• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Consistency and Asymptotic Property of a Weighted Least Squares Method for Networked Control System s☆

    2014-07-17 09:10:10CongZhangHaoYe

    Cong Zhang,Hao Ye

    Tsinghua National Laboratory for Information Science and Technology,Depart mentof Automation,Tsinghua University,Beijing 100084,China

    Consistency and Asymptotic Property of a Weighted Least Squares Method for Networked Control System s☆

    Cong Zhang,Hao Ye*

    Tsinghua National Laboratory for Information Science and Technology,Depart mentof Automation,Tsinghua University,Beijing 100084,China

    A R T I c L E IN F o

    Article history:

    Received 27 December 2013

    Received in revised form 26 February 2014 Accepted 5March 2014

    Available on line 25 June 2014

    In this paper,we study the problems related to parameter estimation of a single-input and single-output networked control system,which contains possible network-induced delays and packet dropout in both of sensor-to-controller path and controller-to-actuator path.A weighted least squares(W LS)method is designed to estimate the parameters of plant,which could overcome the data uncertainty problem caused by delays and dropout.This WLS method is proved to be consistent and has a good asymptotic property.Simulation examples are given to validate the results.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    In a networked control system(NCS),there may exist random network-induced delays and packet dropout in the sensor-to controller(S-C)path and the controller-to-actuator(C-A)path due to the communication access constraints[1,2].Network-induced delays and packet dropout could cause data uncertainty problems and bring difficulties for system identification,control,or fault detection.

    Problems related to NCS identification have drawn more and more attentions in recent years.Particularly,Fei et al.[3]utilized a discard packet strategy,a cubic spline interpolation,and buffers to the actuator to overcome the data uncertainty problem in an NCS and proposed a recursive estimation method.Wang et al.[4]formulated an NCS in a continuous-time system with non-uniformly non-synchronized sampled data,and proposed a modified version of the simplified refined instrumental variable method to identify the parameter offline.Liu and Wang[5]extended the results[4]to the case with colored noise.Shi et al.[6]gave a recursive parameter estimator for closed-loop system with randomly missing output data.Shi and Fang[7]proposed a recursive method for open-loop system with randomly missing measurements of plant’s input and output.

    In our previous work[8],we have proved that the dataset of a single-input and single-output(SISO)NCS with delays and dropout in both of the S-C and C-A paths is informative under very weak conditions, but we did not design an identification method.The result[8]is useful to design a consistent parameter estimator for the NCS in this paper, since the setup of NCSs is the same and the in form ative dataset isa necessary condition for consistent parameter estimation.

    The results in Refs.[3-7]cannot be applied to the NCS in this paper due to the following four reasons:(1)the M sequence used as the controlsignal[3]cannot be generated by feedback controllers;(2)with the remote computers used in closed loop to generate control signals[4,5], and those computers’outputs are required to be independent of their inputs,which could not be achieved by feedback controllers;(3)an adaptive controller instead of a linear time-invariant(LTI)one was required[6];and(4)the problem in Ref.[7]was for open-loop setup.

    In this paper,we consider system identification of a SISONCS with a common setup,which includes an LTI plant,an LTI controller,and network transmissions in both the S-C and C-A paths that contain random delays and dropout.Motivated by Isaksson’s work[11],in which a modification idea for the standard least squares(LS)method was proposed to estimate the parameter of an open-loop system with randomly missing output data,we design a weighted least squares(WLS)method.This WLS method could overcome the data uncertainty problems caused by random delays and dropout.Based on our previous result[8],we prove that this WLS method is consistent,i.e.its parameter estimate converges to the“true”value[9],and has a good asymptotic property in the sense that the product of estimation error and square root of data length converges to a Gaussian distribution,which means that the estimation error decays with the reciprocal of the square root of data length[10].

    2.NCS Setup and Problem Statement

    Notation 1.Throughout the paper,“q”,“E”,and“Pr”rep resent“forward shift operator,i.e.q χk=χk+1”,“a symbol introduced by E χk= Ref.[10],where{χk}is a sequence of quasi-stationarysignal”,and“probability”,respectively.

    The SISONCS considered is shown in Fig.1,where the reference input is zero,and the network-induced delays and packet dropout may occur randomly in both of the S-C and C-A paths.We assume that the actuator and the sensor are clock d riven with a fixed sampling interval.

    2.1.Closed-loop model

    The LTI plant and the LTI controller are described by

    where yk∈R and uk∈R are the plant’s out put and input at time instant k,∈R and∈R are the controller’s input and out put at k,and ek∈R{}is a sequence of independent and identically distributed(i.i.d.)random signals with zero mean values,variances λ2,and bounded moments of order 4+δ with some δ>0[10],respectively.

    The structure of the plant in E q.(1)is assumed to be auto regressive exogenousof generality.

    The parameter to be estimated is

    The candidate parameter space used for estimation is denoted as DM

    Remark 1.According to Refs.[6]and[7],we assume that the polynomial orders of the ARX plant,naand nb,are known,since they can be determined by using the statistical F-test[12-14]or the Akaike in formation criterion[15].

    Fig.1.SISONCS.

    2.2.Network transmission

    The maximal steps of possible delays in the S-C and C-A paths are assumed to be τsteps,respectively.Then ykandwith delays longer than τsteps will be d iscarded when they fi nally arrives.

