• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Model Predictive Control with Feed forward Strategy for Gas Collectors of Coke Ovens☆

    2014-07-17 09:10:17KaiLiDeweiLiYugengXiDebinYin2DepartmentofAutomationShanghaiJiaoTongUniversityKeyLaboratoryofSystemControlandInformationProcessingMinistryofEducationShanghai200240China

    Kai Li,Dewei Li*,,Yugeng Xi,Debin Yin2Department of Automation,Shanghai Jiao Tong University,Key Laboratory ofSystem Control and Information Processing,Ministry of Education,Shanghai200240,China

    2Shanghai Xinhua Control Technology(Group)Co.,Ltd,Shanghai200241,China

    Model Predictive Control with Feed forward Strategy for Gas Collectors of Coke Ovens☆

    Kai Li1,Dewei Li*,1,Yugeng Xi1,Debin Yin21Department of Automation,Shanghai Jiao Tong University,Key Laboratory ofSystem Control and Information Processing,Ministry of Education,Shanghai200240,China

    2Shanghai Xinhua Control Technology(Group)Co.,Ltd,Shanghai200241,China

    A R T I c L E IN F o

    Article history:

    Received 6 May 2013

    Received in revised form 14 July 2013 Accepted 24October 2013

    Available on line 18 June 2014

    In coking process,the production quality,equipment life,energy consumption,and process safety are all influenced by the pressure in gas collector pipe of coke oven,which is frequently influenced by disturbances. The main control objectives for the gas collector pressure system are keeping the pressures in collector pipes at appropriate operating point.In this paper,model predictive control(MPC)strategy is introduced to control the collector pressure system due to its ability to handle constraint and good control performance.Based on a method proposed to simplify the system model,an extended state space model predictive control is designed, which combines the feed forward strategy to eliminate the disturbance.The simulation results in a system with two coke ovens show the feasibility and effectiveness of the control scheme.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Coking industry is an important part in metallurgical industry.The pressure of gas collector in coke oven is an important parameter in coking process.Its stability influences the service time of coke oven, quality of coke,process safety and energy consumption.If the pressure is too high,the raw gas will leak out and even catch fire sometimes, shortening the service time of coke oven,causing air pollution and wasting energy.If the pressure is too low,air will enter coke oven chambers,deteriorating coke quality and eroding the construction material of oven by chemical reaction with air.Extremely low pressure will endanger the b last blower.Norm ally,the pressure should be kept within a range of±20 Pa[1]around the set point.

    The multiple gas collector pressure system is a constrained multivariable nonlinear system with strong-coup ling characteristics.The systemsuffers considerable disturbances such as flow rate of raw gas generated in coking process,suction power of b last b lowers,temperature and flow rate of cycling ammonia water.Since it is difficult for conventional PID control strategy to deal with complicated systems such as the gas collector pressure system,new control methods are proposed,such as decoupling control method[2-4],intelligent control strategies and hybrid intelligent strategies.Fuzzy method,neural network theory,expert control,particle swarm optimization algorithm, and multi-agent system technology have been applied to the research of gas collector pressure systems[5-8],but these methods cannot handle the constraint and coupling properly.

    Model predictive control(MPC)is an optimization control algorithm generated from industrial practice and has shown its good control performance in complicated industrial systems owing to its ability in constraint hand ling,decoupling and robustness[9-14].In recent years, the research on MPC achieves great development.For some applications, if the disturbance can be measured or calculated,the control performance will be greatly improved with feed forward strategy combined to MPC[15-18].As the front suction of blast blower is measurable,we introduce the feed forward strategy in to MPC for the control of gas collector pressure system.The feed forward strategy is used to eliminate the influence from the varying front suction of the blast blower.

    For safety,direct testing is not permitted for coke ovens,so common identification method is not available.We can obtain the control model by simplifying the mechanism model and adjusting it with process data. For convenience in model adjusting,a simple model form available,i.e. ARMA model,is adopted and a method is presented to simplify the system model.Then,an ex tended state space based model predictive control is developed.

    The simulation results of the proposed algorithm are compared to the performance with norm a lMPC and PID control.

    2.Process Analysis

    Fig.1 shows the structure of multiple gas collector pressure system coupled and distributed asymmetrically.The raw gas generated in coke ovens flow s in to collector pipes after cooling by cycling ammonia water.Then the gas flow s in to the transportation pipes through butterfly valves and suction pipes.After being cooled again by primary coolers,the raw gas is transmitted to next working procedure by blast blowers [19].The control objective is keeping the pressures in collector pipes at appropriate operating point by tuning butterfly valves.The main disturbances are the variation of pressures in coke ovens and the front suction of blast blowers.

