• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit☆

    2014-07-17 09:10:20GuoliangWangWeiwYanShiheChenXiZhangHuiheShaoAutomationDepartmentofShanghaiJiaoTongUniversityShanghai0040China

    Guoliang Wang*,Weiw u YanShihe Chen,Xi Zhang,*,Huihe ShaoAutomation Department of Shanghai Jiao Tong University,Shanghai0040,China

    2Guangdong Electric Power Research Institute,Meihua Rd.,Guangzhou 510600,China

    Multi-model Predictive Control of Ultra-supercritical Coal-fired Power Unit☆

    Guoliang Wang1,*,Weiw u Yan1,Shihe Chen2,Xi Zhang2,*,Huihe Shao11Automation Department of Shanghai Jiao Tong University,Shanghai200240,China

    2Guangdong Electric Power Research Institute,Meihua Rd.,Guangzhou 510600,China

    A R T I c L E IN F o

    Article history:

    Received 7 January 2014

    Received in revised form 17 February 2014 Accepted 3March 2014

    Available on line 20 June 2014

    The control of ultra-supercritical(USC)power unit is a difficult issue for its characteristic of the nonlinearity,large dead time and coup ling of the unit.In this paper,model predictive control(MPC)based on multi-model and double layered optimization is introduced for coordinated control of USC unit.The linear programming(LP)combined with quadratic programming(QP)is used in steady optimization for computation of the ideal value of dynamic optimization.Three inputs(i.e.valve opening,coal flow and feed water flow)are employed to control three outputs(i.e.load,main steam temperature and main steam pressure).The step response models for the dynamic matrix control(DMC)are constructed using the three inputs and the three outputs.Piece wise models are built at selected operation points.Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Compared to traditional coal-fired power generation,USC coal-fired power generation units are promising for its higher efficiency and less harmful emission[1].However,USC units are characterized by the strong coup ling characteristic between boiler and turbine,strong nonlinear and dead time characteristic.Without the steam drum buffer, USC boiler dynamic characteristics are affected greatly by terminal dynamic at boiler outlet header.USC units have a complex characteristic for strong nonlinearity under the different output power conditions. Along with the load changes,the dynamic characteristic parameters of units change dramatically.After fuel water ratio changes,steam temperature has a long delay response.Due to the above control difficulty,the parameters of the control system bas ed on PID have a large fluctuation in the process of load changing.

    Generally,power units run in four modes:base mode,boiler following mode,turbine following mode,and coordinated control mode.In the first mode,the boiler master and turbine master are both in manual mode.For the 2nd and 3rd modes,the boiler master and turbine master are both in auto mode,respectively[1].Coordinated control is the main control mode of thermal power unit control now[2].Many effective control strategies for power unit coordinated control were proposed in literatures[3].As model predictive control(MPC)can naturally deal with the coup ling and dead time problems,it also began to be applied to the power plant control.Actually,MPC has been applied successfully in chemical industry and many other fields[4].Dynamic matrix control (DMC)method,which is an initial algorithm of MPC,is suitable for the multiple input and output system of traditional power unit[5].Non linear MPC was also utilized in coordinated control of fossil power units [6].Application of DMC method to the super-critical power units was discussed on theoretical and practical aspects[7].The DMC was also applied to the superheater and reheater temperature control problem, which built a 4-input by 4-output model and presented the simulation results to show the effectiveness ofDMC method in power industry[8].

    In above literatures,step response was applied to establish dynamic response matrix.Bu t for coal-fired USC power unit,there is a strong nonlinearity in constant load and changing load because the parameters of the units vary largely in different operation points.MPC based on multiple models were proposed to deal with nonlinearity.The basic thought of multi-model MPC was introduced in Ref.[9].Multi-model DMC has been applied to a multi-tank process[10].The application result shows that multi-model DMC is more reliable to keep the controlled variable sat set points over the range of nonlinear operation.There is an intelligent model used in MPC for coordinated control of USC unit[11]. The linearized state space model was used in MPC for coordinated control of USC unit[12].The predictive outputs of multiple models are weighted in a fuzzy manner according to the operation points and the optimization uses the DMC algorithm for main steam temperature control[13].The different linear MPC controllers based on state space predictive model are set up for a Two Tank Conical Interacting System [14]but the constraints are not taken in to account,especially the MV, which is important in practice.The steady-state economic objectivesare em bedded in to dynamic objectives as a penalty function[15].Bu t the equality constraints of steady-state optimization are not considered in the literature.So,the in formation of steady gain of the controlled plant is missing in this manner as mentioned in Ref.[15].A double layered optimization structure,i.e.multivariable constrained predictive control(MCPC),is proposed for the coordinated control of a USC unit in[16].The focus of the paper is on the optimization structure but not on the nonlinearity of USC unit.Considering the nonlinearity of the USC unit,a multi-model MPC based on DMC method with a double-layered algorithm is proposed for USC unit coordinated control in this paper.

    2.Ultra-supercritical Un it System

    Coal-fired USC unit generally is com posed of boiler and turbine.The boiler includes economizer,water wall,seperator,superheater and reheater.The turbine includes high pressure turbine(HP),inter mediate pressure turbine(IP),low pressure turbine(LP)and generator.In USC unit,water and steam only flow once through economizer,seperator and superheater.Water is turned into vapor entirely under dry condition.Drum,in which steam is separated from water,is not necessary in the USC boiler.

