网站| 色播在线永久视频| 啦啦啦 在线观看视频| 国产成人啪精品午夜网站| 女人高潮潮喷娇喘18禁视频| 午夜老司机福利片| 18禁观看日本| 69av精品久久久久久 | 亚洲av男天堂| 99久久综合免费| 每晚都被弄得嗷嗷叫到高潮| 欧美激情 高清一区二区三区| 亚洲天堂av无毛| 亚洲欧美一区二区三区久久| 国产在线观看jvid| av超薄肉色丝袜交足视频| 久久久久久久久免费视频了| 日韩制服丝袜自拍偷拍| 51午夜福利影视在线观看| 多毛熟女@视频| 蜜桃国产av成人99| 国产精品.久久久| 首页视频小说图片口味搜索| 成年人午夜在线观看视频| kizo精华| bbb黄色大片| 国产精品国产三级国产专区5o| 69av精品久久久久久 | 日本欧美视频一区| 精品国产一区二区久久| 蜜桃国产av成人99| 亚洲熟女精品中文字幕| 美女国产高潮福利片在线看| 欧美午夜高清在线| 一级毛片电影观看| 亚洲精品一区蜜桃| 又大又爽又粗| 老司机影院成人| 欧美日韩亚洲综合一区二区三区_| xxxhd国产人妻xxx| 亚洲精品美女久久久久99蜜臀| 国产高清videossex| 日韩视频在线欧美| 久久久久视频综合| 欧美av亚洲av综合av国产av| 狂野欧美激情性xxxx| av天堂在线播放| 中文字幕人妻熟女乱码| 国产成人欧美| 午夜精品久久久久久毛片777| 久久人人爽人人片av| 男女免费视频国产| 色老头精品视频在线观看| 肉色欧美久久久久久久蜜桃| 亚洲专区字幕在线| 国产精品.久久久| 精品国内亚洲2022精品成人 | 久久久久久久大尺度免费视频| 这个男人来自地球电影免费观看| 国产亚洲av高清不卡| 国产成人精品久久二区二区91| 人妻人人澡人人爽人人| 久久中文字幕一级| av电影中文网址| 日韩视频一区二区在线观看| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 午夜免费鲁丝| 亚洲精品美女久久av网站| 91老司机精品| 亚洲成av片中文字幕在线观看| 欧美少妇被猛烈插入视频| 日本欧美视频一区| 美女扒开内裤让男人捅视频| 日韩电影二区| 黑人猛操日本美女一级片| 精品一区二区三卡| 中文字幕色久视频| 青春草视频在线免费观看| 少妇的丰满在线观看| 在线观看人妻少妇| 日韩大片免费观看网站| 国产亚洲精品第一综合不卡| 女人精品久久久久毛片| 亚洲欧美色中文字幕在线| 色婷婷av一区二区三区视频| tube8黄色片| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 热99re8久久精品国产| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 精品人妻1区二区| 性少妇av在线| 欧美精品高潮呻吟av久久| 一本色道久久久久久精品综合| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| 十八禁高潮呻吟视频| 操美女的视频在线观看| 极品少妇高潮喷水抽搐| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 久久久精品94久久精品| 宅男免费午夜| 午夜成年电影在线免费观看| 亚洲成人国产一区在线观看| 高潮久久久久久久久久久不卡| 美女高潮喷水抽搐中文字幕| 啦啦啦在线免费观看视频4| 在线天堂中文资源库| 啦啦啦在线免费观看视频4| 国产精品九九99| 黄色毛片三级朝国网站| 日韩三级视频一区二区三区| 99久久综合免费| 久久国产精品大桥未久av| 天天躁日日躁夜夜躁夜夜| 捣出白浆h1v1| 91大片在线观看| 日韩 欧美 亚洲 中文字幕| 操美女的视频在线观看| 亚洲 欧美一区二区三区| 国产精品熟女久久久久浪| 亚洲精品久久成人aⅴ小说| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| 捣出白浆h1v1| 麻豆国产av国片精品| 丰满饥渴人妻一区二区三| 亚洲精华国产精华精| 国产在视频线精品| 国产91精品成人一区二区三区 | 操美女的视频在线观看| 悠悠久久av| 国产色视频综合| 精品福利观看| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 99国产精品一区二区三区| kizo精华| 国产亚洲欧美精品永久| 欧美日韩黄片免| 一级片免费观看大全| 亚洲av成人一区二区三| 国产91精品成人一区二区三区 | 亚洲欧洲日产国产| 性色av一级| 亚洲人成电影观看| 国产精品国产三级国产专区5o| 91成年电影在线观看| 老司机午夜十八禁免费视频| 一区二区三区激情视频| 久久人妻福利社区极品人妻图片| 免费久久久久久久精品成人欧美视频| 日本欧美视频一区| 欧美成狂野欧美在线观看| 国产在视频线精品| 国产在线视频一区二区| 夜夜夜夜夜久久久久| 日韩制服丝袜自拍偷拍| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| 国产一卡二卡三卡精品| 亚洲国产av影院在线观看| 日韩一区二区三区影片| 国产一区二区三区在线臀色熟女 | 国产精品久久久久久精品电影小说| 亚洲男人天堂网一区| 欧美一级毛片孕妇| 动漫黄色视频在线观看| 欧美精品一区二区大全| 精品少妇内射三级| 日韩 欧美 亚洲 中文字幕| av福利片在线| 91精品伊人久久大香线蕉| 深夜精品福利| 欧美少妇被猛烈插入视频| 