    Remark 2.According to Refs.[1]and[2],it is common to assume that the delay sand dropout in network transmission satisfy Bernoulli distri-not available to the controller (or the actuator)at time instant k,multiple update mechanisms can be used by the controller(or the actuator)to

    If“l(fā)atest packet in the buffer”,or“previous step value”update mechanisms[1,2].In this paper,for the sake of generalization,we do not make any assumption on the update mechanisms adopted by the controller and the actuator.

    2.3.Recovery of dataset

    Due to the influences of delays and dropout in the S-C and C-A paths, the plant’s output may be received disorderly or lost on the controller side,and it is uncertain which packet sen t from the controller is used by the plant.These data uncertainty problems bring difficulties for parameter estimation.

    Fortunately,some techniques about NCS have been provided for data recovery on the controller side,such as the sequence numbering technique[4]and the smart sensor technology[6,16-19].By using the sequence numbers of the packets received by the controller,the disorderinstants at most;using the smart sensor technology(i.e.the actuator feedbacks the sequence number of plant’s input to controller by sending it to the sensor and further adding it to the packet transmitted by the sensor),we could verify the packet used by the plant.

    We make following assumption to recover the plant’s input and output data on the controller side.

    Assumption 1.The sequence numbering technique[4]and the smart sensor technology[6,16-19]are used for data recovery on the controller side.Except for the influence of dropout on the S-C path,all the other data uncertain ties caused by unreliable transmission can be recovered.side for parameter estimation at time instant L

    Com pared with the plant’s input and output dataset,{y1,u1,…,yL,is obviously incomplete lacking of dropped plant’s output data.

    2.4.Formulation

    We also have following assumption on the NCS.

    Assumption 2.

    (1)Delays and dropout occur independently of{ek};

    (2)The proportional term of the controller,denoted as f0,is nonzero, i.e.f0≠0;

    (3)The NCS is stable.

    Next,we will propose a WLS method that uses the datasetto estimate the parameter of NCS’s plant and then analyze its consistency and asymptotic property.

    3.AW LS Method for Parameter Estimation of NCS

    3.1.A parameter estimation idea for open-loop systems with randomly missing output data

    The parameter estimate of a standard LS method is given by[10]

    Isaksson[11]proposed to modify the standard LS method for parameter estimation of an open-loop system with randomly missing output data.With the idea,the parameter estimate is given by Eq.(4),but both of the summations in it are only calculated over those time instant k that none of ykand yk?na,…,yk?1in φkis missing.

    3.2.AWLS method for parameter estimation of NCS

    The joint dynamics consisting of the LTI controller in E q.(1),the delays in the S-C path,and the delay sand dropout in the C-A path can be regarded as a linear time-varying(LTV)controller,denoted asThen the NCS defined in Section 2 is equivalent to a closed-loop system consisting of an LTI plant,an LTV controller,and randomly missing output.Thus,an be regarded as the dataset of this closedloop system,and we can use a strategy similar to the one in Ref.[11] to estimate the plant’s parameter.In the following,a WLS method using the datasetand the parameter space DMis designed to estimate the parameter of NCS’s plant,referred as WLS1 for convenience.

    According to Ref.[10],the prediction error with parameter θi∈DMand datasetis defined as

    Motivated by the strategy in Ref.[11],we calculate the parameterestimate only with those prediction errorswithout any of yk?na,…,ykbeing dropped.We introduce a weighted factor αk,which is determined by the dropout state of…,ykjoin tly,

    Rem ark 3.The differences between WLS1 method and conventional WLS method[10]are as follows:

    (1)Conventional WLS method uses plant’s input and output datasetwhile WLS1 uses the incomplete dataset reconstructed on the controller side,

    (2)The weighted factor of WLS1method,αk,is a stochastic process determined by the join t state of the dropouts in the S-C path from time instant k?nato k,while that of conventional WLS method is a deterministic time sequence,which can be set by user before the identification experiment[10].

    Thus,in spite of the existing results of consistency and asymptotic property of conventional W LS method in Ref.[10]and other literature, we still need to reconsider these properties for WLS1 method.

    Remark 4.The differences between WLS1 method and the modification idea of standard LS method[11]are as follows:

    (1)Isaksson[11]considered an open-loop identification problem,

    while our problem belongs to closed-loop identification;

    (2)Isaksson[11]only gave an idea for modification of the standard LS method,while we give an actual W LS1 method and prove its consistency and asymptotic property.

    4.Consistency and Asymptotic Property of WLS1Method

    4.1.An equivalent form of WLS 1method

    In order to analyze the consistency and asymptotic property of LS1 method in Ljung’s identification framework[10],we propose an equivalent form of W LS1 method.According to Ref.[10],the prediction error with the parameter θi∈DMand the datasetis

    where the regression vector φkis defined in Eq.(5).According to Eq s.(3)Eqs.(9)and(10),we have the equivalent form of W LS1method

    We can use Eqs.(11)-(13)to analyze the consistency and asymptotic property of W LS1method in Ljung’s identification framework.4.2.Consistency of WLS1 method

    Because the closed-loop models of the NCS are LTV,and{ek}is the only excitation signal,ukand ykin Fig.1 can be written as the two convolutions of LTV filters and{ek},respectively

    where the time-varying coefficients∈R are determined by the models of plant and controller in Eq.(1)and transmission states in both paths from time instant k?j to k.

