• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Composite Model Predictive Control Strategy for Furnaces

    2014-07-17 09:10:21HaoZangHongguangLiJingwenHuangJiaWang

    Hao Zang,Hongguang Li*,Jingwen Huang,JiaWang

    Automation Department,Beijing University of Chemical Technology,Beijing 100029,China

    A Composite Model Predictive Control Strategy for Furnaces

    Hao Zang,Hongguang Li*,Jingwen Huang,JiaWang

    Automation Department,Beijing University of Chemical Technology,Beijing 100029,China

    A R T I C L E I N F O

    Article history:

    Received 15 June 2013

    Received in revised form 20 November 2013 Accepted 29 December 2013

    Available on line 19 June 2014

    Furnace

    Tracking nonlinear model predictive control

    Economic nonlinear model predictive control

    Distributed model predictive control

    Tube furnaces are essential and primary energy in tensive facilities in petrochemical plants.Operational optimization of furnaces could not only help to improve product quality but also benefit to reduce energy consumption and exhaust emission.Inspired by this idea,this paper presents a composite model predictive control(CMPC) strategy,which,taking advantage of distributed model predictive control architectures,combines tracking nonlinear model predictive control and economic nonlinear model predictive control metrics to keep process running smoothly and optimize operational conditions.The controllers connected with two kinds of communication net works are easy to organize and maintain,and stable to process interferences.A fast solution algorithm combining interior point solvers and New ton's method is accommodated to the CMPC realization,with reasonable CPU computing time and suitable on line applications.Simulation for industrial case demonstrates that the proposed approach can ensure stable operations of furnaces,improve heat efficiency,and reduce the emission effectively.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Nowadays,oil energy be com es increasingly scarce and the amount of greenhouse gas emissions is getting huge.Technological improve ments of control strategies for petroleum refining plantsare recognized as potentially effective solutions.Practically,heating various hydrocarbon compounds by burning fuels,tube furnaces consume a significant amount of energy and generate huge exhaust emission.It is reported that two ways are available to improve operational conditions of tube furnaces.One is to maintain or rep lace old production facilities such as using high efficient heat exchange systems,insulation walls and burners,which is no doubt rather expensive and time consuming[1]. Another is to apply advanced control strategies,which can effectively increase thermal efficiencies of furnaces by the optimization of operation condition.

    Kalogirou[2]applied artificial intelligence methods in combustion processes.Mercedes[3]introduced fuzzy cascade control to furnace outlet temperature and achieved good results.Th rough experiments and case study,Lee and Jou[4,5]presented numerical relationship of flue gas residual oxygen concentration,air preheat temperature and furnace thermal efficiency,pointing out that appropriate excess air oxygen concentration and air preheat temperature can reduce fuel consumption and pollution emissions.Lu et al.[6]proposed an intelligent self-searching optimization algorithm for thermal efficiency,giving satisfactory simulations.However,existing optimization methods concerning the thermal efficiency of furnace are usually insensitive to process disturbances,easily leading to malfunctions,or even causing accidents,which discourage their applications.

    Being capable of dealing with process dynamics and constraints for multi-input and multi-output systems,nonlinear model predictive control(NMPC)has been widely circulated in academia and industry[7-9]. Tracking nonlinear model predictive control(TNMPC)is commonly used to formulate target tracking problems,in which the cost functions are assumed to be positive definite with respect to a certain set-point or trajectory to be tracked.However,this basic assumption does not hold for all cases,particularly for optimizing process economic objectives [10].In response,economic nonlinear model predictive control (ENMPC)approaches have been developed,where generic cost functions are used instead.TNMPC demonstrates good dynamic performance and robustness in strongly nonlinear systems such as furnace, but in the absence of optimization in formation in objective functions, its applications are limited to the traditional two-layer control structure (real-time optimization+model predictive control).In this context, ENMPC is rather competent but suffers complex optimization models, longer control cycles,and slow response to perturbations.Novel control structures for both product qualities and economic objectives are demanded.

    Taking advantage of distributed model predictive control(DMPC), communications between different NMPC strategies can be established. Several DMPC methods[11-13]have been circulated in literature, though most relevant articles only highlight DMPC schemes conceptually.Motivated by these observations,this paper introduces a CMPC strategy involving TNMPC and ENMPC based on rigorous nonlinear mathematical models,which is easy to implement,enjoys good stability, and optimizes quickly strongly nonlinear constrained complex systems.The CMPC strategy is compared with conventional control performance through an industrial example.

    2.Furnace Models

    Furnaces are recognized as one of the most crucial facilities in petrochemical plants,which heat hydrocarbon mixtures rapidly to a desired temperature by the combustion of fuel gas or exhaust gas. Fig.1 shows a schematic of a vertical furnace with a radiation chamber and a convection chamber.

    To formulate generic first-principle dynamic models of furnaces,the following assumptions are made.

    (1)Flue gas and process variables distribute uniformly in the chambers.

    (2)The furnace is a multi-fuel(fuel gas and exhaust gas)burning stove.

    (3)Heat loss is negligible.

    (4)Flue gas temperature in the convection chamber equals that in the radiation chamber and distributes uniformly.

    (5)The mole change of vapor during combustion is negligible.