    The schematic diagram of a USC coal-fired power generation units is shown in Fig.1.The coal burned in furnace heats all sections of the boiler.The feed water is warm ed up by an economizer in the process cycle firstly.Then hot water is converted to steam in water wall.After passing through the separator,the steam is superheated by superheaters.The valve controls the quantity of superheated steam to the HP turbine. The extraction steam from HP turbine goes to the rehaeater inlet.The reheated steam from the reheater outlet is used to d rive the IP/LP turbine.The extraction steam from IP/LP turbine goes in to the feed water pump and feed water storage tank for the next cycle[17].Without the buffering of steam d rum,the valve influences the characteristics of turbine and terminal resistance of the boiler heavily.This leads to strong non-linearity and parameter coup ling of the USC unit,which can be seen as a complicated system with multiple-input and multiple-output (MIMO)system.The design of the control system,especially the coordinated control,is of more challenge for the USC unit compared to the traditional power units.This paper will focus on the design of the three input by three-output coordinated control system based on the MPC of the USC unit.

    3.Double-layered Multi-Model MPC for Coordinated USC Unit Control

    MPC arises from chemical process control[18,19].Based on the thoughts of predictive model,on line optimization and feedback correction,MPC has been successfully applied to many industry fields with satisfied results.In this paper,MPC structure used in the coordinated control of USC unit is based on DMC,taking the algorithm of QP (quadratic programming)as following:

    where Wkis the reference of the controlled variables(CVs),Ykis the measurement of the CVs,Q and R are the weight matrices of CV and delta m an ipu lated variables(MVs),respectively,Cduand Cyare the constrain t matrix coefficients,bduand byare the constraints of ΔUkand Yk.The solution of Eq.(1)is an M×m vector of MVs,where Mis the control horizon and m is the number of CVs.Only the first of every MV vector is implemented and the rest is discarded.This is typical in MPC algorithm.The procedure is repeated at next sample time.

    For coordinated control of USC unit,the purpose of the control strategy is to keep the key parameters within the safe zone and to follow the load demand as quick as possible.When USC unit runs under different conditions,its steady and dynamic characteristic varies greatly.The dynamic optimization of MPC can only track the local optimal targets in time.Steady optimization can reach the global optimal targets in certain operation point.This paper introduces a double-layered MPC with steady optimization and dynamic optimization.

    Double-layered MPC comprises of upper layer as steady optimization and lower layer as dynamic optimization.The steady optimization layer of MPC is the supervisor of dynamic optimization layer.The solution of steady optimization will be used as setpoint in dynamic optimization layer.The upper layer gives the control target of the USC unit and the lower layer pushes the USC unit to the optimal target gradually.The LP(linear programming)is used as steady optimization in Ref.[16]. When the economic target is more than linear,economic objective can be expressed as the QP manner.Thus,the steady optimization usesthe combined LP and QP for the IRV computation in this paper.The objective function is as fo llow s:

    Fig.1.Schematic diagram of USC unit.

    where MV is the optimization variables,MV0and CV0are the economic ideal value of MVs and CVs,PMVand PCVare the weighted matrices of economic optimization,v and ware the coefficients of MV and CV,α and β are the coefficients of linear programming for adjustment,h and g are the equality constraints and inequality constraints and neand ninare the number of equality and inequality constraints.

    The solution of linear programming in Eq.(2)is the ideal resting value(IRV)of MV.The ideal resting value of MV will be used in the dynamic optimization of double-layered MPC.The IRV of MV is a soft constraint.The dynamic optimization of double-layered MPC is shown below:

    where MVIRVis the IRV,i.e.ideal resting value,of MV,Q and R are the weight matrix of CV and ΔMV,respectively,V the weight matrix for IRV and Cuthe constraints matrix coefficients.

    For dealing with the strong nonlinearity at different operation points,piece wise models are set up at chosen operation points of the USC unit.The output power is selected as the multi-model switching sign in this paper.When the USC unit enters the interval of new condition for a period of time(e.g.1 m in),the predictive model in proposed algorithm will switch.This switching policy prevents the predictive model to switch frequently between the adjacent conditions in order to avoid the instability of the system.Because of the constraints of ΔMV,the switch of models in the algorithm will not cause the fluctuation of CVs.The switched models lead to the different steady values of the MVs,but the ΔMVs still obey the constraints.