    4.3.Asymptotic property of estimation error of W LS1method

    Theorem 2.IfW LS1method is consistent,the distribution of the product of its estimation error and the square root of data lengthis asymptotically normal with mean values 0 and covariance matrix P0,i.e.

    where AsN(0,P0)denotes a asymptotic Gaussian distribution[10],and

    Proof.Please refer to Appendix A.2.

    Rem ark 7.According to Theorem 2,we know that the estimation error of W LS1method,converges toθ0very fast.We can conclude that W LS1 method has a good asymptotic property.

    Accord ing to Eqs.(9.18)and(9.19)in Ref.[10],the approximation of the asymptotic covariance matrix(i.e.P0)can be calculated from experiment data,i.e.

    5.Simulation

    5.1.Closed-loop model

    We assume that the orders of the ARX plant in Eq.(1)are na=2 and nb=2,{ek}is an independent and identically distributed Gaussian noise sequence with zero mean values and variance 0.01,and the parameter to be identified are specified as[1.4,0.45,1,0.7]T. The LTI controller in Eq.(1)is selected as

    5.2.Network transmission

    We assume that both the update mechanisms adopted by the controller and the actuator are the“l(fā)atest packet in the buffer”[1].Both the maximum steps of delays in the S-C and C-A paths are assumed to be three,i.e.==3.Accord ing to Notation 2 and Rem ark 2, the probability distributions of the Bernoulli processes∈{?1,0,1, 2,3}and∈{?1,0,1,2,3}are specified as=[0.02,0.8, 0.08,0.06,0.04]and=[0.01,0.82,0.09,0.05,0.03],?k,respectively.

    5.3.Estimates of parameter and noise variance

    Fig.3.Noise variance estimates and relative errors.(dotted line:λ2;solid line:

    Fig.4.Parameter estimates by conventional WLS method.

    Fig.5.Noise variance estimates by conventional WLS method.

    The estimates of plant’s parameter and noise’s variance are presented here.In order to show the consistency and the asymptotic property of WLS1 method clearly,we use itsstep delayed recursive form for parameter estimation and we calculate the estimate of noise’s variance according to Eq.(19).

    The simulation is run in Matlab environment,and the data lengthis selected as 1000,i.e.L=1000.The initial conditions for estimation of parameter and covariance matrix of error are selected as^θ0=[0.1,0.1,0.1,0.1]Tand P0=103?I4×4,where I4×4is a 4×4 identity matrix.

    For k=1,…,1000,Fig.2 gives the results ofand its relative errors,converge to their true values quickly,which validates the conclusions in Theorems 1 and 2 that WLS1 method is consistent and has a good asymptotic property.

    In order to show the superiority of WLS1 method,we also give the simulation results by using the conventional WLS method[10]. The forgetting factor of the conventional WLS method is selected as a constantλ=0.98[20],and initial conditions of its recursive form are the same as those in W LS1method,i.e.=0.1,0.1,0.1,0.1 [and P0=103?I4×4.Figs.4 and 5 give the parameter estimates and noise variance estimates by using the recursive form of the conventional W LS method,and both of these estimates do not converge to the true values and have large biases.Thus W LS1method is better than the conventional W LS method for estimating the parameter of the NCS’s plant.

    Table 1Parameter and noise variance estimates of W LS1 method at step 1000

    6.Conclusions

    In this paper,we consider the parameter estimation problems of a SISONCS with random delays and dropout in both of the S-C and C-A paths.Firstly,we propose a data recovery method to overcome the uncertain ties of plant’s input and output data,which are caused by delays in the S-C path,and delays and dropout in the C-A path.However,the reconstructed dataset still lacks the dropped plant’s output data.Secondly,we design a W LS method to estimate the plant’s parameter, which could use the reconstructed dataset.Finally,the designed W LS method is proved to be consistent and have a good asymptotic property in the sense that the estimation error decays with the reciprocal of the square root of data length.

    Some interesting,related problems still remain to be studied,e.g.extending the results here to multi variable case,or study new estimation method if the network techniques cannot be used to recover the plant’s data on the controller side.

    Appendix

    A.1.Proof of Theorem 1

    Before giving the p roof,we define

    The proof of Theorem 1 is through three steps.

    θi∈DM

    With Eqs.(2),(5),and(14),Eq.(11)becomes

    Because the NCS is stable according to Assumption 2(3)and?θi∈DMwith‖θi‖2being bounded,from Eq.(A3),it is easy to verify that there exists a nonnegative sequence{μm},such that

    Next,we use a derivation similar as Lemma 2B.1 and Theorem 2B.1 in Ref.[10]to prove the result of this step.Let L,t∈Z+and t≤L,then for θi∈DM,we denotes

    According to Eq.(A2),we have

    According to E qs.(8)and(A3),and Assumption 2(1),we knowWith Eq.(A4),Eq.(A5)turns to

    In the following,we will prove θ1≡θ2from Eq.(A11). Let m=1.According to Lemma 1 in Ref.[8]and Eq.(A9),

    According to Eq.(A12),we have

    Substituting Eq.(A13)in to Eq.(A11)for m=1 and according to f0≠0 from Assumption 2(2)and conditionsin Eq.(15),we have

    Fo r 2≤m≤na,it is assumed that=0

    holds for j=1,…,m?1.According to Lemma 1 in Ref.