    Fig.1.Structure of the gas collector system.

    2.1.System modeling

    Because of immeasurable pressures in coke ovens and large time delay of front suctions of blast b lowers to pressures in collector pipes, it is unadvisable to get system model with disturbance model by implementing step test to the system.Identification method is not available either due to coup ling characteristics of the system.On the other hand,the mechanism model of the system can be constructed because the physical structures of each link in the system are simple.We can obtain the initial ARMA model by simplifying the mechanism model.Then the ARMA model is adjusted by process data.

    We first construct the mechanism model.Modeling for gas collector pressure system is based on the fluid equilibrium[20].For simplicity,we consider a system with two coke ovens and one blast blower.The main characteristics of gas collector pressure system,especially coup ling and asymmetrical distribution,can be presented sufficiently with this system.

    Fig.2 shows the structure of the system.Qi(i=1,2)(m3·s?1)is the raw gas flow rate generated in coke oven i,Pi(Pa)is the pressure in collector pipe,Pi′is the pressure after butterfly valve,Pbis the front suction of the blast blower,Psiis the gas pressure in the cokeoven,R1and R2(kg·m?4·s?1)are resistance coefficients of collector pipes,defined as d P/d Q,R12and R23are the resistance coefficients of transportation pipes determined by physical parameters of pipes,C(m4·s2·kg?1)is the capacity coefficient,definedasd V/d P and determined by the nature of raw gas,and V is the gas volume.We consider that the relationship between the resistance coefficient of collector pipe and the opening of butterfly valve is bijection.

    Fig.2.Diagram of dynamic pressure characteristics of the system.

    According to material balance,the system as shown in Fig.2 satisfies the following dynamic equations

    From the relationship between flow rate and pressure,we have

    where k1and k2(m7/2·kg?1/2)are coefficients determined by the diameter of bridge pipes,the nature of gas and other factors.

    In this mechanism model for the system,P1and P2are controlled variables(output variables),R1and R2are manipulated variables (input variables),Ps1,Ps2and Pbare disturbances.

    For Eqs.(1)-(4),if we set 1/Rias the input variables,the nonlinear characteristic of the system is the square-root parts,i.e.Eqs.(5)and (6).Through applying Taylor expansion to the nonlinear part,we find that the coefficients of the term s with the order of magnitude larger than 1 are very small since Psiis commonly much larger than Pi.Thus the gas collector pressure system is a weakly nonlinear system.We shall focus on the coupled and constrained characteristics of the system. 2.2.Model simplification and transformation

    As the nonlinear characteristic of system is weak,we develop a model simplification method,which will be used as the control model in this study.

    Since the system mainly runs in a neighborhood of equilibrium point,the system is simplified to a first-order system by matching the step response curves at the equilibrium point.The reasons for choosing this method are as follows.Firstly,most of the step responses between input and output,disturbance and output are similar to those of firstorder system.Fig.3 shows the unit step responses of the mechanism model.“Ri→Pj”means the step response between input Riand output Pj,and“Pb→Pj”means the step response between disturbance Pband output Pj.Vertical axis“Δ Pi”denotes the deviation from the equilibrium point.Secondly,the model accuracy requirement is not high for MPC. Only an appropriate variation trend is needed.Thus the proposed method can also be applied to“R1→P2”and“R2→P1”.Thirdly,the simple first-order model brings convenience to model adjusting with process data,since the number of parameters is reduced.

    For first-order system y(s)/u(s)=K/(Ts+1),the unit step response is y(t)=K(1?e?t/T).We denote the sampled unit step response of the mechanism model as[y(1),…,y(k),…,y(N)], where y(N)is close to the steady state value,with the sampling period of Tp.We consider that the mechanism system and simplified system have a same steady state value,which means K=y(N).Atime constant T=kTpis obtained to minimize J=∑i=1→N|y(i)?K(1?e?i/k)|,where J indicates the error between the mechanism system and simplified system.Then the simplified transfer function is obtained as y(N)/(kTp·s+1).

    Fig.3.Unit step response of the gas collector pressure system.——mechanism model;----simplified model.

    Using this method,we obtain the simplified model of two coke ovens system.

    where yi=ΔPi,ui=ΔRi,v=ΔPb,Gijand Gdiare the continuous transfer functions.Fig.3 also shows the feasibility of the simplification method by comparing the step responses of the mechanism model and simplified model.

    The transfer functions are discretized by a same sampling time,

    Accordingly,the initial ARMA model of the system can be obtained [14]

    3.Model Predictive Control Design

    In term s of the characteristics of the gas collector pressure system and the form of system model,ex tended state space based MPC is a better choice for control strategy.The front suction of the b last b lower can be measured and the model between it and the output can be obtained.Thus it is appropriate to add the feed forward strategy to the MPC algorithm,which is illustrated as follows.