    4.Simulation Results and Discussion

    4.1.Nonlinear model of1000MW USC unit

    The nonlinear model of 1000 MW USC unit in literature[20]is built in Mat lab system.The relation of temperature,enthalpy and pressure can be obtained by X Steam too l[21],which perm its the direct calculation within Matlab of the water-steam properties through the implementation of the IAPWS-97 laws.The model of the USC unit is simplified under several assumptions[20].The Dw(superheater outlet steam flow rate),ut(valve opening)and rB(the coal flow)are taken as inputs and Ne(load),pst(the pressure of superheater outlet)and hst(the outlet enthalpy of superheater) as outputs of the USC unit.The model is described as state space model as follows[13]:

    In the above formula,hm(kJ·kg?1)is the outlet enthalpy of the separator,pm(MPa)is the outlet pressure of the separator,Dec(kg·s?1)is the economizer inlet feed water flow rate,Dw(kg·s?1)is the superheater outlet steam flow rate,rB(kg·s?1)is the coal flow,uB(kg·s?1)is the coal flow setpoint,Dsw(kg·s?1)is the desuperheater spray flows at all levels,Dst(kg·s?1)is the steam flow rate of turbine inlet,ut(%)is the valve opening for steam turbine,Ne(MW)is the load of the unit,pst(MPa)is the outlet pressure of the superheater,hst(kJ·kg?1)is the outlet enthalpy of superheater and Tst(°C)is the temperature of superheater outlet.k0,k1,k2,l,c0,c1,c2,d1and d2are the coefficients of the USC unit and can be estimated by the practical data from real unit.

    4.2.Multi-model of USC unit system

    In the simulation of coordinated control based proposed method, the feed coal flow,feed water flow and the valve opening are chosen as the three MVs,respectively.And the load,main steam temperature and main steam pressure are chosen as three CVs,respectively.The parameters of 1000MW USC unit are chosen as:l=1.33,k0=19212, k1=133175,k2=0.000560,c0=180,c1=1060000,c2=59830, d1=500,d2=3000,andτ=17.The parameters are identified from the operation data of a 1000 MW USC unit in[12].

    The operation range of the USC unit from 1000 MV to 500 MW is separated into five intervals.Six operation points with load of 1000 MV,900 MV,800 MV,700 MV,600 MV and 500 MW,are selected to build models,respectively.The valve opening is chosen as constant 78.04%and the main steam temperature is set at599.9°C.Parameters of the USC unit at six operation points are shown in Table 1.

    Table 1Parameters at six operation points

    At each operation point,a step increment of 10%is added on a MV meanwhile other MVs keep constant.The responses of the CVs are recorded to identify step response model.The step response models corresponding to other MVs can be obtained by repeating the same procedure.When the proposed algorithm is put in to practice,the model testing procedure will be taken at the steady state of USC unit and the step increment is as small as possible in order to get the characteristic of the inputs and outputs without huge disturbance on the unit. The three input and output step response models of the USC unit are shown in Fig.2.

    Different types of the line represent the different models.From 1000 MW to 500 MW,the types of the lines are dash dot,dashed, so lid,dotted with dot,dotted and dotted with square,respectively. The lines of same color in Fig.2 rep resent one three input by three output model at a specific operation point.For example,the nine blue lines represent the three input by three output model at 1000MW operation point.The models also show the characteristic of the USC unit.From Fig.2,it can be seen that valve affects the dynamic and static characteristic of load lightly at different operation points.Dynamic characteristic of main steam temperature is also influenced lightly by valve opening but its steady gain increases largely with the load decreasing.Coal has the same dynamic and steady influence on load and pressure at different operation points,respectively.Steady gain of main temperature to coal is of large deviation at different operation points.Feed water has a large influence on dynamic characteristic of load at different operation points but has a small influence on steady gain of feed water to load. Both of the steady gain of temperature and pressure to feed water decrease with increasing load.

    4.3.Simulation results and discussion

    The algorithm parameters in simulation are set as follows.The prediction horizon is 600 s and the control horizon is 200 s.The numbers of MVs and CVs are both three.The weight matrix is chosen as Q=diag[1000 200 80],R=diag[1 1 1],V=diag[1 1 1]and the coefficients in steady optimization are constant,which are chosen as one in this paper.The constraints are chosen as:

    The control modes of load and main steam temperature are set as setpoint control.The load follow s the load demand.The main steam temperature is set600°C.The control mode of the main steam pressure is set as zone control mode.Switching points of piece wise models are chosen at:950MW,850 MW,750 MW,650 MW and 550 MW.When the USC unit crosses the switching point and does not switch back for 1 m in,the predictive models witches to the new model.

    The simulation results are shown as in Figs.3 and 4.Figs.3 and 4 show the simulation results of MVs and CVs when the load demand (AGC)is changing from 1000 MW to 900 MW and 620 MW,and then back to 800 MW and 1000 MW.

    Fig.2.Step response models at different operation points.

    Fig.3.CV responses in the following load.

    The top graph in Fig.3 is the response curve of load following the load demand.The red line is the response curve of the load.The blue line is the curve of the load demand.It can be found that the load can follow the load demand with an extremes mall error when the load is changing largely.The middle graph in Fig.3 shows the response curve of main steam temperature.The main steam temperature can keep around the set point600°C closely.Bu t the steam temperature still fluctuates.The main steam valve influences the parameters of the steam, even when the unit operates at steady state.The main steam temperature can only beheld around the steady value temperature at coordinated control of unit.The accurate value of main steam temperature can be controlled at supreheater section.The maximum error is smaller than 1.5°C.The bottom graph in Fig.3 shows the main steam pressure response curve.The control mode of main steam pressure is set as the zone control.Because the operation point of valve is set as constant, the simulation is similar to the sliding pressure control in traditional control of power unit.Fig.4 shows the MV responses corresponding CVs in Fig.3.The valve varies around the initial operation point,i.e. 78.04%.During the whole process,the coal water ratio constant is kept almost a constant and main steam temperature is maintained stable.