    [8],and using a derivation similar to Eq s.(A12)-(A14),

    Therefore,we can recursively

    According to Eq s.(11),(A1),(A2),and(A3),we know that for any θi∈DM,

    According to Eq.(A15),we know that θ0∈Dc.Then,?θj∈Dc, we have

    Applying Step(2)to Eq.(A16),we have θj≡θ0,which implies that Dc={θ0}.Therefore,according to Step(1),we have“^θW1L→θ0,w.p.1,as L→∞”.

    A.2.Proof of Theorem 2

    According to Eq.(12),we have

    Then,we prove Theorem 2 by the following two steps. (1)The asymptotic distribution of

    According to Eqs.(5)and(14),we know that

    According to Eq.(A21),and because the NCS is stale,we know that there exists a nonnegative sequence{ξm},such that

    Define

    where M≥na.It is assumed that

    (2)The asymptotic distribution of

    According to Eq.(13),we know that

    Expanding this equation into Taylor series around θ0,we have

    where ηLbelongs to a neighborhood of θ0with radius

    Then we have

    According to Eq.(A18),we know thatis continuous at?θi∈DMand according to Theorem 1,we know that“ηL→θ0, w.p.1,as L→∞”.Then,we have

    Moreover,using a derivation similar to Section A1(1),we have

    According to Eqs.(A33)and(A34),we have

    where

    [1]J.P.Hespanha,P.Naghshtabrizi,Y.G.Xu,A survey of recent results in networked control systems,Proc.IEEE 95(2007)138-162.

    [2]W.Zhang,M.S.Branicky,S.M.Phillips,Stability of networked control systems,IEEE Control Syst.Mag.21(2001)84-89.

    [3]M.R.Fei,D.J.Du,K.Li,A fastmodel identification method for networked control system,Appl.Math.Com put.205(2008)658-667.

    [4]J.D.Wang,W.X.Zheng,T.W.Chen,Identification of linear dynamic systems operating in a networked environment,Automatica 45(2009)2763-2772.

    [5]X.N.Liu,J.D.Wang,Linear system identification subject to colored noises in a networked environment,Proceedings of the 8th World Congress on Intelligent Control and Automation,Jinan,China,2010,pp.1222-1227.

    [6]Y.Shi,H.Fang,M.Yan,Kalman filter-based adaptive control for networked systems with unknown parameters and randomly missing outputs,Int.J.Robust Non linear Control19(2009)1976-1992.

    [7]Y.Shi,H.Z.Fang,Kalman filter-based identification for systems with randomly missing measurements in a network environment,Int.J.Control83(2010)538-551.

    [8]C.Zhang,H.Ye,The in formative enough property of the dataset in a networked control system,Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference,Orlando,FL,USA,2011,pp.222-228.

    [9]A.S.Bazanella,M.Gevers,L.Miskovic,Closed-loop identification of MIMO System s:A new look at iden ti fi ability and experiment design,Eur.J.Control3(2010)228-239.

    [10]L.Ljung,System Identification—Theory for the User,2 nd edition PTR Prentice Hall, Upper Saddle River,N.J.,1999

    [11]A.J.Isaksson,Identification of ARX-models subject to missing data,IEEE Trans. Autom.Control38(1993)813-819.

    [12]I.Gustavsson,Comparison of different methods for identification of industrial processes,Automatica 8(1972)127-142.

    [13]S.S.Kuo,Numerical Methods and Computers,Addison-Wesley,Ann Arbor,MI,1965.

    [14]H.Unbehauen,B.G?hring,Tests for determining model order in parameter estimation,Automatica 10(3)(1974)233-244.

    [15]H.Akaike,A new look at the statistical model identification,IEEE Trans.Autom.Control 19(1974)716-723.

    [16]Y.Shi,B.Yu,Output feedback stabilization of networked control systems with random delays modeled by Markov chains,IEEE Trans.Autom.Control 54(2009) 1668-1674.

    [17]D.Hristu-Varsakelis,W.S.Levine,Handbook of Networked and Em bedded Control System s,Birkhauser,Cam bridge,MA,2005.

    [18]J.Nilsson,Real-time control systems with delays,(Ph.D.Thesis)Lund Institute of Technology,Lund,Sweden,1998.

    [19]P.Tang,C.de Silva,Compensation for transmission delays in an Ethernet-based control network using variable-horizon predictive control,IEEE Trans.Control Sys t. Technol.4(2006)707-718.

    [20]C.Z.Fang,D.Y.Xiao,Process Identification,Tsinghua Press,Beijing,1998.(in Chinese).

    ☆Supported by the National Natural Science Foundation of China(61290324).

    *Corresponding author.

    E-mailaddress:haoye@tsinghua.edu.cn(H.Ye).