    3.1.Prediction model

    To eliminate the steady-state errors of the closed-loop system,we apply u(k)=u(k?1)+Δu(k),v(k)=v(k?1)+Δv(k)in Eq.(9), where u(k)=[u1(k),u2(k)]Tand Δu(k)=[Δu1(k),Δu2(k)]T.The ARMA model can be obtained as

    where v is the front suction of the blast blower,θ can be obtained from h, g,hd,and gdin Eq.(8).The disturbance is included by the model for feed forward compensation.Then,we can easily obtain the extended state space based prediction model

    where matrices A,B,and E can be obtained from Eq.(10),and

    With prediction horizon P and control horizon M,the resulted prediction model is

    Due to the unknown future disturbance,we assume that Δv(k+i)= 0(i>0),i.e.v will not change.Then,with

    the output prediction model becomes

    3.2.Formulation of optimization problem

    At time k,the control objective is that the predictive output in predictive horizon approaches the expected output as close as possible and the manipulated variables do not change drastically.At the same time,the pressure in the gas collector must be controlled in a range of the set value for safety production and economic consideration.There are some other physical constraints in real systems.The valve opening can only change from 0°to 90°(norm ally 15°to 75°for controller), and the increm en t of valve opening is restricted in a specific range.

    We formulate the optimization problem as

    where ω(k)is the reference vector,and uM(k)=uM(k?1)+ΔuM(k).

    Fig.4 shows the control structure of the method,where vmis the measurable disturbance and vimis the immeasurable disturbance.

    4.Simulation Results

    We take a real gas collector pressure system with two coke ovens as an example,whose physical structure is similar to that in Fig.2. The values of the expected operating point are R10=20,R20=20, P10=110,P20=100,P10′=70,P20′=60,Ps10=210,Ps20=200, and Pb0=0.Other physical parameters are R12=5,R23=15,C1= C2=10,C12=8,C23=4,and k1=k2=0.2.

    Fig.4.The control structure of the proposed algorithm.

    To consider both rapidity and vibration prevention,we choose M=1, P=8 and weighting matrices Q=diag(1,1,…,1)and R=diag(2,2,…, 2).The physical constraints include:Rimust be within[0.2,200]due to the restriction of butterfly valve opening in[15°,80°],the increment of Riis within[?5,5],and the pressure in the gas collector should be within [?15,15]around the expected operating point.If disturbances are drastic and large,the algorithm proposed can relax the restrictions on pressure to make the problem feasible.The sampling period is Ts=20 s.

    Fig.5 shows the control result of the proposed MPC when we steer the operating point from P10=110 and P20=100 to P10=105 and P20=105.The traditional PID control is also employed for comparison. For the control performance of the system,including rapidity and overshoot,the proposed MPC method has advantages over the traditional PID control.

    Com pared with the normal MPC and PID control,Fig.6 shows the disturbance rejection capability of the proposed method,i.e.model predictive control with feed forward strategy(MPC-FF).It is obvious that with the disturbance in Fig.7,the proposed method is better.

    Fig.5.The control performance in changing operating point.

    Fig.6.The control performance.

    Fig.7.The disturbances.

    5.Conclusions

    The gas collector pressure system with external disturbances is a strongly coupled multi-variable system with nonlinear characteristics. An extended state space model predictive control with feed forward strategy is developed.The simulation results show that the proposed algorithm satisfies the control requirements.The future work is to implement the proposed method in to industrial applications,including the adjustment of the control model and parameters of controller with process data.

    [1]X.M.Liu,X.W.Gao,W.Wang,J.S.Wang,Survey on coke oven gas-collector pressure control,2011 Chinese Control and Decision Conference,2011,pp.528-533.

    [2]J.S.Yan,Q.Z.Zhang,The micro computer controlling system of JW-8601 coke oven pressure,Control Inst.Chem.Ind.19(1991)24-27.

    [3]H.P.Pan,Coke oven collector pressure control systems based on the uncoupling control,Control Inst.Chem.Ind.31(1)(2004)16-17.

    [4]R.K.Gong,Y.B.Wang,B.Zhang,J.Y.Li,X.Y.Shi,Modeling and decoupling for control system of gas collectors pressure,Control Inst.Chem.Ind.35(4)(2008)19-22.

    [5]C.H.Yang,M.W u,D.Y.Shen,G.Deconinck,Hybrid intelligent control of gas collectors of coke ovens,Contro l.Eng.Pract.9(7)(2001)725-733.