    As for the set point control mode of output power and temperature, there are three MVs and two CVs with set point control mode.There is freedom left for the MVs.Thus,the valve opening varies around its steady state value 78.04%as its IRV value.

    The proposed algorithm is compared with the other methods in the simulation.Fig.5 shows the comparison among the MMCPC,MCPC and conventional coordinated control method mentioned by Ref.[22]under the given AGC command.The proposed method can follow the AGC timely and no huge overshot compared with other algorithm.

    5.Conclusions

    In this paper,double-layered multi-model predictive control is developed for coordinated control of USC unit.The USC unit response is represented by three input and three output step responses at differ ent operation points where valve opening,coal flow and feed water flow are inputs and load,main steam temperature and main steam pressure are outputs.The double-layered optimization is performed to determine the optimal operation value of feed water flow and coal flow sothat the load will follow the load demand quickly.The main steam temperature is also kept stable at set point.Simulation results show that the proposed method can implement coordinated control of USC unit with satisfactory performance.

    Fig.4.MV responses in the following load.

    Fig.5.Comparison among different methods.

    [1]F.P.Pan,C.H.Chen,R.M.Chen,Y.Q.Zhu,Au to matic Power Plant Startup and Shutdown System(APS)Technology and Application,Science Press,Beijing,2011. 285-291(in Chinese).

    [2]B.L.Xiao,Development progress of automation and information technologies for domestic power plants,J.Chin.Soc.Power Eng.31(8)(2011)611-618(in Chinese).

    [3]J.Q.Yang,L.H.Ge,R.S.Ling,Features and strategies for control systems of supercritical pressure sets,Power Eng.25(2)(2005)221-225(in Chinese).

    [4]S.J.Qin,T.A.Badg well,A survey of industrial model predictive control technology, Control.Eng.Pract.11(7)(2003)733-764.

    [5]J.A.Rovnak,R.Corlis,Dynamic matrix based control of fossil power plant,IEEETr ans. Energy Convers.6(2)(1991)320-326.

    [6]B.P.Gibbs,D.S.Weber,D.W.Porter,Application of nonlinear model predictive control to fossil power plant,Proceedings of 30th Conference on Decision and Control, 1991,pp.1850-1856.

    [7]L.A.Sanchez,F.G.Arroyo,R.A.Villavicencio,Dynamic matrix control of steam temperature in fossil power plant,IFAC Control of Power Plants and Power System s, Cancun,Mexico,1995.275-280.

    [8]U.C.Moon,W.H.Kim,Temperature control of ultra supercritical once-through boiler-turbine system using multi-input multi-output dynamic matrix control, J.Electr.Eng.Techno l.6(3)(2011)423-430.

    [9]L.Ozkan,M.V.Kothare,C.Georgakis,Model predictive control of nonlinear systems using piece wise linear models,Com put.Chem.Eng.24(7)(2000)793-799.

    [10]D.Doughterty,D.Cooper,A practical multiple model adaptive strategy for multi variable model predictive control,Control.Eng.Pract.11(6)(2003)649-664.

    [11]K.Y.Lee,J.H.Sickel,J.A.Hoffman,W.H.Jung,S.H.Kim,Controller design for a largescale ultrasupercritical once-through boiler power plant,IEEETr ans.Energy Convers. 25(4)(2010)1063-1070.

    [12]O.Mohamed,J.H.Wang,B.Al-Duri,Study of a multi variable coordinate control for a supercritical power plant process,Proceedings of the 17th International Conference on Automation&Com puting,University of Hudders field,UK,2011,pp.69-74.

    [13]Hou Guolian,Zhang Jinfang,Liu Jun jun,Zhang Jianhua,Multiple-model predictive control based on fuzzy adaptive weights and its application to main steam temperature in power plant,Proceedings of the 5th IEEE Conference on Industrial Electronics and Application,Taichung,Taiwan,2010,pp.669-673.

    [14]V.R.Ravi,T.Thyagarajan,M.Monika Darshini,A multiple model adaptive control strategy for model predictive controller for interacting nonlinear systems,Proceedings of 2011 International Conference on Process Automation,Control and Computing,Coimbatore,India,2011,pp.1-8.

    [15]T.Y.Ma,W.H.Gui,C.H.Yang,Y.L.Wang,Multiple model predictive control applied in grinding and classification process,Control Dec is.27(11)(2012)1716-1719.

    [16]G.L.Wang,W.W.Yan,S.H.Chen,X.Zhang,H.H.Shao,Multi variable constrained predictive control of 1000 MW ultra-super critical once-through boiler-turbine system, Control Theory Appl.29(12)(2012)1573-1578(in Chinese).

    [17]C.Maffezzoni,Boiler-turbine dynamics in power-plant control,Control.Eng.Pract.5 (3)(1997)301-312.

    [18]C.R.Cutler,B.L.Ramaker,Dynamic matrix control—a computer control algorithm, Proceedings of the Joint Automatic Control Conference,San Francisco,CA,1980.

