• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design and Analysis of Integrated Predictive Iterative Learning Control for Batch Process Based on Two-dimensional System Theory☆

    2014-07-17 09:10:15ChenChenZhihuaXiongYishengZhong

    Chen Chen,Zhihua Xiong*,Yisheng Zhong

    Department of Automation,Tsinghua University,Beijing 100084,China

    Design and Analysis of Integrated Predictive Iterative Learning Control for Batch Process Based on Two-dimensional System Theory☆

    Chen Chen,Zhihua Xiong*,Yisheng Zhong

    Department of Automation,Tsinghua University,Beijing 100084,China

    A R T I C L E I N F O

    Article history:

    Received 27 December 2013

    Received in revised form 25 February 2014 Accepted 19March 2014

    Available on line 18 June 2014

    Based on the two-dimensional(2D)system theory,an integrated predictive iterative learning control(2D-IPILC) strategy for batch processes is presented.First,the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process.Then,an integrated framework of combining iterative learning control(ILC)and model predictive control(MPC)is form ed reasonably.The output of feed forward ILC is estimated on the basis of the predefined process2 D model.By minimizing a quadratic objective function,the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes.Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type(P-type)ILC despite the model error and disturbances.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    For tracking the reference trajectory in batch processes,ILC[1]is a popular control framework in which the in formation of previous batches is used to ad just the control input for the next batch.It is widely used and applied to batch processes[2,3]owing to the key characteristic that the convergence condition is not related to the system matrix[4].However,control performance of batch processes under traditional ILC is usually degraded when the non-repetitive disturbance and uncertain dynamics such as output noise exist within a batch.Meanwhile,the convergence speed is not concerned in most cases.

    It is reasonable to combine other control methods with ILC to deal with these situations.Amann[5]applied the predictive idea to the ILC scheme,referred as predictive optimal ILC,and it had been shown that forecastmay con tribute to the convergence speed.Other researches showed that encouraging results can be obtained by the combination of ILC with feedback control method such as MPC,in which the input was ad justed based on the output prediction of a predefined dynamic model.To overcome the model uncertainty and process disturbances, Ch in and Lee[6]proposed a batch MPC(BMPC)algorithm,in which not only the measurements from the current batch but also the information from the past batches was used,and later their work is extended to quadratic BMPC(QBMPC)[7]based on the quadratic ILC(Q-ILC)[8]. Xiong et al.[9,10]used sh rinking horizon model predictive control (SHMPC)within the batch,while the ILC was used between the batches to improve the tracking performance.In our previous work[11],an integrated scheme was studied further by combining a traditional P-type ILC with MPC.On the other hand,the integration of these two special control schemes should be very careful for the inconsistent predictions [12].

    It is noted that these researches mentioned above are all in time domain,however,a batch process can be considered as a standard two dimensional(2D)system[13].A typical input affects not only the next time steps of ongoing batch but also the next batches while ILC is used.In view of the2D system theory,the2D dynamic of the system,referred as time domain and batch domain,can be taken into account together.Thus,it is feasible that the batch-wise feed forward controller and the time-wise feedback controller can be designed and integrated to realize better control performance.Kurek and Zaremba[14] explained the traditional P-ILC in 2D system theory and proved the convergence condition in the 2D framework.Based on a controlled auto-regressive integrated moving-average(CARIMA)model,Shi and Gao[15]presented an integrated robust learning control framework by using a 2D Roesser model and linear matrix inequalities in order to deal with the uncertain perturbation.In their later works[16,17],an integrated scheme,referred as 2D-GPILC,was proposed to combinegeneralized predictive control(GPC)with ILC.Recently,Mo et al.[18] presented a 2D dynamic matrix control(2D-DMC)algorithm and the sufficient conditions of convergence and robustness of the method are discussed.

    In spite of these works referred above,few 2D-theory based ILC control framework involves the nature characteristic of systemsuch as the state-transition matrix and system responses.In this paper,according to the2D Roesser model,an integrated predictive iterative learning control scheme is presented not only to overcome the model error and uncertain process disturbances but also to deliver faster convergence speed than traditional P-ILC performance.In this control scheme, the traditional P-ILC is used from batch to batch,while the input is re-ad justed by involving MPCwithin the batch.Based on the prediction of the responses of P-ILC,a quadratic objective function is minimized to determine the current input changes.The 2D-IPILC algorithm presented in this paper may provide a suitable framework of combining different types of ILC with MPC.Advantages of those candidate methods can be also contained in this scheme,but the control performance may be affected by the choice of parameter in the algorithm.Simulations are presented to demonstrate control performance of the scheme.

    2.Design of 2D-IPILC Method for Batch Process

    2.1.Tracking control problem of batch process

    In this study,a batch process is considered as a class of singleinput-single-output(SISO)linear time-invariant(LTI)system.It is assumed that the batch process operates over a finite time duration and the process can be described by the following discrete-time state-spacemodel: where k is the batch index,t is the time index and t∈[1,N],N is the number of sampling intervals,χ∈Rn,u∈R,y∈R are state,input and output variables,respectively,d(t,k)denotes output disturbance and A,B,and C are real matrices with appropriate dimensions, respectively.