    Networked control system Network-induced delay Packet d ropou t

    Weighted least squares Consistency

    Asymptotic property

    国产精品亚洲av一区麻豆| 少妇的丰满在线观看| 亚洲男人天堂网一区| 午夜视频精品福利| 日韩欧美国产在线观看| 国产高清videossex| 麻豆国产av国片精品| 久久香蕉激情| 久久亚洲真实| 亚洲精品中文字幕一二三四区| www.www免费av| 一本久久中文字幕| 色精品久久人妻99蜜桃| 亚洲九九香蕉| 日韩欧美一区视频在线观看| 999精品在线视频| 国产人伦9x9x在线观看| 久久久久九九精品影院| 一夜夜www| 久久久久久久久久黄片| 亚洲国产毛片av蜜桃av| 久久欧美精品欧美久久欧美| 久久精品国产综合久久久| 亚洲第一电影网av| 最近在线观看免费完整版| 久久中文字幕人妻熟女| 国产国语露脸激情在线看| 变态另类丝袜制服| 男人舔奶头视频| 丝袜在线中文字幕| 夜夜看夜夜爽夜夜摸| 欧美精品啪啪一区二区三区| 亚洲色图 男人天堂 中文字幕| 老熟妇乱子伦视频在线观看| 日本三级黄在线观看| 亚洲精品粉嫩美女一区| 国产不卡一卡二| 免费看a级黄色片| 亚洲一区二区三区色噜噜| 国内久久婷婷六月综合欲色啪| 成年人黄色毛片网站| 久久久久久国产a免费观看| 欧美黑人精品巨大| 国产精品综合久久久久久久免费| 天天一区二区日本电影三级| 最新美女视频免费是黄的| 给我免费播放毛片高清在线观看| 国产黄a三级三级三级人| 美女午夜性视频免费| 成人特级黄色片久久久久久久| 精品久久久久久久人妻蜜臀av| 午夜成年电影在线免费观看| 欧美日韩一级在线毛片| 热99re8久久精品国产| 一进一出抽搐动态| 成人国语在线视频| 成人亚洲精品av一区二区| 亚洲免费av在线视频| 高清毛片免费观看视频网站| 国产色视频综合| 久久九九热精品免费| 18美女黄网站色大片免费观看| 亚洲aⅴ乱码一区二区在线播放 | www日本在线高清视频| 久久精品国产综合久久久| 亚洲精品av麻豆狂野| 国产激情欧美一区二区| 中文资源天堂在线| xxx96com| 热99re8久久精品国产| 麻豆国产av国片精品| x7x7x7水蜜桃| 亚洲av电影不卡..在线观看| 久久这里只有精品19| 久久草成人影院| 特大巨黑吊av在线直播 | 欧美在线黄色| 国产高清视频在线播放一区| 国产精品1区2区在线观看.| netflix在线观看网站| 淫妇啪啪啪对白视频| 国产精品永久免费网站| 欧美中文日本在线观看视频| 国产成人一区二区三区免费视频网站| 男人的好看免费观看在线视频 | 久久国产精品男人的天堂亚洲| 夜夜看夜夜爽夜夜摸| 国产精品乱码一区二三区的特点| 日日夜夜操网爽| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 观看免费一级毛片| 久久久久精品国产欧美久久久| 国产区一区二久久| 亚洲人成电影免费在线| 最新在线观看一区二区三区| 免费看日本二区| 亚洲人成电影免费在线| 香蕉丝袜av| 视频区欧美日本亚洲| 国产真人三级小视频在线观看| 亚洲真实伦在线观看| 在线视频色国产色| 一本综合久久免费| 好看av亚洲va欧美ⅴa在| 美国免费a级毛片| 99热这里只有精品一区 | 国产色视频综合| 欧美日韩一级在线毛片| x7x7x7水蜜桃| 老司机午夜十八禁免费视频| 在线观看日韩欧美| 搡老妇女老女人老熟妇| 亚洲熟妇中文字幕五十中出| 岛国视频午夜一区免费看| 国产高清激情床上av| 国产一区在线观看成人免费| 日韩精品青青久久久久久| 色老头精品视频在线观看| 欧美日韩瑟瑟在线播放| 91在线观看av| 亚洲一区二区三区不卡视频| 欧美绝顶高潮抽搐喷水| 又黄又爽又免费观看的视频| 国产精品98久久久久久宅男小说| 亚洲一区二区三区不卡视频| 美国免费a级毛片| 午夜日韩欧美国产| 欧美绝顶高潮抽搐喷水| 女人爽到高潮嗷嗷叫在线视频| 脱女人内裤的视频| 日本熟妇午夜| 久久香蕉精品热| 麻豆久久精品国产亚洲av| av中文乱码字幕在线| 国产精品久久久久久精品电影 | 精品欧美国产一区二区三| 三级毛片av免费| 18禁黄网站禁片午夜丰满| 在线看三级毛片| 三级毛片av免费| 亚洲第一电影网av| 久久国产亚洲av麻豆专区| 亚洲午夜理论影院| 中文字幕精品免费在线观看视频| 熟妇人妻久久中文字幕3abv| 色老头精品视频在线观看| 麻豆成人av在线观看| 成人特级黄色片久久久久久久| 亚洲精品国产区一区二| 