    [19]J.Richalet,A.Rault,J.L.Testud,J.Papon,Algorithmic control of industrial processes, Proceedings of The 4th IFAC Symposium on Identification and System Parameter Estimation,Tbilisi,1976,pp.1119-1167.

    [20]S.Yan,D.L.Zeng,J.Z.Liu,Q.J.Liang,A simplified non-linear model of a once-through boiler-turbine unit and its application,Proc.CSEE32(11)(2012)126-134(in Chinese).

    [21]M.Holm gren,X steam for Matlab,2006.

    [22]Z.S.Wang,M.Xia,S.L.Zhao,X.F.He,F.Guo,Coordinated control strategy analysis and optimization of Beilun 1000 MW USC unit,Electr.Power Constr.31(1)(2010) 87-94(in Chinese).

    ☆Supported by the National Natural Science Foundation of China(60974119).

    *Corresponding authors.

    E-mailaddresses:g lgw ang@gm ail.com(G.Wang),zhangx.sjtu@163.com(X.Zhang).

    Ultra-supercritical power unit

    Coordinated control

    Multi-model constrained predictive control

    啦啦啦在线免费观看视频4| 成人亚洲精品一区在线观看| 亚洲欧美精品自产自拍| 美女大奶头黄色视频| 亚洲精品日韩在线中文字幕| 少妇被粗大猛烈的视频| 可以免费在线观看a视频的电影网站 | 亚洲 欧美一区二区三区| 欧美久久黑人一区二区| 狂野欧美激情性xxxx| 久久久精品94久久精品| 嫩草影院入口| 国产精品一区二区在线不卡| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 久热爱精品视频在线9| 国产亚洲一区二区精品| 国产深夜福利视频在线观看| 免费看不卡的av| 99re6热这里在线精品视频| 90打野战视频偷拍视频| 日韩大码丰满熟妇| 欧美黑人欧美精品刺激| 男女之事视频高清在线观看 | 亚洲国产欧美网| 欧美人与性动交α欧美软件| 国产精品99久久99久久久不卡 | 精品人妻熟女毛片av久久网站| 成年动漫av网址| 亚洲成人国产一区在线观看 | 亚洲,欧美精品.| kizo精华| 在线天堂最新版资源| 日韩人妻精品一区2区三区| 亚洲精品视频女| 国产 一区精品| 久久久久视频综合| 日本爱情动作片www.在线观看| 成人漫画全彩无遮挡| 久久韩国三级中文字幕| 亚洲精品在线美女| 在线观看一区二区三区激情| 欧美激情极品国产一区二区三区| 国产有黄有色有爽视频| 大香蕉久久成人网| 中文精品一卡2卡3卡4更新| 精品一区在线观看国产| 最近手机中文字幕大全| 麻豆乱淫一区二区| 国产又爽黄色视频| 免费观看av网站的网址| 亚洲av男天堂| 中文乱码字字幕精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 最近中文字幕2019免费版| 色婷婷av一区二区三区视频| 久久综合国产亚洲精品| 2021少妇久久久久久久久久久| 一二三四在线观看免费中文在| 欧美亚洲日本最大视频资源| 欧美黄色片欧美黄色片| 国产成人精品无人区| 国产精品一国产av| 国产精品欧美亚洲77777| av在线播放精品| 不卡av一区二区三区| 亚洲欧美激情在线| 欧美精品高潮呻吟av久久| 亚洲,欧美精品.| 欧美日韩一区二区视频在线观看视频在线| 色精品久久人妻99蜜桃| 少妇的丰满在线观看| 精品第一国产精品| 超碰成人久久| 亚洲精品国产av蜜桃| 欧美黑人精品巨大| 精品国产乱码久久久久久男人| 波野结衣二区三区在线| 一区二区三区精品91| 成人国语在线视频| 免费观看性生交大片5| 欧美乱码精品一区二区三区| 精品卡一卡二卡四卡免费| 青春草亚洲视频在线观看| 啦啦啦视频在线资源免费观看| 久久精品亚洲熟妇少妇任你| 欧美成人精品欧美一级黄| 天天影视国产精品| 夫妻性生交免费视频一级片| 男人操女人黄网站| 国产精品亚洲av一区麻豆 | 麻豆精品久久久久久蜜桃| 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 成人免费观看视频高清| 一区二区三区精品91| 欧美亚洲 丝袜 人妻 在线| 操出白浆在线播放| 国产视频首页在线观看| 