    The task of the proposed control method is to find the input sequence Uk=[uk(0),uk(1)…,uk(N?1)]Tover the time duration such that for a given reference trajectory Yd=[yd(1),yd(2),…,yd(N)]T,the process output tracking error e(t,k)=yd(t)?y(t,k)is satisfied with:

    Let us define:

    Then the above process in Eq.(1)can be described by the following two-dimensional Roesser model[18]:

    Therefore,the tracking control problem is to find the input change Δu(t?1,k)in the 2D system[Eq.(4)]in order to guarantee the convergence of the tracking error e(t,k).

    In this study,the 2D system[Eq.(4)]satisfies the following assumptions.

    Assumption 1.All batches run from the same initial conditions, i.e.χ(0,k)=χ0,(?k>0),such that for the 2D system[Eq.(4)]the boundary condition is satisfied with η(1,k)=0,(?k>0).

    Assumption 2.The output noise d(t,k)is bounded by a constant Bd>0, i.e.?t,k,‖d(t,k)‖<Bd.Hence,the next inequality holds:‖Δd(t,k)‖≤2?Bd.

    2.2.Response of P-ILC

    No rm ally,for the above tracking control problem of batch process,the traditional P-ILC can be used here and the change of input from batch to batch can be calculated by the following ILC law[13]:

    where L denotes the learning rate.

    Substituting the control law[Eq.(5)]in the P-ILC to Eq.(4),the system can be reform ed as:

    Define the state-transition matrices in the 2D system[Eq.(6)] as[13]:

    Then,based on the 2D theory[19],the response of system[Eq.(6)] can be described as follows:

    where:

    For clarity of the description,we use the following notations:

    It should be noted that in the response of Eq.(8),it holds η(1,j)=0,?j>0 according to Assumption 1.Then under the P-ILC,the general response of 2D Roesser model(Eq.(6))can be rewritten as[19]:

    Furthermore,in the system response of Eq.(11),e(i,0)(?i∈[1,N]) is the initial tracking error and should have been known,and the noisechanges Δd(i,j)are also bounded according to Assumption 2.It has been proved that the convergence of tracking control can be obtained if the learning rate L satisfied[14]:

    which means all the eigenvalues of the matrix I?C·B·L are inside the unit circle.

    However,the convergence condition above is a sufficient condition[14],and it can be also found that even though the condition is satisfied,perfect control performance can be hard ly obtained due to the effect of disturbance d(t,k).

    2.3.2D-IPILCLaw

    In our previous works[9],MPC is induced to combine ILC to achieve better performance.Here the idea is still used,the input is re-ad justed on the control profile determined by the ILC from batch to batch,and the control law of2D system of Eq.(4)takes the following form:

    where Δu(t?1,k+1)represents the batch-to-batch control part and ?u(t?1,k+1)represents the within-batch control part,respectively. Δu(t?1,k+1)is usually designed as:

    where the learning rate L can be designed as the above normal P-ILC. Other ILC algorithm,such as Q-ILC[8],can be also used if the selected control law conforms the convergence condition of Eq.(12).

    Even though P-ILC may be robust to a certain amount of model error from batch to batch,it usually cannot handle the uncertain process disturbances within a batch.In order to overcome the model uncertainty and process disturbances a swell as accelerate the convergence speed, the re-ad justed part?u t?1,k+1(

    )is determined by MPC for the reason that the MPC is a suitable way to overcome the model error and uncertain disturbances within the current batch[9].

    Substituting the control law of Eq.(13)to the 2D system of Eq.(4), the system can be reformulated as:

    Let us define:

    Based on the 2D theory[19],the response of system of Eq.(15)leads to:

    Therefore,using the above system response,the error transition model predictions can be calculated analytically.Based on the above response of Eq.(17),the predictions of the error transition model can be estimated as:

    where^ξt+l|t,k

    (),l∈1,m[]is the prediction,m is the prediction step.In this study,the prediction step is set to be m,m∈[1,+∞),which means the predictive step in MPC is not limited and maybe larger than the batch duration N,andρ=[m/N]is defined.?(t+l,k)is the value that can be calculated by using those in formation known before the time t and batch k,which can be described as follows:

    Define the following vectors:

    And define a matrix G in the prediction model of Eq.(18)as:

    As a result,the predictive model can be formulated in the matrix form by:

    where Gmis a part of thematrix G according to the time t:

    whereα,β,andγare weighting parameters and are satis fi ed with α>0,β≥0,γ≥0.

    The above cost function(Eq.(24))can be rew ritten in thematrix form as follows:

    where R and Q are the weighting parameter matrices as follows:

    Herewe only consider the unconstrainedcase,thus an analytical solution of the MPC within the current batch can be obtained through straightforward calculation which leads to:

    Ateach time t within the current batch k,the first element of Eq.(26) is used as the re-adjusted input in the control law of Eq.(13).