    Models for furnace temperature are based on the feed energy balance of fuel gas,exhaust gas and flue gas at the outlet,respectively,U is the average heat transfer coefficient,A is the heat transfer area of furnace,QLmfrep resents the low heating value of mixed fuel,γrepresents the combustion rate of mixed fuel,andαis the excess air coefficient.Heat capacities ρfVfCfand ρfgVfgCfgare ad justed by correcting factors to fit the real time trend.The parameters are obtained by using equipment dimensions and fitting to measurement data.

    where Kgand Kegdenote low heating value coefficients of fuel gas and exhaust gas.

    Dynamic characteristics of the fuel gas circuit is

    where τgis the time constant of fuel gas circuit,and Fs,gis the set-points of Fg.

    Models for furnace flue gas and air system are as follows

    where Cpand COare the capacity factor of the chamber at negative pressure and residua lO2of flue gas,respectively,P is the chamber negative pressure,Ofgis the residua lO2concentration of flue gas,Fais the volumetric flow rate of air,and Amfis the theoretical air-fuel ratio of mixed fuel,which can be calculated as follows.

    where ρf,Vfand Cfare the density,volume and specific heat of the feed in tubes,respectively,ρfg,Vfgand Cfgare those of the flue gas in the chamber,Ti,f,To,f,Tfg,and To,fgare the temperatures of feed at the inlet and outlet,flue gas in the chamber,and flue gas at the outlet,respectively,Fg,Feg, and Fo,fgare temperature-pressure compensated volumetric flow rates

    Fig.1.A simplified schematic of furnaces.

    where Agand Aegare the theoretical air-fuel ratio to fuel gas and exhaust gas,respectively,Frgand Fregare the volume fractions of fuel gas and exhaust gas,respectively,and Yjis the volume fraction of material j in the vapor fuel.

    In addition,we have the model for air preheater

    where Vapis the volume of flue gas in the air preheater,Uapand Aapstand for the average heat transfer coefficient and area of air preheater, respectively,and Ti,ais the temperature of the inlet air.

    Thermal efficiency of the furnace is evaluated by

    Substituting Eqs.(1)and(2)in to Eq.(12),we have

    where η is the thermal efficiency of furnace and Q is the furnace load.

    3.CMPCApp roaches

    3.1.Control strategies

    Recently,the combination of optimization techniques and NMPC be comes a hot research topic.For instance,a two-layer architecture presents several advantages and has extensive applications,which involves a control layer and an optimization layer associated with different time scales in a plant[14-18].The NMPC locates at the control layer accounting for multi-variable coordination and constraint treatments, while a real-time optimization(RTO)system using steady-state models locates at the optimization layer to provide optimum set-points for NMPC loops.However,applications of this method are usually limited by unreachable set-points,in feasible soft-constraints and other in tractable issues.In response to these difficulties,some researchers have introduced a one-layer approach term ed economic model perceive control to rep lace the quadratic tracking cost function.Several merits of this approach over conventional methods have been demonstrated, such as responding quickly to disturbances,implementing constraints effectively with measured variables,avoiding inconsistencies of models and using full manipulating degrees for optimizations,even during process transients[19-21].

    In this context,the CMPC strategy can be regarded as a novel NMPC method concerning both the stability and economic performance.It is also recognized as a distributed architecture composed of TNMPC and ENMPC formulations,as shown in Fig.2,where TNMPC ones are connected by a bidirectional communication network(network 1) and ENMPC ones are connected by an unidirectional communication network(network 2).The in form ation in network 1 is delivered to network 2 through an alternative unidirectional communication network (network 3).TNMPC formulations calculate a group of optimization input trajectories through an iteration algorithm,while each ENMPC one evaluates the input trajectory separately in sequence.The number of TNMPC controller,n,and that of ENMPC ones,m,are assigned according process specifications.

    An implementing procedure of the CMPC strategy is as follows.

    Step 1 At time tk,all TNMPC and ENMPC controllers receive measurement χ(tk)from process sensors.

    Step 2 For i=1 to m+1

    2.1 If i>1,go to Step 2.5.

    2.2 At iteration j(j≥1),each TNMPC controller evaluates its ow n future input trajectory based onχ(tk)and the latest received input trajectories of all other TNMPC ones(u1,…,un)from network 1.

    2.3 The controllers calculate their values of objective functions based on their future input trajectories received from network 1 and pass back to network 1.

    2.4 If a terminating condition is satisfied,each controller delivers its future input trajectories corresponding to the smallest value of the cost function to the system,otherwise go to Step 2.2 for a next iteration(j←j+1).

    2.5 ENMPC i receives the entire future input trajectories of ui(i=1, 2,…,n)from network 3 and ui(i=n+1,…,n+i?2)fromnetwork 2.Based on the received future input trajectories it evaluates the future input trajectory.

    Fig.2.The CMPC architecture.

    2.6 ENMPC i sends the first step input value of uito the system and the entire future input trajectories of ui(i=n+1,…,n+i?1) to network 2.

    Step 3 When a new measurement is received,set k=k+1,go to Step 1.

    3.2.CMPC details

    In regard to the furnace,CMPCin tends to stabilize the outlet temperature,chamber negative pressure and improve the thermal efficiency with reducing energy consumption and exhaust emission.To facilitate the discussion,we present the CMPC strategy for the furnace in Fig.3. The CMPC architecture is made of two TNMPC and one ENMPC controllers,where TNMPC controllers connected by network 1 controlling the feed outlet temperature and the chamber negative pressure,while the ENMPC strategy is used to optimize the furnace thermal efficiency. Network 1 is a bidirectional communication network for the storage of future input trajectories and cost functions calculated by TNMPC controllers,and network 2 is a unidirectional communication network used to deliver the input trajectories to ENMPC.