搡老岳熟女国产| 精品熟女少妇八av免费久了| 高清欧美精品videossex| 国内毛片毛片毛片毛片毛片| 成人18禁高潮啪啪吃奶动态图| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 亚洲精品自拍成人| 精品第一国产精品| 丝袜脚勾引网站| 国产福利在线免费观看视频| 丝袜美足系列| 亚洲人成77777在线视频| 啦啦啦在线免费观看视频4| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 国产一区有黄有色的免费视频| 免费观看a级毛片全部| 久久人人爽人人片av| 视频在线观看一区二区三区| 又紧又爽又黄一区二区| 一级,二级,三级黄色视频| 91九色精品人成在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲自偷自拍图片 自拍| 黄色视频不卡| 淫妇啪啪啪对白视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 建设人人有责人人尽责人人享有的| 嫁个100分男人电影在线观看| 精品国产超薄肉色丝袜足j| 国产色视频综合| 黄色 视频免费看| 男人操女人黄网站| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影 | 亚洲综合色网址| 国产成人系列免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品影院久久| 国产精品秋霞免费鲁丝片| 国产高清视频在线播放一区 | 黄色 视频免费看| 制服诱惑二区| 不卡一级毛片| 在线观看免费日韩欧美大片| 精品少妇一区二区三区视频日本电影| 母亲3免费完整高清在线观看| 欧美精品啪啪一区二区三区 | 国产精品 欧美亚洲| 美女中出高潮动态图| 人妻久久中文字幕网| 天天躁狠狠躁夜夜躁狠狠躁| 最新在线观看一区二区三区| 在线观看人妻少妇| 一本色道久久久久久精品综合| 十八禁高潮呻吟视频| 一区二区av电影网| 日韩欧美国产一区二区入口| 午夜老司机福利片| 久久精品国产a三级三级三级| 国产成人一区二区三区免费视频网站| 纯流量卡能插随身wifi吗| 国产av又大| 少妇粗大呻吟视频| 麻豆国产av国片精品| 亚洲国产欧美日韩在线播放| 别揉我奶头~嗯~啊~动态视频 | 制服诱惑二区| 美女视频免费永久观看网站| 成人黄色视频免费在线看| 黄色 视频免费看| 久久精品久久久久久噜噜老黄| 伊人久久大香线蕉亚洲五| 精品久久久久久电影网| 男人舔女人的私密视频| 精品国产一区二区久久| 涩涩av久久男人的天堂| 欧美黄色淫秽网站| 日韩视频在线欧美| 国产精品一区二区在线不卡| 美女高潮喷水抽搐中文字幕| 久久午夜综合久久蜜桃| 精品国产一区二区三区久久久樱花| 欧美精品亚洲一区二区| 亚洲国产av新网站| 午夜福利一区二区在线看| 丁香六月欧美| 欧美精品一区二区大全| 亚洲 国产 在线| 亚洲欧洲日产国产| 久久女婷五月综合色啪小说| 亚洲精品第二区| 99久久精品国产亚洲精品| 国产一卡二卡三卡精品| 亚洲精品国产av成人精品| 国产黄频视频在线观看| 国产成人系列免费观看| 国产99久久九九免费精品| 高清黄色对白视频在线免费看| 欧美 日韩 精品 国产| 国产男人的电影天堂91| www.av在线官网国产| 老司机在亚洲福利影院| 国产麻豆69| 91麻豆精品激情在线观看国产 | 精品亚洲成a人片在线观看| 亚洲欧洲精品一区二区精品久久久| 国产一区二区三区在线臀色熟女 | 性少妇av在线| 午夜福利,免费看| 不卡av一区二区三区| 国产精品av久久久久免费| 国产精品一二三区在线看| 最新在线观看一区二区三区| 国产精品二区激情视频| 男人爽女人下面视频在线观看| 99香蕉大伊视频| 丝袜喷水一区| 久久青草综合色| 伊人亚洲综合成人网| 老熟女久久久| 正在播放国产对白刺激| 中文字幕另类日韩欧美亚洲嫩草| 婷婷成人精品国产| 日本猛色少妇xxxxx猛交久久| 午夜福利免费观看在线| 国产日韩欧美视频二区| 日韩中文字幕视频在线看片| 亚洲精品粉嫩美女一区| 黄色视频在线播放观看不卡| 日韩一卡2卡3卡4卡2021年| 欧美黄色片欧美黄色片| 国产老妇伦熟女老妇高清| 午夜精品久久久久久毛片777| 日韩欧美一区视频在线观看| 亚洲色图综合在线观看| 久久免费观看电影| 91成人精品电影| 人人澡人人妻人| 欧美在线一区亚洲| 人人妻,人人澡人人爽秒播| 国产精品一区二区免费欧美 | 国产一级毛片在线| 美女扒开内裤让男人捅视频| 久久国产精品大桥未久av| 另类精品久久| 欧美中文综合在线视频| 久久国产精品大桥未久av| 另类精品久久| 亚洲欧洲日产国产| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 欧美另类一区| 狠狠婷婷综合久久久久久88av| 欧美 日韩 精品 国产| 高清在线国产一区| 免费女性裸体啪啪无遮挡网站| 老熟妇仑乱视频hdxx| 国产成人啪精品午夜网站| 美女脱内裤让男人舔精品视频| 丝袜在线中文字幕| 精品一区在线观看国产| 国产伦人伦偷精品视频| 成年av动漫网址| 欧美久久黑人一区二区| 国产精品久久久久久人妻精品电影 | 精品国产一区二区三区四区第35| 国产成人精品久久二区二区免费| 中文欧美无线码| 日韩欧美一区视频在线观看| 夜夜骑夜夜射夜夜干| 久久久国产成人免费|