    [6]B.Zhou,W.Y.Li,Application of fuzzy theory on gas collector control,Proceeding of the Second International Con ference on Machine Learning and Cybernetics,2003, pp.2516-2519.

    [7]M.W u,J.Yan,J.H.She,W.H.Cao,Intelligent decoupling control of gas collection process of multiple asymmetric coke ovens,IEEE Trans.Ind.Electron.56(2009) 2782-2790.

    [8]H.X.Li,E.F.Dou,Y.N.Zhang,Model reference adaptive control using genetic algorithm and neural network for gas collectors of coke ovens,Proceeding of the 2010 IEEE International Conference on Mechatronics and Automation, 2010,pp.495-500.

    [9]Y.G.Xi,Model Predictive Control,National Defense Industry Press,Beijing,China, 1993.

    [10]Z.Y.Zou,M.Yu,Z.Z.Wang,X.H.Liu,Y.Q.Guo,F.B.Zhang,N.Cuo,Nonlinear model algorithmic control of a pH neutralization process,Chin.J.Chem.Eng.21(4) (2013)395-400.

    [11]Y.C.Hao,Q.Li,W.Tan,D.H.Li,Partially decentralized controller design viamodel predictive control,Chin.J.Chem.Eng.20(6)(2012)1094-1101.

    [12]X.Y.Feng,T.Yu,J.L.Wang,Non linear GPC within-p lace trained RLS-SVM model for DOC control in a fed-batch bioreactor,Chin.J.Chem.Eng.20(5)(2012)988-994. [13]W.Y.Zhang,D.X.Huang,Y.D.Wang,J.C.Wang,Adaptive state feedback predictive control and expert control for a delayed coking furnace,Chin.J.Chem.Eng.16(4) (2008)590-598.

    [14]B.L.Su,Z.Q.Chen,Z.Z.Yuan,Multi variable decoupling predictive control withinput constraints and its appication on chemical process,Chin.J.Chem.Eng.14(2)(2006) 216-222.

    [15]W.H.Shen,X.Q.Chen,M.N.Pons,J.P.Corriou,Model predictive control for wastewater treatment process with feed forward compensation,Chem.Eng.J.155(2009) 161-174.

    [16]J.Yang,S.H.Li,X.S.Chen,Q.Li,Disturbance rejection of ballm ill grinding circuits using DOB and MPC,Powder Technol.198(2010)219-228.

    [17]Q.F.Tang,D.W.Li,Y.G.Xi,D.B.Yin,Soft-sensing design based on semiclosed-loop framework,Chin.J.Chem.Eng.20(6)(2012)1213-1218.

    [18]P.Zhou,B.Xiang,T.Y.Chai,Im proved disturbance observer(DOB)based advanced feedback control for optimal operation of a mineral grinding process,Chin.J. Chem.Eng.20(6)(2012)1206-1212.

    [19]J.P.He,H.Li,Chemical Products Recovery Technology in Coking Industry,Metallurgical Industry Press,Beijing,China,2006.

    [20]Y.B.Meng,Q.C.Ji,X.L.Wang,Modeling and simulation for control system of gas collector pressure in coke ovens,J.Syst.Simul.17(2005)2314-2316.

    ☆Supported by the State Key Laboratory of Synthetical Automation for Process Industries,the National Natural Science Foundation of China(61374110,61333009, 61104078,61221003)and the Minhang Technology Project of Shanghai(2012MH211).

    *Corresponding author.

    E-mailaddress:dw li@sjtu.edu.cn(D.Li).