    3.Analysis of the 2D-IPILC Algorithm

    The 2D-IPILC algorithm proposed above may provide a suitable framework of combining different types of ILC with MPC.The 2D-IPILC algorithm can be transform ed in to other special method by selecting different weighting parameter matrices Q and R in the objective function.

    If the learning rate L is set to be 0 and the parameters are chosen as β=0,α>0,γ>0,the optimization problem of Eq.(25)is transform ed as follows[6]:

    which can be considered as the method of BMPC.Furthermore,if the learning rate L is chosen like Q-ILC,then the algorithm may be turned into QBMPC[7].

    If the predictive step mis set to m=N at each beginning of a new batch and the predict step is also sh rinking by time t within a batch, then the algorithm can represent the combination of SHMPC and ILC proposed by Xiong etal.[9].

    If the predictive step m isselected as m=κ?N,whereκisan integer, and the other parametersare selected as L=0,β=0,γ=0,andα>0, and the 2D-IPILC isonly adop ted when t=0,then the quadratic objective function can be reform ed as[5]:

    which is similar to multi-batch predictive ILC proposed by Amann et al.[5].

    It is reasonable that the algorithm may contain all properties of the candidate control methods due to the particular framework.In this framework,the input of the system is not only determined by the feed forward batch-to-batch control but also the feedback withinbatch control,and by the combination of these two different methods. Thus,the system may converge to desire trajectory more robustness and faster.

    Despite the advantages of the algorithm,the tracking performance is still influenced by the values of parameters Q and R in the quadratic objective function of Eq.(25).Under the conditions that a relatively accurate process model is built or more attentions are paid to the convergence speed,it is recommended that the para meter may be selected as β=0,and α>γ.Otherwise,for the opposite parameters,the robustness can be considered more reasonably.

    In Ref.[18],a2D dynamic matrix control(2D-DMC)algorithm is presented based on an integrated model.More attention is paid on the analysis of convergence condition and robustness against repeatable and non-repeatable interval uncertain ties.Simulation results show that control performance is improved by the combination of the feedback control and the feed-forward control.Nevertheless,how the past uncertain ties transmit in the process with batch and time and how it does impact the current performance are not concerned.In this paper, based on 2D Rosser theory and specific system description,it can be found that after a 2D linear transform determined by the 2D difference of time and batch,the past in formation affects current performance by superposition principle.

    It should be noted that if the noise d(t,k)in the process of Eq.(1)is a kind of repetitive disturbances for all batches,the perfect tracking performance can be obtained[9].

    4.Simulation on a Typical Batch Reactor

    The simulated process is a typical batch reactor with temperature as the control variable which is studied by Logsdon et al.[20].The reaction scheme is A→k1B→k2C.The objective of the reactor is to maximize the product B after a period of time.The process can be described by the following differential equations:

    where χ1and χ2denote the concentrations of input A and B,respectively,and the initial conditions are χ1(0)=1,χ2(0)=0. Input u=T/Trefis the dimensionless temperature where Tref= 348 K is the reference temperature and the temperature T is constrained by 298(K)≤T≤398(K).Values for other parameters in Eq.(29)are k1=4.0×10?3,k2=6.2×105,E1=2.5×103and E2= 5.0×103.The period of batch reaction is set to be 1.0 h and the duration is divided in to N=10 equal intervals.The desired reference trajectory is set to be the same as our precious work,so does the nominal input trajectory[10].

    The root-sum-square-error(RMSE)of tracking error is used to illustrate the tracking performance.For comparison,P-ILC is also used to deal with the same problem.Furthermore,model disturbance is simulated to verify the performance of the algorithm.

    In this study the real nonlinear differential model is assumed to be unknown.Instead,an approximate discrete linear model is established to describe the process.For such a typical batch reactor,a two-order system can be used to approach the dynamic behavior.Correspondingly,the process can be described by a difference equation:

    By means of different input profiles deviating from the nominal input,three batches were simulated and are used as the historical process datasets to identify the parameters of the discrete system of Eq.(30).Then,it is easy to get a state realization of the discrete-time model:

    where the disturbance is assumed to be an uniform distribution between[?0.0025,0.0025].

    Fig.1.Testing performance of the discrete linear model.

    From Fig.1,it can be seen that the discrete linear model can approach the dynamic behavior although model errors exist.

    Considering the model error,the parameter of the special method is chosen as:m=5,L=0.4,α=1,β=0,γ=10,which means more attentions are paid to the robustness of the process rather than the convergence speed due to the inaccurate model and disturbances. Fig.2 shows the trajectories of the product concentration χ2under the 2D-IPILC algorithm.It can be found that output converges to the desired trajectory asymptotically.Figs.3 and 4 indicate the trajectories of input and each part of the control law of Eq.(13), respectively.

    As a comparison,P-ILC is also used to handle the tracking control problem with the learning rate as L=0.4.Even though the P-ILC method is a non-sensitive model method,it cannot deal with the measuring noise very well.Fig.5 shows the RMSE of the tracking error of these two different methods.It is shown that the combination of ILC and MPC does make the convergence more robust.It is also noted that the MPC may not speed up obviously the convergence of tracking error due to the model mismatch.