99九九在线精品视频| 亚洲欧美激情在线| 国产精品麻豆人妻色哟哟久久| 亚洲精品美女久久av网站| 成人毛片60女人毛片免费| 欧美日韩一级在线毛片| av一本久久久久| 丰满少妇做爰视频| 久久精品久久久久久久性| 国产精品麻豆人妻色哟哟久久| 黄色视频不卡| 亚洲精品自拍成人| 国产成人欧美在线观看 | 成人国语在线视频| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 另类亚洲欧美激情| 欧美日韩亚洲综合一区二区三区_| 免费人妻精品一区二区三区视频| 亚洲av福利一区| 日日爽夜夜爽网站| 啦啦啦啦在线视频资源| 国产av一区二区精品久久| 欧美日韩综合久久久久久| 国产黄频视频在线观看| 亚洲国产中文字幕在线视频| 亚洲综合精品二区| 国产爽快片一区二区三区| 在线免费观看不下载黄p国产| www.自偷自拍.com| 亚洲精品美女久久av网站| 日本一区二区免费在线视频| 最近最新中文字幕免费大全7| av国产精品久久久久影院| 国产老妇伦熟女老妇高清| 一边摸一边做爽爽视频免费| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产看品久久| 亚洲av电影在线进入| 国产黄频视频在线观看| 中文精品一卡2卡3卡4更新| 久久国产亚洲av麻豆专区| 久久久久国产精品人妻一区二区| 国产精品麻豆人妻色哟哟久久| 不卡视频在线观看欧美| 国产极品天堂在线| 国产视频首页在线观看| 韩国高清视频一区二区三区| 伊人久久国产一区二区| 黄色一级大片看看| 国产黄频视频在线观看| 国产人伦9x9x在线观看| 麻豆乱淫一区二区| 80岁老熟妇乱子伦牲交| 久久人妻熟女aⅴ| 一区在线观看完整版| 亚洲国产欧美网| 久久精品熟女亚洲av麻豆精品| 日韩大码丰满熟妇| 亚洲欧美清纯卡通| 蜜桃在线观看..| 婷婷色综合大香蕉| 国产精品99久久99久久久不卡 | 国产免费视频播放在线视频| 久久狼人影院| 日本一区二区免费在线视频| 少妇 在线观看| 99re6热这里在线精品视频| 亚洲av男天堂| 亚洲精品中文字幕在线视频| 夫妻性生交免费视频一级片| 9色porny在线观看| 男人添女人高潮全过程视频| 观看av在线不卡| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 高清av免费在线| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 91老司机精品| 国产色婷婷99| 久久久精品国产亚洲av高清涩受| 国产精品国产三级国产专区5o| 精品酒店卫生间| 中文字幕色久视频| 如何舔出高潮| 天天躁夜夜躁狠狠久久av| 免费观看性生交大片5| 国产精品麻豆人妻色哟哟久久| 亚洲人成电影观看| 大片免费播放器 马上看| 精品国产一区二区三区四区第35| 亚洲欧洲国产日韩| 国产片特级美女逼逼视频| 久久久久精品人妻al黑| 久久久精品94久久精品| av在线老鸭窝| 欧美日韩一级在线毛片| 国产日韩欧美视频二区| 美女脱内裤让男人舔精品视频| 欧美另类一区| videos熟女内射| 久久99精品国语久久久| av不卡在线播放| 亚洲国产精品999| 极品人妻少妇av视频| 亚洲欧美日韩另类电影网站| 中文字幕另类日韩欧美亚洲嫩草| 国产99久久九九免费精品| 亚洲第一av免费看| 国产 一区精品| 在现免费观看毛片| 久久久国产精品麻豆| 国产男女内射视频| 丝袜喷水一区| 看非洲黑人一级黄片| 欧美日韩精品网址| 欧美日韩综合久久久久久| 国产高清国产精品国产三级| 搡老岳熟女国产| 国产黄频视频在线观看| 水蜜桃什么品种好| 香蕉丝袜av| 久久午夜综合久久蜜桃| 亚洲av在线观看美女高潮| 日韩一本色道免费dvd| 国产成人免费无遮挡视频| 久久狼人影院| 最新在线观看一区二区三区 | 欧美亚洲日本最大视频资源| 天天躁夜夜躁狠狠久久av| 亚洲,一卡二卡三卡| 国产亚洲精品第一综合不卡| 日本午夜av视频| 老司机亚洲免费影院| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 9191精品国产免费久久| 热99久久久久精品小说推荐| 狂野欧美激情性xxxx| 女的被弄到高潮叫床怎么办| 精品福利永久在线观看| 久久精品国产综合久久久| 久久精品aⅴ一区二区三区四区| 99热国产这里只有精品6| 久久久久精品性色| 国产精品av久久久久免费| 久久热在线av| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 99久国产av精品国产电影| 久久久久精品人妻al黑| 黑人欧美特级aaaaaa片| 两个人免费观看高清视频| 国产麻豆69| 热re99久久精品国产66热6| 肉色欧美久久久久久久蜜桃| 热re99久久国产66热| 亚洲国产精品999| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线| 国产一区二区三区av在线| 久久精品亚洲熟妇少妇任你| 黑丝袜美女国产一区| 9色porny在线观看| 1024香蕉在线观看| 免费久久久久久久精品成人欧美视频| 精品亚洲成国产av| 亚洲欧洲国产日韩| 三上悠亚av全集在线观看| 色精品久久人妻99蜜桃| a级毛片黄视频| 成人免费观看视频高清| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 国产免费又黄又爽又色| 女人精品久久久久毛片| www.