夜夜看夜夜爽夜夜摸| 国产一级毛片七仙女欲春2 | 亚洲成av片中文字幕在线观看| av有码第一页| 亚洲aⅴ乱码一区二区在线播放 | 18美女黄网站色大片免费观看| 一区二区三区精品91| 后天国语完整版免费观看| 久久精品国产99精品国产亚洲性色| 欧美成人一区二区免费高清观看 | 伦理电影免费视频| 高潮久久久久久久久久久不卡| 国产亚洲精品综合一区在线观看 | 久久久久久久久免费视频了| 成人一区二区视频在线观看| 久久精品亚洲精品国产色婷小说| 中文字幕精品免费在线观看视频| 久久精品91蜜桃| 在线观看免费视频日本深夜| 夜夜看夜夜爽夜夜摸| 最好的美女福利视频网| 久热这里只有精品99| 国产私拍福利视频在线观看| 国产一区二区激情短视频| 久久久久久大精品| 亚洲男人天堂网一区| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 亚洲第一电影网av| 两性午夜刺激爽爽歪歪视频在线观看 | 黄频高清免费视频| 免费看十八禁软件| 久久久久九九精品影院| 人人妻人人澡人人看| 久久久久国产一级毛片高清牌| 成年女人毛片免费观看观看9| 中文在线观看免费www的网站 | 别揉我奶头~嗯~啊~动态视频| 午夜精品久久久久久毛片777| e午夜精品久久久久久久| 级片在线观看| 亚洲人成网站高清观看| 99国产精品99久久久久| 欧美绝顶高潮抽搐喷水| 妹子高潮喷水视频| 啦啦啦免费观看视频1| 亚洲中文av在线| 亚洲黑人精品在线| 成人国语在线视频| 欧美日韩亚洲国产一区二区在线观看| 99久久综合精品五月天人人| 男女那种视频在线观看| 亚洲av成人一区二区三| 国产精品99久久99久久久不卡| 天天躁夜夜躁狠狠躁躁| 国产真人三级小视频在线观看| 久久婷婷人人爽人人干人人爱| 美女高潮喷水抽搐中文字幕| 国产一区二区在线av高清观看| 天堂√8在线中文| 一区二区三区激情视频| 国产乱人伦免费视频| 久久午夜综合久久蜜桃| 国产久久久一区二区三区| 国产高清videossex| 亚洲 欧美一区二区三区| 正在播放国产对白刺激| 成人亚洲精品av一区二区| 免费观看人在逋| 视频区欧美日本亚洲| av视频在线观看入口| 日日干狠狠操夜夜爽| 亚洲国产精品成人综合色| 1024视频免费在线观看| 亚洲精品色激情综合| 无遮挡黄片免费观看| 村上凉子中文字幕在线| 一级a爱视频在线免费观看| 亚洲专区字幕在线| 久久久久久久久中文| 精品久久久久久久人妻蜜臀av| 在线国产一区二区在线| 黄色毛片三级朝国网站| 午夜日韩欧美国产| 中文字幕最新亚洲高清| 在线播放国产精品三级| 嫩草影院精品99| 天天添夜夜摸| 男女做爰动态图高潮gif福利片| 久久精品夜夜夜夜夜久久蜜豆 | 搡老妇女老女人老熟妇| 一夜夜www| 久久亚洲真实| 亚洲色图 男人天堂 中文字幕| 热99re8久久精品国产| 久久久久久亚洲精品国产蜜桃av| 亚洲avbb在线观看| 国产精品一区二区免费欧美| 中文字幕av电影在线播放| 欧美日韩黄片免| 嫩草影视91久久| 大型黄色视频在线免费观看| 人人妻人人澡欧美一区二区| 99精品欧美一区二区三区四区| 国产午夜精品久久久久久| 国产精品 国内视频| 男女视频在线观看网站免费 | 淫秽高清视频在线观看| 极品教师在线免费播放| 99在线人妻在线中文字幕| 91成年电影在线观看| 亚洲国产欧美一区二区综合| 亚洲五月婷婷丁香| 亚洲人成电影免费在线| 国产成人啪精品午夜网站| 欧美国产日韩亚洲一区| 观看免费一级毛片| 亚洲av中文字字幕乱码综合 | 色哟哟哟哟哟哟| 国语自产精品视频在线第100页| 麻豆久久精品国产亚洲av| 日韩欧美 国产精品| 免费在线观看视频国产中文字幕亚洲| 国产高清videossex| 日本三级黄在线观看| 人妻久久中文字幕网| 婷婷丁香在线五月| 国产成人欧美在线观看| 老司机午夜十八禁免费视频| 国产精品综合久久久久久久免费| 97人妻精品一区二区三区麻豆 | 一级毛片高清免费大全| 国产亚洲av高清不卡| 波多野结衣av一区二区av| 亚洲成av片中文字幕在线观看| 一夜夜www| 一本一本综合久久| 成年人黄色毛片网站| 亚洲七黄色美女视频| 成人午夜高清在线视频 | 免费在线观看成人毛片| 99热6这里只有精品| 国产亚洲欧美98| 免费看美女性在线毛片视频| 啪啪无遮挡十八禁网站| 亚洲黑人精品在线| 日韩一卡2卡3卡4卡2021年| 桃色一区二区三区在线观看| 在线十欧美十亚洲十日本专区| 国产1区2区3区精品| 亚洲国产日韩欧美精品在线观看 | 99久久无色码亚洲精品果冻| 久久中文字幕一级| 国产欧美日韩一区二区精品| 国产97色在线日韩免费| 