    Fig.2.Trajectories of concentration.

    Furthermore,it always occurred that the kinetic parameters of batch reactor may change due to catalyst activities or impurities etc.These disturbances may cause the mutation of the process model so that the control performance is affected correspondingly.

    To show the applications of the proposed framework to the unexpected mutations,a scenario,in which a kinetic parameter is changed, is considered in this simulated process.In this case,it is assumed that the parameter E2in the model is increased by 5%,from the nominal data of 5.0×103to 5.25×103.Fig.6 shows the RMSE of control performance under this disturbance.It is shown that the tracking error deteriorates sharply at the 16th batch,and then converges to thedesired trajectory asymptotically while the mutation occurred.It is also indicated that the combination of ILC and MPC is a model non-sensitive method,while the suitable parameter of the algorithm is chosen.

    Fig.3.Input temperature profile.

    Fig.4.Trajectories of each part of the control law.

    Fig.5.RMSE of each batch in the comparison.

    [1]S.Arimoto,S.Kawamura,F.Miyazaki,Bettering operating of robots by learn ing,J. Robot.Syst.12(2)(1984)123-140.

    [2]J.H.Lee,K.S.Lee,Iterative learning control applied to batch processes:an overview, Control.Eng.Pract.15(10)(2007)1037-1046.

    [3]Y.Q.Wang,F.R.Gao,F.J.Doyle,Survey on iterative learning control,repetitive control,and run-to-run control,J.Process Control19(10)(2009)1589-1600.

    [4]J.X.Xu,Y.Tan,Robust optimal design and convergence properties analysis of iterative learning control approaches,Automatica 38(11)(2002)1867-1880.

    [5]N.Am ann,David,H.Owens,E.Rogers,Predictive optimal iterative learning control, Int.J.Control.69(2)(1998)203-226.

    [6]I.S.Chin,K.S.Lee,J.H.Lee,A technique for integrated quality control,profi le control, and constraint hand ling for batch processes,Ind.Eng.Chem.Res.39(3)(2000) 693-705.

    Fig.6.RMSE of each batch under the disturbance.

    [7]K.S.Lee,J.H.Lee,Iterative learning control-based batch process control technique for integrated control of end product properties and transient profiles of process variables,J.Process Control13(7)(2003)607-621.

    [8]K.S.Lee,W.C.Kim,J.H.Lee,Model-based iterative learning control with quadratic criterion for linear batch processes,J.Control.Autom.Syst.Eng.2(3)(1996) 148-157.

    [9]Z.H.Xiong,J.Zhang,Tracking control for batch processes through integrating batchto-batch iterative learning control and within-batch on-line control,Ind.Eng.Chem. Res.44(11)(2005)3983-3992.

    [10]Z.H.Xiong,J.Zhang,Optimal iterative learning control for batch processes based on linear time-varying perturbation m ode l,Chin.J.Chem.Eng.16(2)(2008) 235-240.

    [11]C.Chen,Z.H.Xiong,An integrated predictive iterative learning control for batch process,Control.Theory App l.29(8)(2012)1069-1072.

    [12]K.S.Lee,J.H.Lee,D.R.Yang,A.W.Mahoney,Integrated run-to-run and on-line model-based control of particle size distribution for a semi-batch precipitation reactor,Com put.Chem.Eng.26(7)(2002)1117-1131.

    [13]T.Kaczored,Two-Dimensional Linear System,Springer,Berlin,1985.

    [14]Jerzy,E.Kurek,Marek,B.Zaremba,Iterative learning control synthesis based on 2-d system theory,IEEET rans.Autom.Control38(1)(1993)121-125.

    [15]J.Shi,F.R.Gao,T.J.W u,Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system,J.Process Control 15(8) (2005)907-924.

    [16]J.Shi,F.R.Gao,T.J.W u,Integrated design and structure analysis of robust iterative learning control system based on a two-dimensional model,Ind.Eng.Chem.Res. 44(21)(2005)8095-8105.

    [17]J.Shi,F.R.Gao,T.J.W u,Single-cycle and multi-cycle generalized 2D model predictive iterative learning control(2D-GPILC)schemes for batch processes,J.Process Control 17 (9)(2007)907-924.

    [18]S.Mo,L.M.Wang,Y.Yao,F.R.Gao,Two-time dimensional dynamic matrix control for batch processes with convergence analysis against the 2D interval uncertainty, J.Process Control 22(5)(2012)899-914.

    [19]R.P.Roesser,A discrete state-space model for linear image processing,IEEET rans. Autom.Control20(1)(1975)1-10.

    [20]J.S.Logsdon,L.T.Biegler,Accurate solution of differential-algebraic optimization problems,Ind.Eng.Chem.Res.28(11)(1989)1628-1639.

    ☆Supported in part by the State Key Development Program for Basic Research of China(2012CB720505),and the National Natural Science Foundation of China (61174105,60874049).

    *Corresponding author.

    E-mailaddress:zhxiong@tsinghua.edu.cn(Z.Xiong).