自偷自拍.com| 精品国产乱码久久久久久小说| 国产黄色视频一区二区在线观看| 国产成人精品久久久久久| 国产有黄有色有爽视频| 久久青草综合色| 午夜免费男女啪啪视频观看| 免费av中文字幕在线| 新久久久久国产一级毛片| 欧美人与性动交α欧美精品济南到| 久久久久网色| 肉色欧美久久久久久久蜜桃| av电影中文网址| 99re6热这里在线精品视频| 大码成人一级视频| 在线观看人妻少妇| 国产 一区精品| 国产精品免费视频内射| 欧美在线一区亚洲| 亚洲四区av| 国产在线免费精品| 久久青草综合色| 日韩视频在线欧美| 菩萨蛮人人尽说江南好唐韦庄| 日韩 亚洲 欧美在线| 亚洲成人av在线免费| 人人妻人人添人人爽欧美一区卜| 18禁国产床啪视频网站| 男女高潮啪啪啪动态图| 另类亚洲欧美激情| 国产片内射在线| 久久久国产欧美日韩av| 久久精品久久久久久噜噜老黄| 另类精品久久| 最新的欧美精品一区二区| 久久久久精品性色| 男的添女的下面高潮视频| 超碰成人久久| 欧美日韩一区二区视频在线观看视频在线| 99九九在线精品视频| av有码第一页| 啦啦啦视频在线资源免费观看| 尾随美女入室| 亚洲国产中文字幕在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲精品乱久久久久久| 久久久国产欧美日韩av| 日本vs欧美在线观看视频| 晚上一个人看的免费电影| 中文欧美无线码| 亚洲精品第二区| 男的添女的下面高潮视频| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 天天躁日日躁夜夜躁夜夜| 国产在线免费精品| 91精品伊人久久大香线蕉| 十八禁网站网址无遮挡| 久久97久久精品| 精品人妻熟女毛片av久久网站| 成人漫画全彩无遮挡| 久久久欧美国产精品| 国产男女内射视频| av视频免费观看在线观看| 国产男人的电影天堂91| 天天影视国产精品| 日韩av免费高清视频| 波多野结衣av一区二区av| 亚洲国产av影院在线观看| 熟妇人妻不卡中文字幕| 日韩一卡2卡3卡4卡2021年| 丝瓜视频免费看黄片| 日本一区二区免费在线视频| 久久精品国产a三级三级三级| 99香蕉大伊视频| 亚洲国产欧美日韩在线播放| 亚洲天堂av无毛| 建设人人有责人人尽责人人享有的| 18在线观看网站| 欧美精品亚洲一区二区| a级毛片在线看网站| a 毛片基地| 中文天堂在线官网| a级毛片黄视频| 免费观看av网站的网址| 亚洲情色 制服丝袜| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 天堂中文最新版在线下载| 综合色丁香网| 欧美av亚洲av综合av国产av | 少妇人妻精品综合一区二区| 不卡视频在线观看欧美| 大码成人一级视频| 男人舔女人的私密视频| 男女下面插进去视频免费观看| 在线观看免费高清a一片| 赤兔流量卡办理| 国产97色在线日韩免费| 国产精品久久久久久精品古装| 亚洲第一区二区三区不卡| 精品一区二区三区av网在线观看 | 国产又色又爽无遮挡免| 桃花免费在线播放| 妹子高潮喷水视频| 亚洲精品aⅴ在线观看| 啦啦啦视频在线资源免费观看| 80岁老熟妇乱子伦牲交| av免费观看日本| 婷婷成人精品国产| 在线观看免费午夜福利视频| 韩国精品一区二区三区| 爱豆传媒免费全集在线观看| 秋霞伦理黄片| 国产精品一区二区在线不卡| 久久精品国产亚洲av涩爱| 看免费av毛片| 成人免费观看视频高清| 夜夜骑夜夜射夜夜干| 大话2 男鬼变身卡| 亚洲精品第二区| 大香蕉久久成人网| 晚上一个人看的免费电影| 青草久久国产| 中文字幕制服av| 日韩精品有码人妻一区| av在线老鸭窝| 欧美另类一区| 高清在线视频一区二区三区| 亚洲欧美成人综合另类久久久| 丝瓜视频免费看黄片| 视频区图区小说| 男人舔女人的私密视频| 成人国语在线视频| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 国产毛片在线视频| 丁香六月欧美| 最近中文字幕2019免费版| 2021少妇久久久久久久久久久| 欧美在线一区亚洲| 啦啦啦啦在线视频资源| 一区二区av电影网| tube8黄色片| 精品午夜福利在线看| 青春草视频在线免费观看| 精品一区在线观看国产| 成年人免费黄色播放视频| 国产免费视频播放在线视频| 黄频高清免费视频| 777久久人妻少妇嫩草av网站| 久久天躁狠狠躁夜夜2o2o | 亚洲,欧美,日韩| 一二三四中文在线观看免费高清| 免费观看人在逋| 亚洲精品日本国产第一区| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| av在线观看视频网站免费| 亚洲av综合色区一区| 