在线播放国产精品三级| 可以在线观看毛片的网站| 欧美 亚洲 国产 日韩一| 欧美不卡视频在线免费观看 | 欧美zozozo另类| 欧美成人性av电影在线观看| 国产成人影院久久av| 欧美人与性动交α欧美精品济南到| 国产视频内射| 亚洲一卡2卡3卡4卡5卡精品中文| 免费观看人在逋| 黄色视频,在线免费观看| 搡老妇女老女人老熟妇| 日本一区二区免费在线视频| 亚洲欧美激情综合另类| 满18在线观看网站| 好男人在线观看高清免费视频 | 久久午夜综合久久蜜桃| 人妻久久中文字幕网| 久久国产精品人妻蜜桃| 亚洲国产欧美网| xxx96com| 欧美成人免费av一区二区三区| 精品久久久久久成人av| 欧美日韩瑟瑟在线播放| 国产午夜福利久久久久久| 在线观看一区二区三区| 韩国精品一区二区三区| 黄片小视频在线播放| 麻豆av在线久日| x7x7x7水蜜桃| 精品卡一卡二卡四卡免费| 熟妇人妻久久中文字幕3abv| 国产亚洲av高清不卡| 亚洲一区中文字幕在线| 最好的美女福利视频网| 久久亚洲精品不卡| 波多野结衣av一区二区av| 一个人免费在线观看的高清视频| 国产精品精品国产色婷婷| 亚洲国产欧美一区二区综合| 99久久无色码亚洲精品果冻| 变态另类丝袜制服| 极品教师在线免费播放| 久久精品影院6| 91成年电影在线观看| 亚洲黑人精品在线| 最近最新中文字幕大全免费视频| a级毛片a级免费在线| 大型av网站在线播放| 女警被强在线播放| 精品午夜福利视频在线观看一区| 成人手机av| 免费在线观看成人毛片| 国产人伦9x9x在线观看| 日韩大尺度精品在线看网址| 久久国产精品影院| 嫩草影视91久久| 最好的美女福利视频网| 国产三级黄色录像| 黄频高清免费视频| 97超级碰碰碰精品色视频在线观看| 国产精品 欧美亚洲| 亚洲男人的天堂狠狠| 久久久久久久久中文| 午夜视频精品福利| 亚洲熟妇中文字幕五十中出| 大香蕉久久成人网| 亚洲欧美日韩高清在线视频| 久久久久国产精品人妻aⅴ院| 不卡一级毛片| 国产精品久久久久久精品电影 | 免费搜索国产男女视频| 日本撒尿小便嘘嘘汇集6| 丁香六月欧美| 精品卡一卡二卡四卡免费| 国产一级毛片七仙女欲春2 | 国产一区二区三区视频了| 亚洲国产精品999在线| 99国产极品粉嫩在线观看| 亚洲 国产 在线| 国产又色又爽无遮挡免费看| 在线视频色国产色| 精品不卡国产一区二区三区| 亚洲国产欧美日韩在线播放| 国产在线观看jvid| 亚洲第一青青草原| 久久精品成人免费网站| 女警被强在线播放| 国产高清videossex| 亚洲天堂国产精品一区在线| 精品国产国语对白av| 欧美三级亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 中文字幕最新亚洲高清| 成人永久免费在线观看视频| 18禁观看日本| 国产av一区二区精品久久| 国内毛片毛片毛片毛片毛片| 色精品久久人妻99蜜桃| 51午夜福利影视在线观看| 欧美日韩一级在线毛片| 久久久久精品国产欧美久久久| 欧美激情久久久久久爽电影| 黄网站色视频无遮挡免费观看| 久久中文字幕一级| 欧美日韩亚洲国产一区二区在线观看| 不卡av一区二区三区| 少妇被粗大的猛进出69影院| av在线天堂中文字幕| 一级作爱视频免费观看| 免费在线观看日本一区| 亚洲 欧美一区二区三区| 熟女电影av网| 一区二区日韩欧美中文字幕| 18美女黄网站色大片免费观看| 亚洲人成电影免费在线| 两人在一起打扑克的视频| 久99久视频精品免费| 欧美成人免费av一区二区三区| 真人做人爱边吃奶动态| 亚洲成人免费电影在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品久久成人aⅴ小说| 黄片小视频在线播放| 叶爱在线成人免费视频播放| 国产成人精品无人区| 真人一进一出gif抽搐免费| 亚洲人成伊人成综合网2020| 欧美大码av| 国产一级毛片七仙女欲春2 | 丝袜在线中文字幕| 大型黄色视频在线免费观看| 99在线视频只有这里精品首页| 国产私拍福利视频在线观看| 黄频高清免费视频| 成人18禁在线播放| av电影中文网址| 在线视频色国产色| 亚洲av成人av| 99国产精品一区二区蜜桃av| 日韩欧美在线二视频| 激情在线观看视频在线高清| 国产野战对白在线观看| 欧美性猛交黑人性爽| tocl精华| 91大片在线观看| 亚洲中文字幕一区二区三区有码在线看 | 久久草成人影院| 丁香六月欧美| 波多野结衣高清无吗| 中文字幕人妻丝袜一区二区| 欧美成人一区二区免费高清观看 | 丁香欧美五月| 91成年电影在线观看| 狠狠狠狠99中文字幕| 