    Iterative learning control Model predictive control Integrated control

    Batch process

    Two-dimensional systems

    男女无遮挡免费网站观看| 老司机福利观看| 亚洲av日韩精品久久久久久密| tube8黄色片| 9热在线视频观看99| 久久人妻av系列| 午夜精品久久久久久毛片777| 90打野战视频偷拍视频| 国产xxxxx性猛交| 久久久久久免费高清国产稀缺| 午夜福利视频精品| 国产成人av教育| 俄罗斯特黄特色一大片| 国产真人三级小视频在线观看| 精品国产亚洲在线| 不卡av一区二区三区| 夫妻午夜视频| 三级毛片av免费| 麻豆av在线久日| 国产一区二区激情短视频| 久久亚洲精品不卡| 18禁观看日本| 亚洲精品一卡2卡三卡4卡5卡| av国产精品久久久久影院| 成人三级做爰电影| 69精品国产乱码久久久| 69av精品久久久久久 | 女人精品久久久久毛片| 亚洲av国产av综合av卡| videosex国产| 搡老岳熟女国产| 国产野战对白在线观看| 另类精品久久| 变态另类成人亚洲欧美熟女 | 色视频在线一区二区三区| 老司机午夜福利在线观看视频 | 9色porny在线观看| 国产单亲对白刺激| 99精品久久久久人妻精品| cao死你这个sao货| 成人亚洲精品一区在线观看| 1024香蕉在线观看| 亚洲美女黄片视频| 久久久精品区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 色94色欧美一区二区| kizo精华| tube8黄色片| 国产欧美日韩一区二区三区在线| 精品福利观看| 欧美乱码精品一区二区三区| 91大片在线观看| 久久久久国产一级毛片高清牌| 精品熟女少妇八av免费久了| 免费看十八禁软件| 久久中文字幕一级| 在线天堂中文资源库| 日韩 欧美 亚洲 中文字幕| 日韩欧美国产一区二区入口| 一边摸一边做爽爽视频免费| 日韩免费高清中文字幕av| 亚洲色图综合在线观看| 亚洲精品国产色婷婷电影| av片东京热男人的天堂| tocl精华| 夜夜爽天天搞| 这个男人来自地球电影免费观看| 午夜福利免费观看在线| 欧美变态另类bdsm刘玥| 少妇粗大呻吟视频| 国产成人av激情在线播放| tocl精华| 亚洲国产精品一区二区三区在线| 午夜福利在线免费观看网站| 中文字幕人妻丝袜一区二区| 天天操日日干夜夜撸| 一区二区日韩欧美中文字幕| 女人被躁到高潮嗷嗷叫费观| 曰老女人黄片| 美国免费a级毛片| 国精品久久久久久国模美| 91大片在线观看| 国产精品久久电影中文字幕 | 国产91精品成人一区二区三区 | 国产97色在线日韩免费| 国产欧美日韩综合在线一区二区| 欧美精品一区二区免费开放| 国产成人精品无人区| 欧美激情高清一区二区三区| 美女高潮到喷水免费观看| 一本一本久久a久久精品综合妖精| avwww免费| 国产在线观看jvid| 一个人免费看片子| 国产深夜福利视频在线观看| 12—13女人毛片做爰片一| 亚洲中文字幕日韩| 变态另类成人亚洲欧美熟女 | 国产精品99久久99久久久不卡| 两性午夜刺激爽爽歪歪视频在线观看 | 老熟妇乱子伦视频在线观看| 丝袜美足系列| 最新美女视频免费是黄的| 一本—道久久a久久精品蜜桃钙片| 日本一区二区免费在线视频| 精品熟女少妇八av免费久了| 亚洲色图 男人天堂 中文字幕| 免费看十八禁软件| 视频在线观看一区二区三区| av超薄肉色丝袜交足视频| 国产免费福利视频在线观看| 国产精品av久久久久免费| 18禁国产床啪视频网站| 精品人妻在线不人妻| 欧美精品高潮呻吟av久久| 99久久人妻综合| 久久久久久久国产电影| 少妇粗大呻吟视频| 老汉色∧v一级毛片| 婷婷成人精品国产| 亚洲精品在线美女| 久久久精品区二区三区| 丰满饥渴人妻一区二区三| 黑人巨大精品欧美一区二区mp4| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一出视频| 在线十欧美十亚洲十日本专区| av不卡在线播放| av不卡在线播放| 在线 av 中文字幕| 五月天丁香电影| 老司机亚洲免费影院| 成人特级黄色片久久久久久久 | 国产高潮美女av| ponron亚洲| 成人av一区二区三区在线看| 人妻夜夜爽99麻豆av| 身体一侧抽搐| ponron亚洲| 搡老岳熟女国产| 中文字幕熟女人妻在线| 十八禁人妻一区二区| 狂野欧美白嫩少妇大欣赏| 久久九九热精品免费| 国产视频内射| 久久伊人香网站| 脱女人内裤的视频| 日韩精品中文字幕看吧| 麻豆成人av在线观看| 搡老熟女国产l中国老女人| 亚洲av成人一区二区三| 