    Gas collector pressure system Model predictive control

    Feed forward

    一级爰片在线观看| 亚洲av熟女| 国产真实伦视频高清在线观看| 亚洲在线观看片| 亚洲av成人av| 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 少妇人妻精品综合一区二区| or卡值多少钱| or卡值多少钱| 少妇裸体淫交视频免费看高清| 亚洲av电影在线观看一区二区三区 | 美女大奶头视频| 永久免费av网站大全| 成年版毛片免费区| 秋霞伦理黄片| 91精品国产九色| 欧美一区二区精品小视频在线| 中文字幕免费在线视频6| 国内少妇人妻偷人精品xxx网站| 久久久欧美国产精品| 亚洲不卡免费看| 午夜老司机福利剧场| 99在线视频只有这里精品首页| 午夜激情欧美在线| 美女内射精品一级片tv| 免费av观看视频| 久久人妻av系列| 一级毛片我不卡| 午夜老司机福利剧场| 国产精品久久电影中文字幕| 黄色一级大片看看| 哪个播放器可以免费观看大片| 久久精品综合一区二区三区| 秋霞在线观看毛片| 亚洲性久久影院| 男的添女的下面高潮视频| 美女黄网站色视频| 国模一区二区三区四区视频| 免费黄网站久久成人精品| 国产免费男女视频| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 性色avwww在线观看| 午夜精品国产一区二区电影 | 欧美成人免费av一区二区三区| 日韩欧美在线乱码| 国产三级在线视频| 视频中文字幕在线观看| 极品教师在线视频| 伦理电影大哥的女人| 2022亚洲国产成人精品| 激情 狠狠 欧美| 熟女人妻精品中文字幕| 国产成人午夜福利电影在线观看| 亚洲真实伦在线观看| 成人特级av手机在线观看| 国产人妻一区二区三区在| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 变态另类丝袜制服| 能在线免费观看的黄片| 国产又色又爽无遮挡免| 欧美日韩在线观看h| 亚洲最大成人av| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 成人毛片a级毛片在线播放| 精品久久国产蜜桃| 国产亚洲一区二区精品| 少妇熟女aⅴ在线视频| 中文欧美无线码| 国产视频首页在线观看| 国产亚洲一区二区精品| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 能在线免费看毛片的网站| 乱码一卡2卡4卡精品| av天堂中文字幕网| 亚洲av免费在线观看| 美女cb高潮喷水在线观看| 乱码一卡2卡4卡精品| 国产av码专区亚洲av| 美女黄网站色视频| 热99re8久久精品国产| 国产在线男女| 亚洲自拍偷在线| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 亚洲av中文字字幕乱码综合| 九草在线视频观看| 国产黄片美女视频| 日本av手机在线免费观看| 日产精品乱码卡一卡2卡三| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 尾随美女入室| 边亲边吃奶的免费视频| 一级爰片在线观看| 国产精品乱码一区二三区的特点| 国产午夜福利久久久久久| 国产极品天堂在线| 哪个播放器可以免费观看大片| 亚州av有码| or卡值多少钱| 国产精品久久久久久av不卡| 久久午夜福利片| 亚洲欧美日韩高清专用| 91精品伊人久久大香线蕉| 亚州av有码| 在线天堂最新版资源| 久久精品熟女亚洲av麻豆精品 | 九九热线精品视视频播放| 精品午夜福利在线看| 免费观看a级毛片全部| 22中文网久久字幕| 亚洲性久久影院| 亚洲丝袜综合中文字幕| 国产精品99久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品人妻少妇| 日日干狠狠操夜夜爽| 内地一区二区视频在线| 国产精品久久久久久久电影| 男女边吃奶边做爰视频| 特大巨黑吊av在线直播| 日本免费在线观看一区| 色综合站精品国产| 蜜桃久久精品国产亚洲av| 国产高清不卡午夜福利| 日本猛色少妇xxxxx猛交久久| 人妻系列 视频| 精品酒店卫生间| 国产精品久久久久久精品电影| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕| 91午夜精品亚洲一区二区三区| 一级二级三级毛片免费看| 美女高潮的动态| 精品酒店卫生间| 七月丁香在线播放| 久久精品夜色国产| 在线观看66精品国产| 五月玫瑰六月丁香| 成年免费大片在线观看| 一级黄色大片毛片| 国产精品日韩av在线免费观看| 99热6这里只有精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av免费在线观看| 日韩 亚洲 欧美在线| 久久久欧美国产精品| 91av网一区二区| 精品久久久久久久末码| 国产日韩欧美在线精品| 免费观看a级毛片全部| 一个人观看的视频www高清免费观看| 99久久人妻综合| 亚洲第一区二区三区不卡| 国产成人福利小说| 亚洲av电影不卡..