    Fig.3.The CMPCscheme of furnaces.

    With conventional NMPC,the control law is obtained by rolling optimization in the context of exact process models,in which nonlinear programming(NLP)or intelligent optimization algorithm s are employed to solve the following nonlinear equations pertaining to a specific dynamic optimization problem. where t is the scalar time dimension,N is the horizon length,χ(t)is a vector of state variables,y(t)is a vector of output variables,and u(t)is a vector of manipulated variables.Eqs.(14b)-(14c)give rigorous description of the plant,and Eqs.(14d)-(14 f)are bound constraints for the states,output and manipulated variables,respectively.

    Similarly,the objective functions and control structures involved in CMPC strategies can be represented as follows.

    The objective function of TNMPC 1 is

    where To,f(t)is controlled variables and Ts,f(t)is the set-point of feed outlet temperature.Detailed descriptions associated with TNMPC1 are illustrated in Table 1.

    The objective function of TNMPC2 is where P(t)is the chamber negative pressure and Ps(t)is the set-point of the chamber negative pressure.Detailed descriptions associated with TNMPC 2 are illustrated in Table 2.

    ENMPC is recognized as a dynamic real time optimization(D-RTO) techno logy,which uses a one-layer structure instead of a traditional two-layer optimized control structure with a RTO layer and a MPC layer.It can not only overcome some of the problems stemmed from the two-layer structure such as unreachable set-points,but also respond quickly and operate optimally.For the furnace,the ENMPC is utilized to optimize thermal efficiency.

    It is reported that thermal efficiency is mainly affected by outlet temperature and residua lO2concentration of flue gas,and it is difficult to express their relationship in an analytical model.This paper presents and solves a new economic objective function to optimize the thermal efficiency indirectly.

    The objective function of ENMPC 1 is

    where Oref,fgis the reference values of flue gas residua lO2concentration given by the operation experience,and Yeand Uedenote weights specified as100 and 10,respectively.The detailed descriptions of ENMPC 1 are illustrated in Table 3.

    3.3.CPMC solutions

    Apparently,solving the optimization problem characterized by the first-principle dynamic models of CMPC is rather complicated,especially for those of ENMPC,which inevitably suffers very long CPU time.In order to meet on line requirements of CMPC,a fast solving strategy [21-23]for dynamic optimization problems is strongly advisable.In w hat follows,we incorporate the interior point solver(IPOPT)algorithm with New ton's method to deal with the dynamic optimization of CMPC.

    Table 1In formation about TNMPC 1

    Table 2In formation about TNMPC 2

    In this sense,Eq.(16)can be expressed asa general parametric NLP problem of the form

    with variable w,objective function F,constrain t function c,and parameter p.Notice the implicit dependence of variables on a particular value of parameter.In the context of NMPC,this parameter is the initial condition χ(k).IPOPT handles the bound constraints implicitly through logarithmic barrier term s added to the objective function[23],

    where μ>0 is a barrier parameter and wi(p)denotes the ith component of vector w(p).The solution of Eqs.(19a)and(19b)converges to the solution of the original NLP(Eqs.(18a),(18b)and(18c))as the barrier parameter approaches zero.

    To solve each barrier problem,IPOPT applies New ton's method to the Karush-Kuhn-Tucker(KKT)conditions,which result in following large-scale linear system[23]solved at each iteration j

    where λ and ν are the Lagrange multipliers for the equality constraints and bounds,respectively,H:=H(w(p),p)is the Hessian of the Lagrange function L=F(w(p),p)+c(w(p),p)Tλ(p)?v(p)Tw(p),A:=A(w(p),p) is the constrain t Jacobian,Z:=diag(w(p)),and V:=diag(ν(p)).Because the KKT matrix on the left hand side of Eq.(20)is identical to the New ton iteration matrix used in IPOPT,which is already available in factorized form.Hence,once the new state w(p)is known,the change p0→p is noted and the desired approximate solution can be obtained with a single on-line solver.This on-line step usually requires less than 1%of the dynamic optimization calculation.

    Table 3Information about ENMPC

    4.Case Study

    Dynamic models of an industrial furnace with 6.430×107kJ·h-1rated load,4-inlet and 4-outlet feeds are built in the HYSYS environment.Two cases with different disturbances are used to demonstrate the performance of CMPC strategy.For comparison,we apply the traditional control strategy,centralized ENMPC and CMPC strategies.In the traditional control structure,the control layer utilizes PID control strategy to ad just the outlet temperature and residua lO2concentration of flue gas.In the CMPC strategy,thermal efficiency is the goal of optimization,with the flow rate of fuel gas,F.D.fan and I.D.fan as the manipulated variables.For this example we specify 10 sampling time in the tracking predictive horizon and 20 sampling time in the economic predictive horizon.The differential algebraic equation model is transformed to a dscrete time model using collocation.

    4.1.Step changes

    The furnace starts from a nominal steady-state.At t=1 min,feed flow rate is reduced from 400 t·h-1to 320 t·h-1instantaneously and goes back to the original value at t=11m in.Fig.4 presents the profiles of the outlet temperature,thermal efficiency,residua lO2concentration and furnace negative pressure with different control strategies.After the step change of feed flow rate,the outlet temperature deviates from the set-point value,the thermal efficiency is lower,and the relevant para meters gradually go back to the normal state aft era period of time.For the control effect of key variables,CMPC controller yields very good sensitivity approximations,while the other two control strategies have poor dynamic performance.For the optimization of thermal efficiency, CMPC controller and centralized ENMPC controller are much betterthan PID controller.Thus the CMPC controller presents good control performance and optimization performance despite relatively large disturbances.