亚洲 欧美 日韩 在线 免费| 亚洲乱码一区二区免费版| 宅男免费午夜| 久久亚洲精品不卡| 少妇丰满av| 国产精品,欧美在线| 国产欧美日韩一区二区三| 色综合亚洲欧美另类图片| 亚洲片人在线观看| www日本黄色视频网| 丁香欧美五月| 老熟妇乱子伦视频在线观看| 免费在线观看日本一区| 人妻久久中文字幕网| 精品午夜福利视频在线观看一区| 性欧美人与动物交配| 成人鲁丝片一二三区免费| 中文字幕精品亚洲无线码一区| 久久久色成人| 1024手机看黄色片| 一进一出抽搐动态| 一级作爱视频免费观看| av女优亚洲男人天堂 | 国产熟女xx| 韩国av一区二区三区四区| 搡老熟女国产l中国老女人| 少妇熟女aⅴ在线视频| 成人国产综合亚洲| 网址你懂的国产日韩在线| 国产精品一区二区精品视频观看| 午夜两性在线视频| 男人舔女人下体高潮全视频| 欧美性猛交黑人性爽| 香蕉国产在线看| 亚洲一区高清亚洲精品| 级片在线观看| 欧美乱码精品一区二区三区| 我的老师免费观看完整版| 久久99热这里只有精品18| 日本免费a在线| 俺也久久电影网| 精品一区二区三区四区五区乱码| 观看免费一级毛片| 亚洲自偷自拍图片 自拍| 老熟妇乱子伦视频在线观看| 草草在线视频免费看| 亚洲av电影在线进入| www.www免费av| 黄色片一级片一级黄色片| 亚洲男人的天堂狠狠| 欧美日本视频| 亚洲欧美精品综合一区二区三区| 日韩欧美精品v在线| 欧美黄色片欧美黄色片| 欧美性猛交╳xxx乱大交人| 午夜精品久久久久久毛片777| 欧美色欧美亚洲另类二区| 两个人看的免费小视频| 亚洲无线观看免费| 日韩欧美 国产精品| 国产高清视频在线观看网站| 欧美zozozo另类| 别揉我奶头~嗯~啊~动态视频| 国产又黄又爽又无遮挡在线| 久久久久免费精品人妻一区二区| 色哟哟哟哟哟哟| 他把我摸到了高潮在线观看| 亚洲av成人av| 免费观看的影片在线观看| 人妻久久中文字幕网| 免费观看精品视频网站| 国产精品一区二区三区四区免费观看 | 久久久久久国产a免费观看| 桃红色精品国产亚洲av| 中文字幕精品亚洲无线码一区| 99热精品在线国产| 在线十欧美十亚洲十日本专区| 午夜两性在线视频| 美女大奶头视频| 美女黄网站色视频| 欧美日韩中文字幕国产精品一区二区三区| 91在线精品国自产拍蜜月 | 桃红色精品国产亚洲av| 在线看三级毛片| 久久伊人香网站| 色综合婷婷激情| 亚洲色图av天堂| 欧美一区二区精品小视频在线| 欧美在线黄色| 19禁男女啪啪无遮挡网站| 亚洲国产精品成人综合色| 久99久视频精品免费| 校园春色视频在线观看| 久久久久免费精品人妻一区二区| 国产精品一区二区免费欧美| 欧美绝顶高潮抽搐喷水| 色哟哟哟哟哟哟| 男女下面进入的视频免费午夜| 国产精品九九99| 天天躁日日操中文字幕| 精品熟女少妇八av免费久了| 99久久综合精品五月天人人| 一级毛片女人18水好多| 亚洲午夜精品一区,二区,三区| 欧美一区二区精品小视频在线| 男人舔女人下体高潮全视频| 国产精品九九99| 亚洲精华国产精华精| 99久久国产精品久久久| 久久伊人香网站| 中文资源天堂在线| 亚洲中文字幕一区二区三区有码在线看 | 97超视频在线观看视频| 国产伦人伦偷精品视频| 亚洲国产色片| 欧美极品一区二区三区四区| 99久久精品一区二区三区| 天天躁日日操中文字幕| 免费在线观看成人毛片| 久久久精品大字幕| 国产精品国产高清国产av| 精品电影一区二区在线| 久久精品国产亚洲av香蕉五月| 亚洲狠狠婷婷综合久久图片| 中国美女看黄片| 狂野欧美激情性xxxx| 国产av麻豆久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 女人高潮潮喷娇喘18禁视频| 亚洲精品色激情综合| 99国产精品一区二区蜜桃av| 女警被强在线播放| 九色国产91popny在线| 少妇熟女aⅴ在线视频| 999久久久国产精品视频| 久久这里只有精品中国| 国产精品精品国产色婷婷| 一级作爱视频免费观看| 国产欧美日韩精品一区二区| 女人高潮潮喷娇喘18禁视频| 视频区欧美日本亚洲| 在线观看午夜福利视频| 窝窝影院91人妻| 18禁黄网站禁片免费观看直播| 免费看十八禁软件| 人妻丰满熟妇av一区二区三区| 国内少妇人妻偷人精品xxx网站 | 欧美国产日韩亚洲一区| 在线国产一区二区在线| 又黄又爽又免费观看的视频| 欧美三级亚洲精品| 亚洲片人在线观看| 少妇裸体淫交视频免费看高清| 一本一本综合久久| 国产成人啪精品午夜网站| 精品久久久久久成人av| 久久久久精品国产欧美久久久| 国产成人av激情在线播放| 亚洲人成网站在线播放欧美日韩| 亚洲真实伦在线观看| 国产蜜桃级精品一区二区三区| 