在线观看| 三级国产精品欧美在线观看| 欧美一区二区亚洲| 一级爰片在线观看| 日本色播在线视频| 男人和女人高潮做爰伦理| a级一级毛片免费在线观看| 久久99精品国语久久久| 亚洲综合精品二区| 国产欧美日韩精品一区二区| 国产亚洲5aaaaa淫片| 久久精品久久精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品久久久久久| 国产精品三级大全| 色视频www国产| av福利片在线观看| 美女xxoo啪啪120秒动态图| 免费黄网站久久成人精品| 国产极品精品免费视频能看的| 国产精品爽爽va在线观看网站| 中文字幕亚洲精品专区| 日韩一本色道免费dvd| 午夜亚洲福利在线播放| 免费人成在线观看视频色| 亚洲自拍偷在线| 日韩欧美精品免费久久| 91狼人影院| 免费播放大片免费观看视频在线观看 | 国产中年淑女户外野战色| 久久精品熟女亚洲av麻豆精品 | 韩国高清视频一区二区三区| 国产成人午夜福利电影在线观看| 人体艺术视频欧美日本| 91aial.com中文字幕在线观看| 国产精品三级大全| 国内精品宾馆在线| 国产又黄又爽又无遮挡在线| 国产免费男女视频| 少妇丰满av| 久久99热这里只频精品6学生 | 色网站视频免费| 高清日韩中文字幕在线| 美女cb高潮喷水在线观看| 免费观看精品视频网站| 亚洲精品aⅴ在线观看| 日本猛色少妇xxxxx猛交久久| 大香蕉97超碰在线| 国产高清三级在线| 欧美日韩一区二区视频在线观看视频在线 | 一二三四中文在线观看免费高清| 国产v大片淫在线免费观看| 国产成人freesex在线| 深夜a级毛片| 欧美精品国产亚洲| 午夜免费激情av| 午夜福利在线观看吧| 亚洲av电影不卡..在线观看| 国产精品99久久久久久久久| 欧美日本亚洲视频在线播放| 久久久久久大精品| 国产片特级美女逼逼视频| 亚洲三级黄色毛片| 插逼视频在线观看| 少妇人妻一区二区三区视频| 久久精品久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 99久久九九国产精品国产免费| 国产三级中文精品| 麻豆国产97在线/欧美| 国产黄色视频一区二区在线观看 | 久久久久久伊人网av| 18禁在线无遮挡免费观看视频| 嘟嘟电影网在线观看| 伦精品一区二区三区| 国内精品美女久久久久久| 亚洲精品成人久久久久久| 嫩草影院精品99| 久久国内精品自在自线图片| 成人鲁丝片一二三区免费| 日韩欧美国产在线观看| 一个人看视频在线观看www免费| 国产三级在线视频| 久久久精品欧美日韩精品| 97热精品久久久久久| 一级爰片在线观看| 亚洲国产高清在线一区二区三| 噜噜噜噜噜久久久久久91| 晚上一个人看的免费电影| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 天美传媒精品一区二区| 久久精品国产99精品国产亚洲性色| 女人久久www免费人成看片 | 麻豆乱淫一区二区| 国产色婷婷99| 男女啪啪激烈高潮av片| 免费大片18禁| 国产乱来视频区| 国产成人a区在线观看| 国产爱豆传媒在线观看| 国产成人精品婷婷| 18禁裸乳无遮挡免费网站照片| 国产在线男女| 久久99热这里只有精品18| 国产淫片久久久久久久久| 不卡视频在线观看欧美| 久久久久久伊人网av| 嫩草影院入口| 啦啦啦观看免费观看视频高清| 日韩精品青青久久久久久| 午夜亚洲福利在线播放| 国产久久久一区二区三区| 永久网站在线| 国产男人的电影天堂91| 91久久精品国产一区二区成人| 久久精品夜色国产| 大又大粗又爽又黄少妇毛片口| 波野结衣二区三区在线| 国产成人免费观看mmmm| 禁无遮挡网站| 日韩欧美在线乱码| 精华霜和精华液先用哪个| 欧美成人一区二区免费高清观看| 又黄又爽又刺激的免费视频.