    Fig.4.Controlled variable profiles.Dot-dashed line:centralized ENMPC;dashed line: traditional control;solid line:CMPC.

    4.2.Ram p changes

    The furnace runs smoothly at t=0;at t=1~2m in,feed flow rate is reduced from 400 t·h-1to 320 t·h-1through a ram p change;at t=11~12m in it recovers to the original value.Assuming no additional immeasurable disturbances involved,we apply PID and CMPC strategies.

    Fig.5 presents profiles of the outlet temperature and the thermal efficiency with different control strategies.When the feed flow rate changes the control target suffers substantial shocks.After the flow rate recovers,the optimized parameters change little for all control strategies.The objectives demonstrate small amplitudes with the CMPC strategy,so the furnace runs relatively smoothly.

    In industrial processes,the residua lO2concentration cannot achieve closed-loop control due to various reasons.Since manual operation does not always ad just air flow rate for frequently varying load,operators often give an air volume much larger than that needed,wasting large amounts of energy.

    5.Conclusions

    A majority of study on furnace operation optimization deals with energy shortages and environmental pollutions,but the strong nonlinearity and heavy uncertainty associated with furnace control greatly discourage the application of PID and conventional nonlinear model predictive control strategies.Thus we develop a CMPC control strategy combining TNMPC and ENMPC approaches.Simulations demonstrate good control performance in reducing energy consumption and pollution emissions.

    Fig.5.Controlled variable profiles.Dot-dashed line:centralized ENMPC;dashed line: traditional control;solid line:CMPC.

    Nevertheless,it is still a challenge to deal with more complicated processes involving process uncertainty or model inaccuracy as well as soft constraints,which provides a guideline for our future work.Industrial applications of the proposed approaches are expected.

    Nomenclatu re

    A average heat transfer area of furnace,m2

    Aapaverage heat transfer area of air preheater,m2

    Aegtheoretical air-fuel ratio of exhaust gas

    Aftheoretical air-fuel ratio

    Agtheoretical air-fuel ratio of fuel gas

    Amftheoretical air-fuel ratio of mixed fuel

    Cfspecific heat of feed,k J·kg?1·k?1

    Cfgspecific heat of flue gas,k J·kg?1·k?1

    COcapacity factor of flue gas residua lO2

    Cpcapacity factor of the chamber negative p ressu re

    Favolumetric flow rate of air,m3·s?1

    Fegvolumetric flow rate of exhaust gas,m3·s?1

    Fgvolumetric flow rate of fuel gas,m3·s?1

    Fo,fgvolumetric flow rate of flue gas at the outlet,m3·s?1

    Fs,gset-point of Fg,m3·s?1

    Fregvolumetric fraction of exhaust gas

    Frgvolume fraction of fuel gas,m3·s?1

    Ofgflue gas residua lO2concentration

    P chamber negative pressure,kPa

    Q furnace load,k J·s?1

    QLmflow heating value of mixed fuel,k J·s?1

    Tfgtemperature of flue gas in the chamber,K

    Ti,atemperature of air at the inlet

    Ti,ftemperature of feed at the inlet,K

    To,ftemperature of feed at the outlet,K

    To,fgtemperature of flue gas at the outlet,K

    U average heat transfer coefficient of furnace

    Uapaverage heat transfer coefficient of air preheater

    Vfvolume of feed,m3

    Vfgvolume of flue gas,m3

    Yjvolume fraction of material j in vapor fuel

    α excess air coefficient

    γ combustion rate of mixed fuel

    τgtime constant of fuel gas circuit,s

    η thermal efficiency of furnace

    ρfdensity of feed,kg·m?3

    ρfgdensity of flue gas,kg·m?3

    [1]Z.Jegla,P.Steh l?k,J.Kohoutek,Plant energy saving through efficient retrofit of furnaces,Appl.Therm.Eng.20(15-16)(2000)1545-1560.

    [2]S.A.Kalogirou,Artificial intelligence for the modeling and control of combustion processes:a review,Prog.Energy Com bust.Sci.29(6)(2003)515-566.

    [3]M.Ram?rez,Fuzzy control of a multiple hearth furnace,Com put.Ind.54(1)(2004) 105-113.

    [4]C.Lee,C.G.Jou,Saving fuel consumption and reducing pollution emissions for industrial furnace,Fuel Process.Technol.92(12)(2011)2335-2340.

    [5]C.Lee,C.G.Jou,Improving furnace and boiler cost-effectiveness and CO2em ission by ad justing excess air,Environ.Prog.Sustain.Energy 31(1)(2012)157-162.

    [6]Wenxiang Lu,Xiaoyong Gao,Dexian Huang,Research on intelligentoptim alcontrol of therm alefficiency of furnace,Chin.J.Sci.In strum.35(8)(2009)2335-2340.

    [7]A.Willersrud,Short-term production optimization of offshore oil and gas production using nonlinear model predictive control,J.Process Control23(2)(2013)215-223.

    [8]D.Q.Mayne,Constrained model predictive control:stability and optimality, Automatica 36(6)(2000)789-814.

    [9]S.J.Qin,T.Badg well,in:F.Allg?wer,A.Zheng,F.Allg?wer,A.Zheng(Eds.),An Overview of Non linear Model Predictive Contro l Applications,Birkh?user,Basel,2000, pp.369-392.