国产亚洲欧美在线一区二区| 麻豆av在线久日| 国产区一区二久久| 韩国av一区二区三区四区| 国产激情欧美一区二区| 欧美日韩黄片免| 国产高清激情床上av| 日本免费a在线| 又大又爽又粗| 日韩欧美国产在线观看| 黄网站色视频无遮挡免费观看| 亚洲自拍偷在线| 国产黄色小视频在线观看| 母亲3免费完整高清在线观看| 中文在线观看免费www的网站 | 国产蜜桃级精品一区二区三区| 成人午夜高清在线视频 | 日韩欧美三级三区| 中国美女看黄片| 91老司机精品| 一区二区三区激情视频| 日韩欧美三级三区| 国内精品久久久久久久电影| 久久精品亚洲精品国产色婷小说| 亚洲美女黄片视频| 国产成人系列免费观看| 女生性感内裤真人,穿戴方法视频| 国产成人欧美在线观看| 日韩精品中文字幕看吧| 国产一区二区三区在线臀色熟女| 国产区一区二久久| 欧美性长视频在线观看| 少妇 在线观看| 亚洲国产欧美日韩在线播放| 精品国产美女av久久久久小说| 成人三级黄色视频| 日本精品一区二区三区蜜桃| 亚洲人成电影免费在线| 美国免费a级毛片| 中文字幕人成人乱码亚洲影| 大香蕉久久成人网| 欧美 亚洲 国产 日韩一| 亚洲国产精品sss在线观看| 亚洲精品美女久久久久99蜜臀| 69av精品久久久久久| 中文字幕精品亚洲无线码一区 | 90打野战视频偷拍视频| 亚洲第一欧美日韩一区二区三区| 变态另类成人亚洲欧美熟女| www.999成人在线观看| 亚洲成a人片在线一区二区| 免费无遮挡裸体视频| 精华霜和精华液先用哪个| 日日干狠狠操夜夜爽| 99久久综合精品五月天人人| 欧美日韩精品网址| 欧美午夜高清在线| a级毛片在线看网站| 黑人操中国人逼视频| 久久久国产欧美日韩av| 女生性感内裤真人,穿戴方法视频| 欧美日韩一级在线毛片| 一本综合久久免费| 日韩欧美一区视频在线观看| 99riav亚洲国产免费| 日日爽夜夜爽网站| 搡老岳熟女国产| 久久精品成人免费网站| 老司机福利观看| 一级黄色大片毛片| avwww免费| 午夜精品在线福利| 99久久99久久久精品蜜桃| 亚洲欧美日韩无卡精品| 欧美zozozo另类| 成人18禁在线播放| 午夜视频精品福利| 久久中文字幕一级| 老司机福利观看| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 国产成人av教育| 757午夜福利合集在线观看| 99精品欧美一区二区三区四区| 亚洲精华国产精华精| 色尼玛亚洲综合影院| 亚洲 国产 在线| 狠狠狠狠99中文字幕| 成年免费大片在线观看| 99久久99久久久精品蜜桃| 久久国产精品男人的天堂亚洲| 午夜福利视频1000在线观看| 免费观看精品视频网站| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 免费无遮挡裸体视频| 国产成人系列免费观看| 久久久国产成人免费| 91在线观看av| 免费在线观看影片大全网站| 日韩欧美一区二区三区在线观看| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 午夜激情福利司机影院| 熟女电影av网| 国产精品自产拍在线观看55亚洲| 午夜福利在线观看吧| 亚洲人成网站高清观看| 好看av亚洲va欧美ⅴa在| 日韩 欧美 亚洲 中文字幕| 欧美成人一区二区免费高清观看 | 99国产极品粉嫩在线观看| 精品久久久久久久末码| 色尼玛亚洲综合影院| 国产精品1区2区在线观看.| 色综合站精品国产| 人妻久久中文字幕网| 欧美性长视频在线观看| 99热只有精品国产| 精品国产乱码久久久久久男人| 色av中文字幕| 亚洲一区二区三区不卡视频| 亚洲中文字幕日韩| 国产一区二区激情短视频| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 亚洲av第一区精品v没综合| 一级作爱视频免费观看| 一级毛片女人18水好多| www.自偷自拍.com| 变态另类成人亚洲欧美熟女| 亚洲精品一区av在线观看| 日韩高清综合在线| 又黄又粗又硬又大视频| 露出奶头的视频| 久久伊人香网站| 一级a爱片免费观看的视频| 亚洲人成伊人成综合网2020| 色哟哟哟哟哟哟| 久久久久久久精品吃奶| 国产激情欧美一区二区| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码| 国产在线精品亚洲第一网站| 女同久久另类99精品国产91| 日本a在线网址| 99久久99久久久精品蜜桃| 午夜影院日韩av| 免费在线观看完整版高清| 后天国语完整版免费观看| 国产熟女午夜一区二区三区| 精品高清国产在线一区|