| av在线蜜桃| 国产一区二区亚洲精品在线观看| a级毛色黄片| 九草在线视频观看| 草草在线视频免费看| 免费观看的影片在线观看| 午夜视频国产福利| 成人三级黄色视频| 51国产日韩欧美| 亚洲中文字幕日韩| av在线播放精品| 亚洲成av人片在线播放无| 99在线人妻在线中文字幕| 亚洲不卡免费看| 亚洲欧美精品专区久久| 99热全是精品| 男女啪啪激烈高潮av片| 简卡轻食公司| 22中文网久久字幕| 国产黄色视频一区二区在线观看 | 亚洲国产色片| 日韩欧美 国产精品| 男人的好看免费观看在线视频| 人妻制服诱惑在线中文字幕| 青青草视频在线视频观看| 少妇的逼水好多| 一边亲一边摸免费视频| 99热精品在线国产| 精品久久久久久久久av| 日韩一区二区视频免费看| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 久久久久久久久大av| 亚洲av不卡在线观看| 国产午夜精品久久久久久一区二区三区| 欧美xxxx性猛交bbbb| 欧美三级亚洲精品| 最近手机中文字幕大全| 三级男女做爰猛烈吃奶摸视频| 欧美激情在线99| 国产探花极品一区二区| 一个人免费在线观看电影| 看黄色毛片网站| 亚洲av成人av| 秋霞伦理黄片| 91久久精品国产一区二区三区| 国产免费又黄又爽又色| 美女国产视频在线观看| 老女人水多毛片| 亚洲综合色惰| 真实男女啪啪啪动态图| 丰满人妻一区二区三区视频av| 99久久成人亚洲精品观看| 精品国产三级普通话版| 久久精品国产鲁丝片午夜精品| 欧美日韩精品成人综合77777| 建设人人有责人人尽责人人享有的 | 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 蜜臀久久99精品久久宅男| 久99久视频精品免费| 永久网站在线| 美女cb高潮喷水在线观看| 精品不卡国产一区二区三区| 亚洲五月天丁香| 国产黄片美女视频| 最后的刺客免费高清国语| 一级黄色大片毛片| 午夜老司机福利剧场| 亚洲av二区三区四区| 精品免费久久久久久久清纯| 少妇高潮的动态图| 一个人观看的视频www高清免费观看| 黄色配什么色好看| 亚洲高清免费不卡视频| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 国产精品.久久久| 久久韩国三级中文字幕| 国产老妇女一区| 午夜老司机福利剧场| 美女脱内裤让男人舔精品视频| 亚洲精品影视一区二区三区av| 汤姆久久久久久久影院中文字幕 | 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 国产久久久一区二区三区| 热99在线观看视频| 在线播放国产精品三级| 黑人高潮一二区| 亚洲在线观看片| 国产亚洲91精品色在线| 麻豆一二三区av精品| 男女国产视频网站| 国产精品麻豆人妻色哟哟久久 | 亚洲最大成人手机在线| 久久久久久九九精品二区国产| 久99久视频精品免费| 久久久亚洲精品成人影院| 狂野欧美白嫩少妇大欣赏| 日韩精品青青久久久久久| 性色avwww在线观看| 亚洲无线观看免费| 成人毛片60女人毛片免费| 欧美最新免费一区二区三区| 男女国产视频网站| 日本黄色片子视频| 国产成人精品久久久久久| 插阴视频在线观看视频| 久久久久国产网址| 久久久精品欧美日韩精品| 国产色婷婷99| 全区人妻精品视频| 纵有疾风起免费观看全集完整版 | 三级国产精品欧美在线观看| 好男人视频免费观看在线| 久久久久久久久久成人| 国产黄a三级三级三级人| 天堂影院成人在线观看| 国产极品天堂在线| 男女视频在线观看网站免费| 日韩视频在线欧美| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 人人妻人人澡人人爽人人夜夜 | 国产乱人视频| 毛片一级片免费看久久久久| 国产又色又爽无遮挡免| 国产精品人妻久久久影院| 欧美极品一区二区三区四区| 国产精品一区二区性色av| a级毛片免费高清观看在线播放| 观看免费一级毛片| 日本黄色视频三级网站网址| 一二三四中文在线观看免费高清| 99热这里只有是精品50| 男人舔女人下体高潮全视频| 啦啦啦啦在线视频资源| 亚洲av日韩在线播放| 亚洲五月天丁香| 特级一级黄色大片| 舔av片在线| 免费av观看视频| 日韩成人av中文字幕在线观看| 国产成人一区二区在线| 久久精品久久精品一区二区三区| 一个人看的www免费观看视频| av国产久精品久网站免费入址| 美女脱内裤让男人舔精品视频| 性色avwww在线观看| 亚洲电影在线观看av| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 久久人人爽人人片av| 97人妻精品一区二区三区麻豆| 18禁动态无遮挡网站| 亚洲国产精品专区欧美| 美女被艹到高潮喷水动态| 91久久精品国产一区二区三区| 国产免费男女视频| 最后的刺客免费高清国语| 永久免费av网站大全| 麻豆乱淫一区二区| 成人国产麻豆网| 真实男女啪啪啪动态图| 综合色av麻豆| 少妇熟女aⅴ在线视频| 六月丁香七月| 纵有疾风起免费观看全集完整版 | 欧美区成人在线视频| 天天躁日日操中文字幕| 国产成人精品久久久久久| 国产片特级美女逼逼视频| 日日啪夜夜撸| 高清毛片免费看| 亚洲国产欧美在线一区| 国产精品人妻久久久久久| 成人午夜高清在线视频| 午夜福利在线观看免费完整高清在| 人妻少妇偷人精品九色| 村上凉子中文字幕在线| 日本三级黄在线观看| 国产亚洲91精品色在线| 久久久久久久久久成人| 日韩高清综合在线| 国产三级中文精品| 九九爱精品视频在线观看| 美女黄网站色视频| 91精品一卡2卡3卡4卡| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 亚洲一区高清亚洲精品| 高清日韩中文字幕在线| 欧美高清成人免费视频www| 69人妻影院| 成人亚洲欧美一区二区av| 国产老妇伦熟女老妇高清| 亚洲精品,欧美精品| 别揉我奶头 嗯啊视频| 99在线人妻在线中文字幕| 欧美+日韩+精品| 一级毛片我不卡| 国产乱人视频| 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| av在线亚洲专区| 一个人观看的视频www高清免费观看| 国产一级毛片七仙女欲春2| 建设人人有责人人尽责人人享有的 | 国产精品精品国产色婷婷| 成年版毛片免费区| 久99久视频精品免费| 精品久久久久久久久亚洲| 国产精品麻豆人妻色哟哟久久 | 久久精品国产99精品国产亚洲性色| 国产精品久久久久久精品电影| 日韩一区二区视频免费看| av在线播放精品| 国产成人精品久久久久久| 色视频www国产| 七月丁香在线播放| 91精品一卡2卡3卡4卡| 一区二区三区免费毛片| 午夜福利高清视频| 国产精品久久电影中文字幕| 国产亚洲午夜精品一区二区久久 | 欧美日韩国产亚洲二区| 一区二区三区乱码不卡18| 久久热精品热| 亚洲不卡免费看| 成年女人永久免费观看视频| 久久久久久久久久久免费av| 亚洲成人久久爱视频| 2021天堂中文幕一二区在线观| 精品人妻一区二区三区麻豆| 舔av片在线| 精品国产一区二区三区久久久樱花 | 中文字幕av在线有码专区| 国产成人a∨麻豆精品| 午夜福利高清视频| 亚洲美女搞黄在线观看| a级毛片免费高清观看在线播放| 国产黄片美女视频| 免费黄色在线免费观看| 久久亚洲精品不卡| 亚洲人成网站在线观看播放| 好男人视频免费观看在线| 午夜日本视频在线| 精品人妻一区二区三区麻豆| av在线天堂中文字幕| 老司机影院毛片| 久久人人爽人人片av| 久久久久久久久大av| 在线播放无遮挡| 午夜免费激情av| 黄片无遮挡物在线观看| 成人美女网站在线观看视频| 两个人视频免费观看高清| 亚洲欧美精品自产自拍| 18禁动态无遮挡网站| 麻豆国产97在线/欧美| 看十八女毛片水多多多| 99热6这里只有精品| 久久久久久伊人网av| 亚洲精品成人久久久久久| 久久久精品大字幕| 亚洲欧美日韩卡通动漫| 日韩一本色道免费dvd| 99久久人妻综合| or卡值多少钱| 中文亚洲av片在线观看爽| 午夜激情欧美在线| 高清日韩中文字幕在线| 熟妇人妻久久中文字幕3abv| 国产片特级美女逼逼视频| 久久久久精品久久久久真实原创| 小蜜桃在线观看免费完整版高清| 亚洲国产最新在线播放| 日本与韩国留学比较| 国产又黄又爽又无遮挡在线| 午夜亚洲福利在线播放| 永久免费av网站大全| 日本黄色片子视频| 在线观看一区二区三区| 国产亚洲av片在线观看秒播厂 | 少妇猛男粗大的猛烈进出视频 | 最近手机中文字幕大全| 成年女人看的毛片在线观看| 1024手机看黄色片| av在线蜜桃| 秋霞在线观看毛片| 欧美日韩精品成人综合77777| 直男gayav资源| 久久人人爽人人爽人人片va| 在线播放无遮挡| 亚洲欧美日韩卡通动漫| 小说图片视频综合网站| 国产片特级美女逼逼视频| 亚洲自拍偷在线| 精品人妻一区二区三区麻豆| 久久精品影院6| 久久久久久久久中文| 两个人视频免费观看高清| 精品国产露脸久久av麻豆 | 亚洲aⅴ乱码一区二区在线播放| 色网站视频免费| 成人av在线播放网站| 国产午夜精品久久久久久一区二区三区| 99热这里只有精品一区| 国产成年人精品一区二区| 可以在线观看毛片的网站| 国产精品精品国产色婷婷| 少妇高潮的动态图| 国内精品宾馆在线| 午夜a级毛片| 午夜免费男女啪啪视频观看| 国产精华一区二区三区| 久久精品久久久久久噜噜老黄 | 国产精品久久视频播放| 亚洲成人精品中文字幕电影| 日韩一区二区视频免费看| 插阴视频在线观看视频| 欧美日韩精品成人综合77777| 国产又色又爽无遮挡免| 国产精品熟女久久久久浪| 26uuu在线亚洲综合色| 尾随美女入室| 人妻少妇偷人精品九色| 99久久中文字幕三级久久日本| 久久鲁丝午夜福利片|