    [10]Y.Wang,D.Huang,Y.Jin,A hybrid model predictive control for hand ling in feasibility and constraint prioritization,Chin.J.Chem.Eng.(02)(2005)65-71.

    [11]R.Scattolini,Architectures for distributed and hierarchical model predictive control—a review,J.Process Control19(5)(2009)723-731.

    [12]P.D.Christofides,Distributed model predictive control:a tutorial review and future research directions,Com put.Chem.Eng.51(2013)21-41.

    [13]X.Chen,Distributed economic MPC:application to a nonlinear chemical process network,J.Process Control 22(4)(2012)689-699.

    [14]L.Würth,R.Hannemann,W.Marquard t,A two-layer architecture for economically optimal process control and operation,J.Process Control21(3)(2011)311-321.

    [15]V.Adetola,M.Guay,Integration of real-time optimization and model predictive control,J.Process Control20(2)(2010)125-133.

    [16]M.Heidarinejad,J.Liu,P.D.Christofi des,Economic model predictive control of nonlinear process systems using Lyapunov techniques,AIChE J.58(3)(2012)855-870.

    [17]M.Ellisa,P.D.Christ of ides,Integrating dynamic economic optimization and model predictive control for optimal operation of nonlinear process systems,Control.Eng. Pract.22(10)(2013).

    [18]Wenxiang Lu,Ying Zhu,Dexian Huang,Yihui Jin,A new strategy of integrated control and on-line optimization on high-purity distillation process,Chin.J.Chem.Eng. 18(1)(2010)66-79.

    [19]A.Gopalakrishnan,L.T.Biegler,Economic nonlinear model predictive control for periodic optimal operation of gas pipeline networks,Com put.Chem.Eng.52(2013)90-99.

    [20]M.A.Müller,D.Angeli,F.Allg?wer,Economic model predictive control with selftuning terminal cost,Eur.J.Control.19(5)(2013).

    [21]R.Huang,E.Harinath,L.T.Biegler,Lyapunov stability of economically oriented NMPC for cyclic processes,J.Process Control21(4)(2011)501-509.

    [22]Bo Li,Xuefang Lin-Shi,B.Allard,J.-M.Retif,A digital dual-state-variable predictive controller for high switching frequency buck converter with improved Σ-Δ DPWM,IEEETrans.Ind.Inform.8(3)(Aug.2012)472-481.

    [23]R.Huang,V.M.Zavala,L.T.Biegler,Advanced step nonlinear model predictive control for air separation units,J.Process Control 19(4)(2009)678-685.

    *

    .

    E-mailaddress:lihg@m ail.buct.edu.cn(H.Li).