午夜福利免费观看在线| 成人无遮挡网站| 91麻豆av在线| 国产激情偷乱视频一区二区| 黄色日韩在线| 在线视频色国产色| 亚洲精品美女久久av网站| 性色avwww在线观看| 色av中文字幕| 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费| 在线观看美女被高潮喷水网站 | 无限看片的www在线观看| 久久久久久人人人人人| 一二三四社区在线视频社区8| 嫁个100分男人电影在线观看| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 中文字幕精品亚洲无线码一区| 国产伦精品一区二区三区四那| 老汉色∧v一级毛片| 1024香蕉在线观看| 国模一区二区三区四区视频 | 亚洲国产精品999在线| 在线观看美女被高潮喷水网站 | 在线十欧美十亚洲十日本专区| 亚洲国产精品999在线| 少妇裸体淫交视频免费看高清| 欧美黄色淫秽网站| 特级一级黄色大片| 丁香欧美五月| 亚洲欧美日韩卡通动漫| 欧美极品一区二区三区四区| 亚洲av五月六月丁香网| 日本 av在线| 欧美黑人巨大hd| 亚洲天堂国产精品一区在线| 亚洲人成网站在线播放欧美日韩| 国产私拍福利视频在线观看| www.www免费av| 亚洲在线观看片| av在线蜜桃| 琪琪午夜伦伦电影理论片6080| 中文字幕精品亚洲无线码一区| 亚洲成av人片在线播放无| 午夜免费成人在线视频| 香蕉丝袜av| 欧美中文日本在线观看视频| 日韩国内少妇激情av| 国产又色又爽无遮挡免费看| 免费搜索国产男女视频| 99久久成人亚洲精品观看| 久久香蕉精品热| 亚洲国产欧洲综合997久久,| 成人av在线播放网站| 色综合婷婷激情| 在线视频色国产色| 91久久精品国产一区二区成人 | 亚洲精华国产精华精| 99久久国产精品久久久| 一本精品99久久精品77| 免费无遮挡裸体视频| 国产爱豆传媒在线观看| 综合色av麻豆| 免费看日本二区| 国产精品99久久99久久久不卡| 国产私拍福利视频在线观看| 男人和女人高潮做爰伦理| 一级毛片高清免费大全| 人人妻,人人澡人人爽秒播| 日本免费a在线| 国产激情久久老熟女| 亚洲国产高清在线一区二区三| 99在线人妻在线中文字幕| 午夜久久久久精精品| 亚洲专区国产一区二区| 亚洲精品色激情综合| 国产成人aa在线观看| 在线国产一区二区在线| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 伦理电影免费视频| 成人特级黄色片久久久久久久| 97超视频在线观看视频| 99精品久久久久人妻精品| 可以在线观看毛片的网站| 国内少妇人妻偷人精品xxx网站 | 亚洲在线自拍视频| 99久久久亚洲精品蜜臀av| 久久久久久大精品| 国产精品亚洲av一区麻豆| 日韩国内少妇激情av| 黄色女人牲交| 麻豆成人午夜福利视频| 欧美一级a爱片免费观看看| 欧美一区二区精品小视频在线| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 999久久久精品免费观看国产| 成人特级av手机在线观看| 国产v大片淫在线免费观看| 在线a可以看的网站| 国产精品一区二区三区四区久久| x7x7x7水蜜桃| 亚洲av五月六月丁香网| 中文字幕人妻丝袜一区二区| xxxwww97欧美| 亚洲欧美精品综合一区二区三区| 国产精品一区二区三区四区久久| aaaaa片日本免费| 精品福利观看| 哪里可以看免费的av片| 成人鲁丝片一二三区免费| 免费av不卡在线播放| 麻豆国产97在线/欧美| 亚洲精品456在线播放app | 黑人巨大精品欧美一区二区mp4| 国产黄a三级三级三级人| 久久久国产成人精品二区| 在线a可以看的网站| 琪琪午夜伦伦电影理论片6080| 特大巨黑吊av在线直播| 欧美日韩综合久久久久久 | 老熟妇乱子伦视频在线观看| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| 亚洲成av人片在线播放无| 国产精品久久久av美女十八| 夜夜爽天天搞| 欧美一级毛片孕妇| 999精品在线视频| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 757午夜福利合集在线观看| 97超视频在线观看视频| 女警被强在线播放| 欧美乱色亚洲激情| 美女高潮喷水抽搐中文字幕| 午夜激情欧美在线| 变态另类成人亚洲欧美熟女| 九九热线精品视视频播放| 欧美中文综合在线视频| 日韩人妻高清精品专区| 一个人观看的视频www高清免费观看 | 国产久久久一区二区三区| ponron亚洲| 天天躁日日操中文字幕| 