最黄视频免费看| av线在线观看网站| 国产一区亚洲一区在线观看| 国产成人午夜福利电影在线观看| 天美传媒精品一区二区| 精品国产一区二区三区久久久樱花| 无限看片的www在线观看| 满18在线观看网站| 亚洲欧美日韩另类电影网站| 日韩伦理黄色片| 日本91视频免费播放| 又粗又硬又长又爽又黄的视频| 亚洲视频免费观看视频| 久久 成人 亚洲| 国产精品av久久久久免费| 一边摸一边抽搐一进一出视频| 啦啦啦视频在线资源免费观看| 国产极品天堂在线| 亚洲成人一二三区av| 久久久精品国产亚洲av高清涩受| 亚洲国产毛片av蜜桃av| 久久久久精品国产欧美久久久 | 国产精品蜜桃在线观看| 一区二区av电影网| 精品国产一区二区三区四区第35| 国产精品女同一区二区软件| 国产高清不卡午夜福利| 曰老女人黄片| 香蕉国产在线看| 国产乱人偷精品视频| 大码成人一级视频| 亚洲,欧美精品.| 中文字幕高清在线视频| 国产免费现黄频在线看| 国产老妇伦熟女老妇高清| 只有这里有精品99| av线在线观看网站| 亚洲国产中文字幕在线视频| 国产探花极品一区二区| 午夜福利影视在线免费观看| 丝袜人妻中文字幕| 熟妇人妻不卡中文字幕| 午夜激情久久久久久久| 亚洲,欧美,日韩| av国产久精品久网站免费入址| 中文天堂在线官网| 国产精品久久久久久久久免| 少妇的丰满在线观看| 蜜桃在线观看..| 卡戴珊不雅视频在线播放| 男女免费视频国产| 热re99久久精品国产66热6| 性少妇av在线| 秋霞伦理黄片| 丁香六月欧美| 亚洲精品aⅴ在线观看| 亚洲熟女毛片儿| 国产欧美日韩综合在线一区二区| 美女午夜性视频免费| 亚洲av电影在线观看一区二区三区| 久久久久久久久久久免费av| 欧美乱码精品一区二区三区| 国产极品天堂在线| 日日啪夜夜爽| 国产高清国产精品国产三级| 老司机影院毛片| 国产精品免费视频内射| 成人国产麻豆网| 一区福利在线观看| 日本av手机在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲熟女毛片儿| 色婷婷av一区二区三区视频| 国产又色又爽无遮挡免| netflix在线观看网站| 精品福利永久在线观看| 国产欧美日韩一区二区三区在线| 国产97色在线日韩免费| 丁香六月天网| 啦啦啦在线观看免费高清www| 嫩草影院入口| 国产亚洲av片在线观看秒播厂| 99香蕉大伊视频| 国产无遮挡羞羞视频在线观看| 久久久久久久久久久久大奶| 日韩 亚洲 欧美在线| 满18在线观看网站| 国产黄色视频一区二区在线观看| av.在线天堂| 女性被躁到高潮视频| 欧美xxⅹ黑人| 国产 精品1| 超色免费av| 成年人午夜在线观看视频| 亚洲七黄色美女视频| 日韩免费高清中文字幕av| 国产在线免费精品| 中文字幕高清在线视频| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 你懂的网址亚洲精品在线观看| 中国国产av一级| 亚洲精品美女久久久久99蜜臀 | 精品久久蜜臀av无| 美女午夜性视频免费| 夫妻午夜视频| 亚洲成人国产一区在线观看 | 搡老乐熟女国产| 欧美老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 亚洲成人免费av在线播放| 一级毛片电影观看| 大陆偷拍与自拍| 久久人人爽人人片av| 国产97色在线日韩免费| 欧美人与善性xxx| 色婷婷久久久亚洲欧美| 99热国产这里只有精品6| 考比视频在线观看| 王馨瑶露胸无遮挡在线观看| 18在线观看网站| av在线老鸭窝| 啦啦啦中文免费视频观看日本| 交换朋友夫妻互换小说| av线在线观看网站| 亚洲国产精品一区三区| 国产成人精品久久久久久| 久久久久久久大尺度免费视频| 精品久久蜜臀av无| 五月开心婷婷网| 九色亚洲精品在线播放| 亚洲国产av新网站| 亚洲欧美成人精品一区二区| av不卡在线播放| av免费观看日本| 精品人妻在线不人妻| 日韩欧美精品免费久久| 国产黄频视频在线观看| 日韩 欧美 亚洲 中文字幕| 男男h啪啪无遮挡| 视频在线观看一区二区三区| 国产深夜福利视频在线观看| 亚洲精品国产一区二区精华液| 国产成人精品福利久久| 免费黄色在线免费观看| 18禁裸乳无遮挡动漫免费视频| 亚洲久久久国产精品| 国产精品嫩草影院av在线观看| 日本一区二区免费在线视频| 国产一卡二卡三卡精品 | 成人免费观看视频高清| 在线免费观看不下载黄p国产| 成人国语在线视频| 岛国毛片在线播放| 一二三四在线观看免费中文在| 色吧在线观看| 亚洲在久久综合| 亚洲国产精品成人久久小说| 精品一区二区免费观看| 91精品三级在线观看| 国产精品99久久99久久久不卡 | 亚洲av在线观看美女高潮| av网站在线播放免费| 亚洲第一青青草原| 一级毛片黄色毛片免费观看视频| 国产精品嫩草影院av在线观看| 国产黄频视频在线观看| av在线app专区| 欧美少妇被猛烈插入视频| 黄色视频不卡| 日本欧美国产在线视频| 老鸭窝网址在线观看| 99久久99久久久精品蜜桃| 麻豆精品久久久久久蜜桃| 成人毛片60女人毛片免费| 亚洲成人一二三区av|