    中文字幕人妻熟女乱码| 国产欧美亚洲国产| 2022亚洲国产成人精品| 国产男人的电影天堂91| 一级毛片我不卡| 国产精品蜜桃在线观看| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 亚洲久久久国产精品| 午夜福利网站1000一区二区三区| 国产国拍精品亚洲av在线观看| 亚洲,一卡二卡三卡| 国产精品久久久久久精品电影小说| 久久久久久人妻| 伦精品一区二区三区| a级毛片在线看网站| 国产欧美另类精品又又久久亚洲欧美| 最近手机中文字幕大全| 国产一区有黄有色的免费视频| 国产高清不卡午夜福利| 一本—道久久a久久精品蜜桃钙片| 亚洲 欧美一区二区三区| 51国产日韩欧美| 巨乳人妻的诱惑在线观看| 夫妻性生交免费视频一级片| 成人国产av品久久久| 大香蕉久久网| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 欧美日韩av久久| 一级爰片在线观看| 亚洲第一区二区三区不卡| 一区二区av电影网| 性色avwww在线观看| 中文字幕免费在线视频6| 欧美日本中文国产一区发布| 26uuu在线亚洲综合色| 观看美女的网站| 一边摸一边做爽爽视频免费| 色5月婷婷丁香| 亚洲精品自拍成人| 欧美另类一区| 三级国产精品片| 国产av一区二区精品久久| 久久99一区二区三区| 一级毛片 在线播放| 久久韩国三级中文字幕| 国产在线一区二区三区精| 伦理电影大哥的女人| 国产黄频视频在线观看| 国产av国产精品国产| 亚洲成人一二三区av| 亚洲精品一二三| 国产极品天堂在线| 色视频在线一区二区三区| 三级国产精品片| a级片在线免费高清观看视频| 久久久久久久久久久久大奶| 国产亚洲最大av| 欧美精品亚洲一区二区| 久久狼人影院| 午夜日本视频在线| 中国国产av一级| 侵犯人妻中文字幕一二三四区| 青春草视频在线免费观看| 精品熟女少妇av免费看| 免费久久久久久久精品成人欧美视频 | 久久国产亚洲av麻豆专区| 欧美亚洲日本最大视频资源| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品久久久久成人av| 欧美精品高潮呻吟av久久| 熟女电影av网| 精品一区在线观看国产| 999精品在线视频| 亚洲精品美女久久av网站| 久久精品国产自在天天线| 日本av手机在线免费观看| 啦啦啦啦在线视频资源| 夫妻性生交免费视频一级片| 日本vs欧美在线观看视频| 午夜老司机福利剧场| 亚洲精品一区蜜桃| 最近最新中文字幕大全免费视频 | 亚洲精品久久久久久婷婷小说| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 国产成人一区二区在线| 极品人妻少妇av视频| 人妻人人澡人人爽人人| 久热这里只有精品99| 成人毛片a级毛片在线播放| 大片电影免费在线观看免费| a级毛色黄片| 亚洲,欧美精品.| 超色免费av| 精品第一国产精品| 中文字幕亚洲精品专区| 精品熟女少妇av免费看| 国产高清国产精品国产三级| 成年av动漫网址| 成人亚洲精品一区在线观看| 777米奇影视久久| 久久久久精品性色| 精品少妇黑人巨大在线播放| 一级毛片 在线播放| www日本在线高清视频| 成人综合一区亚洲| 丝袜人妻中文字幕| 91精品国产国语对白视频| 九九爱精品视频在线观看| 久久女婷五月综合色啪小说| 少妇的丰满在线观看| 老司机亚洲免费影院| 精品视频人人做人人爽| 视频在线观看一区二区三区| 日日摸夜夜添夜夜爱| 亚洲国产精品国产精品| 午夜福利网站1000一区二区三区| 久久久久久久精品精品| 久久久久久久亚洲中文字幕| 免费高清在线观看视频在线观看| 高清不卡的av网站| 国产精品麻豆人妻色哟哟久久| 人成视频在线观看免费观看| 久久久久人妻精品一区果冻| 如何舔出高潮| 免费观看av网站的网址| 国产成人av激情在线播放| 婷婷成人精品国产| 成年美女黄网站色视频大全免费| 欧美精品av麻豆av| 熟妇人妻不卡中文字幕| 高清黄色对白视频在线免费看| 精品一区在线观看国产| 女的被弄到高潮叫床怎么办| 免费av不卡在线播放| 成人国语在线视频| 99热6这里只有精品| 日本黄色日本黄色录像| 99热网站在线观看| 日韩 亚洲 欧美在线| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 王馨瑶露胸无遮挡在线观看| 久久精品aⅴ一区二区三区四区 | 桃花免费在线播放| 久久久久国产精品人妻一区二区| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 午夜91福利影院| 巨乳人妻的诱惑在线观看| 18在线观看网站| 国产成人免费无遮挡视频| 亚洲少妇的诱惑av| a级毛片在线看网站| 久久久久久久精品精品| 国产免费又黄又爽又色| 午夜av观看不卡| 热re99久久国产66热| tube8黄色片| 一级片免费观看大全| xxxhd国产人妻xxx| 国产成人精品一,二区| 日韩一本色道免费dvd| 亚洲 欧美一区二区三区| 在线观看人妻少妇| 在线观看免费日韩欧美大片| 热re99久久国产66热| 亚洲国产看品久久| 欧美人与性动交α欧美精品济南到 | 夫妻午夜视频| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 国产男人的电影天堂91| 国产69精品久久久久777片| 色94色欧美一区二区| 又粗又硬又长又爽又黄的视频| 少妇 在线观看| 在线天堂中文资源库| 女人精品久久久久毛片| 侵犯人妻中文字幕一二三四区| 看免费成人av毛片| 国产精品免费大片| 美女视频免费永久观看网站| 伊人亚洲综合成人网| 黄片播放在线免费| 国产日韩欧美在线精品| 国产精品偷伦视频观看了| 一二三四中文在线观看免费高清| 成年女人在线观看亚洲视频| 菩萨蛮人人尽说江南好唐韦庄| 老司机亚洲免费影院| 久久久久久久久久成人| 成人国产麻豆网| 久久韩国三级中文字幕| 老熟女久久久| 视频在线观看一区二区三区| 久久人人爽av亚洲精品天堂| 欧美丝袜亚洲另类| 天天操日日干夜夜撸| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| kizo精华| 欧美精品国产亚洲| 乱人伦中国视频| 男女啪啪激烈高潮av片| 王馨瑶露胸无遮挡在线观看| 99国产精品免费福利视频| 99久久中文字幕三级久久日本| 水蜜桃什么品种好| 欧美+日韩+精品| av福利片在线| 亚洲欧美日韩另类电影网站| 亚洲经典国产精华液单| 久久久久人妻精品一区果冻| 美女中出高潮动态图| 波多野结衣一区麻豆| 亚洲精品国产av成人精品| 青春草视频在线免费观看| 欧美bdsm另类| 一级黄片播放器| 九九在线视频观看精品| 久久精品久久精品一区二区三区| 蜜桃在线观看..