小蜜桃在线观看免费完整版高清| 久久精品aⅴ一区二区三区四区| 国产精品美女特级片免费视频播放器 | 欧美+亚洲+日韩+国产| 国产精品久久视频播放| 亚洲av成人一区二区三| 一进一出好大好爽视频| av片东京热男人的天堂| 日韩中文字幕欧美一区二区| 在线观看美女被高潮喷水网站 | 亚洲色图av天堂| 成年女人永久免费观看视频| 亚洲国产精品久久男人天堂| 人妻夜夜爽99麻豆av| 夜夜爽天天搞| 久久精品国产综合久久久| 在线免费观看的www视频| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 嫩草影院入口| 91九色精品人成在线观看| 亚洲18禁久久av| 国产v大片淫在线免费观看| 欧美一区二区精品小视频在线| 欧美成人性av电影在线观看| 国产1区2区3区精品| 1024香蕉在线观看| 女人被狂操c到高潮| 成人av一区二区三区在线看| 母亲3免费完整高清在线观看| 9191精品国产免费久久| 国产成年人精品一区二区| 一卡2卡三卡四卡精品乱码亚洲| 嫩草影视91久久| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 久久久久久久午夜电影| 九色国产91popny在线| 国产一区二区在线观看日韩 | 久久久久久国产a免费观看| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| av女优亚洲男人天堂 | 两个人视频免费观看高清| 看黄色毛片网站| 99精品欧美一区二区三区四区| 国产激情久久老熟女| 国产三级在线视频| 最近在线观看免费完整版| 一二三四在线观看免费中文在| 我要搜黄色片| 少妇的逼水好多| 男女视频在线观看网站免费| 熟妇人妻久久中文字幕3abv| 免费观看人在逋| 一本综合久久免费| 制服丝袜大香蕉在线| 欧美日本视频| 久久精品综合一区二区三区| 久久久精品大字幕| 亚洲激情在线av| 亚洲男人的天堂狠狠| 无遮挡黄片免费观看| 在线免费观看不下载黄p国产 | 嫩草影视91久久| 最近在线观看免费完整版| 久久国产精品影院| 亚洲精品中文字幕一二三四区| 91在线观看av| 色综合站精品国产| 99热精品在线国产| 欧美黄色片欧美黄色片| 久久伊人香网站| 日韩 欧美 亚洲 中文字幕| 国产69精品久久久久777片 | 精品一区二区三区视频在线 | 网址你懂的国产日韩在线| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 国产亚洲欧美在线一区二区| 中文字幕久久专区| 亚洲精品色激情综合| 午夜久久久久精精品| 热99在线观看视频| 老司机福利观看| 国产精品久久久av美女十八| 免费在线观看亚洲国产| 国内少妇人妻偷人精品xxx网站 | 亚洲精品在线观看二区| 国产亚洲欧美98| 美女午夜性视频免费| 欧美色欧美亚洲另类二区| 亚洲成人久久性| 毛片女人毛片| 亚洲电影在线观看av| 亚洲欧美日韩高清专用| 日本黄色视频三级网站网址| 嫩草影院入口| av天堂中文字幕网| 亚洲黑人精品在线| 网址你懂的国产日韩在线| 禁无遮挡网站| 日韩精品青青久久久久久| 亚洲精品456在线播放app | 制服丝袜大香蕉在线| 曰老女人黄片| 日本一二三区视频观看| 欧美日韩黄片免| 欧美日韩一级在线毛片| 午夜免费成人在线视频| 最新在线观看一区二区三区| 午夜福利欧美成人| 日本三级黄在线观看| 国产精品一及| 色综合婷婷激情| 亚洲av熟女| 国产午夜福利久久久久久| 亚洲人成伊人成综合网2020| 18禁黄网站禁片免费观看直播| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 中文字幕高清在线视频| 亚洲性夜色夜夜综合| 韩国av一区二区三区四区| 国产亚洲欧美在线一区二区| 中文字幕av在线有码专区| 久久久国产精品麻豆| 人人妻人人看人人澡| 欧美日韩乱码在线| 亚洲va日本ⅴa欧美va伊人久久| 两个人视频免费观看高清| 岛国在线观看网站| 欧美在线一区亚洲| 全区人妻精品视频| 久久久久九九精品影院| 国产黄片美女视频| 51午夜福利影视在线观看| 韩国av一区二区三区四区| 天天添夜夜摸| 亚洲av成人一区二区三| 90打野战视频偷拍视频| 久久久久久久久中文| www.999成人在线观看| 最近最新中文字幕大全电影3| 午夜免费观看网址| 精品久久久久久成人av| 亚洲成人中文字幕在线播放| 97超级碰碰碰精品色视频在线观看| 午夜福利18| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| av黄色大香蕉| 久久精品影院6| 欧美高清成人免费视频www|