| 久久久久久伊人网av| 亚洲欧美日韩另类电影网站| 成人毛片60女人毛片免费| 中文字幕av电影在线播放| 99国产综合亚洲精品| 国产高清国产精品国产三级| 秋霞伦理黄片| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| 咕卡用的链子| 性高湖久久久久久久久免费观看| 欧美性感艳星| h视频一区二区三区| 极品人妻少妇av视频| 久久精品久久久久久久性| 久久99一区二区三区| 少妇猛男粗大的猛烈进出视频| 少妇被粗大的猛进出69影院 | 欧美3d第一页| av网站免费在线观看视频| 好男人视频免费观看在线| 国产毛片在线视频| 97在线视频观看| 国产亚洲精品第一综合不卡 | 国产精品麻豆人妻色哟哟久久| 美女主播在线视频| 人妻系列 视频| 亚洲国产精品一区二区三区在线| 一本久久精品| 国产白丝娇喘喷水9色精品| 久久影院123| 欧美97在线视频| 免费播放大片免费观看视频在线观看| 激情视频va一区二区三区| 亚洲第一区二区三区不卡| 在线观看免费高清a一片| 热99久久久久精品小说推荐| 18禁裸乳无遮挡动漫免费视频| 亚洲av综合色区一区| 亚洲一码二码三码区别大吗| 一级毛片我不卡| 亚洲国产日韩一区二区| 国产成人av激情在线播放| 亚洲精品久久成人aⅴ小说| 日韩制服骚丝袜av| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 2021少妇久久久久久久久久久| 国产在线视频一区二区| 亚洲av福利一区| 曰老女人黄片| 插逼视频在线观看| 青春草亚洲视频在线观看| 18在线观看网站| 国产av国产精品国产| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 精品人妻熟女毛片av久久网站| 视频在线观看一区二区三区| 黄片播放在线免费| 三上悠亚av全集在线观看| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 亚洲精品美女久久久久99蜜臀 | 嫩草影院入口| 亚洲国产最新在线播放| av在线播放精品| 国产一区二区在线观看av| 汤姆久久久久久久影院中文字幕| 免费看不卡的av| 麻豆精品久久久久久蜜桃| 成年人午夜在线观看视频| 亚洲成人手机| 国产精品女同一区二区软件| www.熟女人妻精品国产 | 亚洲人与动物交配视频| 少妇人妻精品综合一区二区| 亚洲人与动物交配视频| 国产黄色视频一区二区在线观看| 国产高清三级在线| 男人操女人黄网站| 国产黄色视频一区二区在线观看| 国产欧美亚洲国产| 国产激情久久老熟女| 亚洲成人一二三区av| a级毛色黄片| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| a级毛片黄视频| 亚洲中文av在线| 精品久久蜜臀av无| 晚上一个人看的免费电影| 成年美女黄网站色视频大全免费| 卡戴珊不雅视频在线播放| 欧美97在线视频| 街头女战士在线观看网站| 丰满少妇做爰视频| 精品人妻熟女毛片av久久网站| 大码成人一级视频| 亚洲精品国产av蜜桃| 亚洲欧美精品自产自拍| 亚洲国产最新在线播放| 国产在线视频一区二区| 高清av免费在线| 又黄又爽又刺激的免费视频.| 国产黄色免费在线视频| 国产精品久久久久成人av| 亚洲,欧美精品.| 18+在线观看网站| 少妇人妻久久综合中文| 人妻系列 视频| 亚洲成人av在线免费| 男女高潮啪啪啪动态图| 国产av一区二区精品久久| 久久精品久久久久久噜噜老黄| 成年人午夜在线观看视频| www.av在线官网国产| 女人精品久久久久毛片| 亚洲精品成人av观看孕妇| 久久精品人人爽人人爽视色| 成人18禁高潮啪啪吃奶动态图| 亚洲美女搞黄在线观看| 最黄视频免费看| 国产精品久久久久久精品电影小说| 不卡视频在线观看欧美| 久久人人爽人人爽人人片va| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 亚洲欧美清纯卡通| 国产在线免费精品| 黑丝袜美女国产一区| 精品一区二区三区四区五区乱码 | 国产午夜精品一二区理论片| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 国产高清不卡午夜福利| 日韩成人av中文字幕在线观看| 又黄又爽又刺激的免费视频.| 超色免费av| 免费日韩欧美在线观看| 女人久久www免费人成看片| 激情五月婷婷亚洲| 少妇的逼水好多| 亚洲av.av天堂| 久久久精品区二区三区| 成人毛片a级毛片在线播放| 日韩免费高清中文字幕av| 99国产精品免费福利视频| 亚洲av福利一区| 十八禁高潮呻吟视频| 制服诱惑二区| 久久精品夜色国产| 丝袜人妻中文字幕| 国产精品久久久久久精品电影小说| 成人亚洲精品一区在线观看| 久久影院123| 亚洲三级黄色毛片| av片东京热男人的天堂| 老司机亚洲免费影院| 一级毛片黄色毛片免费观看视频| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 亚洲欧洲日产国产| 国产又爽黄色视频| 日韩精品有码人妻一区| 十八禁高潮呻吟视频| 美女主播在线视频| 亚洲精品中文字幕在线视频| 观看av在线不卡| 亚洲五月色婷婷综合| 99国产综合亚洲精品| 丝袜美足系列| 国产探花极品一区二区| 亚洲欧洲精品一区二区精品久久久 | 热re99久久精品国产66热6| 男的添女的下面高潮视频| 在现免费观看毛片| 国产av码专区亚洲av| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| 国产av国产精品国产| 日韩在线高清观看一区二区三区| 国产成人精品婷婷| 免费看不卡的av| 国产亚洲欧美精品永久| 久久精品国产a三级三级三级| 制服诱惑二区| 欧美3d第一页| 亚洲av欧美aⅴ国产| av电影中文网址| 国产白丝娇喘喷水9色精品| 国产高清国产精品国产三级| 久久精品熟女亚洲av麻豆精品| 我的女老师完整版在线观看| 国产爽快片一区二区三区| 精品一区二区免费观看| 狠狠精品人妻久久久久久综合| 国产精品偷伦视频观看了| 婷婷成人精品国产| 大香蕉久久成人网| 麻豆乱淫一区二区| 91aial.com中文字幕在线观看| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 下体分泌物呈黄色| 中文天堂在线官网| 老司机影院成人| av网站免费在线观看视频| 亚洲欧美清纯卡通| 亚洲经典国产精华液单| 又黄又粗又硬又大视频| 熟女电影av网| 久久精品夜色国产| 日本黄色日本黄色录像| 色吧在线观看| av国产精品久久久久影院| 免费观看av网站的网址| 精品一区在线观看国产| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 亚洲伊人久久精品综合| 侵犯人妻中文字幕一二三四区| 少妇高潮的动态图| 国产精品三级大全| 女性生殖器流出的白浆| 午夜福利在线观看免费完整高清在| 精品一区二区免费观看| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 五月伊人婷婷丁香| 国产片特级美女逼逼视频| 免费黄频网站在线观看国产| 两性夫妻黄色片 | 99久久中文字幕三级久久日本| 国产片特级美女逼逼视频| 久久久国产欧美日韩av| 国产成人精品在线电影| 视频区图区小说| 久久人人爽人人片av| 岛国毛片在线播放| 亚洲国产精品专区欧美| av不卡在线播放| 久久精品国产亚洲av涩爱| 日韩伦理黄色片| 久久久久精品性色| 看十八女毛片水多多多| 欧美另类一区| 赤兔流量卡办理| 老司机影院毛片| √禁漫天堂资源中文www| 97在线人人人人妻| 如日韩欧美国产精品一区二区三区| 丰满迷人的少妇在线观看| 亚洲国产看品久久| 大话2 男鬼变身卡| 精品第一国产精品| 亚洲少妇的诱惑av| 精品国产一区二区久久| 国产精品熟女久久久久浪| 亚洲欧美色中文字幕在线| 国产精品国产三级国产av玫瑰| 免费黄色在线免费观看| 亚洲第一区二区三区不卡| 免费观看性生交大片5| 久热这里只有精品99| 精品久久国产蜜桃| 999精品在线视频| 欧美xxⅹ黑人| av天堂久久9| 极品少妇高潮喷水抽搐| 亚洲av中文av极速乱| 黄色毛片三级朝国网站| 国产免费又黄又爽又色| 2018国产大陆天天弄谢| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 美女国产高潮福利片在线看| 新久久久久国产一级毛片| 久久精品国产自在天天线| 亚洲欧美中文字幕日韩二区| 2021少妇久久久久久久久久久| 亚洲精品久久成人aⅴ小说| 久久久亚洲精品成人影院| 国产片内射在线| 日本欧美视频一区| 日韩中字成人| 国产成人aa在线观看| 亚洲av日韩在线播放| 国产av国产精品国产| h视频一区二区三区| 日韩精品有码人妻一区| 久热久热在线精品观看| 一级片免费观看大全| 啦啦啦视频在线资源免费观看| 青春草视频在线免费观看| 免费在线观看黄色视频的| 国产精品嫩草影院av在线观看| 欧美最新免费一区二区三区| 搡老乐熟女国产| 涩涩av久久男人的天堂| 99热网站在线观看| 亚洲精品456在线播放app| 欧美精品一区二区大全| 高清欧美精品videossex| 免费看光身美女| 伦理电影免费视频| 伦精品一区二区三区| 亚洲精品国产色婷婷电影| a级片在线免费高清观看视频| 久久影院123| 久久精品熟女亚洲av麻豆精品| 午夜久久久在线观看| 久热这里只有精品99| 国产视频首页在线观看| 99国产精品免费福利视频| 久久午夜综合久久蜜桃| 中国美白少妇内射xxxbb| 欧美日韩国产mv在线观看视频| 欧美老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 国产毛片在线视频| 精品国产国语对白av| a级片在线免费高清观看视频| 啦啦啦中文免费视频观看日本| 亚洲精品aⅴ在线观看| 久久人人爽人人片av| 99热国产这里只有精品6| 久久精品久久久久久久性| 老司机影院毛片| 国产熟女欧美一区二区| 日本av手机在线免费观看| 亚洲精品一二三| www.色视频.com| 日本欧美国产在线视频| 亚洲在久久综合| 久久久精品94久久精品| 亚洲第一av免费看| 视频区图区小说| 国产成人欧美| 一级毛片黄色毛片免费观看视频| 夜夜骑夜夜射夜夜干| 成人亚洲精品一区在线观看| 校园人妻丝袜中文字幕| 国产不卡av网站在线观看| 少妇被粗大猛烈的视频| av线在线观看网站| 哪个播放器可以免费观看大片| 少妇熟女欧美另类| 国产永久视频网站| www日本在线高清视频| 边亲边吃奶的免费视频| 又黄又粗又硬又大视频| 国产熟女欧美一区二区| 春色校园在线视频观看| 少妇高潮的动态图| 久久久久人妻精品一区果冻| 日韩视频在线欧美| 最近最新中文字幕免费大全7| 99久久人妻综合| 日本色播在线视频| 女的被弄到高潮叫床怎么办| 国产熟女午夜一区二区三区| 午夜福利乱码中文字幕| 色视频在线一区二区三区| 欧美精品人与动牲交sv欧美| 久久久精品区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 中国美白少妇内射xxxbb| 18禁在线无遮挡免费观看视频| 欧美日韩成人在线一区二区| 日韩制服丝袜自拍偷拍| 9色porny在线观看| 国产av精品麻豆| 色婷婷久久久亚洲欧美| 少妇被粗大猛烈的视频| 少妇精品久久久久久久| 少妇猛男粗大的猛烈进出视频| 最近最新中文字幕大全免费视频 | 国产av一区二区精品久久| av在线播放精品| 2022亚洲国产成人精品| 狠狠精品人妻久久久久久综合| xxx大片免费视频| 国产白丝娇喘喷水9色精品|