• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Graph-based Ant Colony Optimization Approach for Integrated Process Planning and Scheduling☆

    2014-07-17 09:10:09JinfengWangXiaoliangFanChaoweiZhangShutingWan

    Jin fengWang*,Xiaoliang Fan,Chaowei Zhang,ShutingW an

    School of Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China

    A Graph-based Ant Colony Optimization Approach for Integrated Process Planning and Scheduling☆

    Jin fengWang*,Xiaoliang Fan,Chaowei Zhang,ShutingW an

    School of Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,China

    A R T I c L E IN F o

    Article history:

    Received 25May 2013

    Received in revised form 14 October 2013 Accepted 16 Novem ber 2013

    Available on line 6 June 2014

    Process planning

    Scheduling

    Ant colony optimization

    Makespan

    This paper considers an ant colony optimization algorithm based on AND/OR graph for integrated process planning and scheduling(IPPS).Generally,the process planning and scheduling are studied separately.Due to the complexity of manufacturing system,IPPS combining both process planning and scheduling can depict the real situation of a manufacturing system.The IPPS is represented on AND/OR graph consisting of nodes,and undirected and directed arcs.The nodes denote operations of jobs,and undirected/directed arcs denote possible visiting path among the nodes.Ant colony goes through the necessary nodes on the graph from the starting node to the end node to obtain the optimal solution with the objective of minimizing makespan.In order to avoid local convergence and low convergence,some improved strategy is incorporated in the standard ant colony optimization algorithm.Extensive computational experiments are carried out to study the influence of various parameters on the system performance.

    ?2014 Chemical Industry and Engineering Society of China,and Chemical Industry Press.All rights reserved.

    1.Introduction

    Process planning and scheduling are two important aspects in manufacturing systems,which determine how and when to produce with respect to manufacturing resources.Process planning is to establish technological requirements to satisfy the specified design. Scheduling is to arrange resources available to schedule the operations. Traditionally,these two activities are performed sequentially and separately.Scheduling is conducted after the process plan is generated. However,current manufacturing environment changes fast.Especially, with the development of manufacturing technology and personalized consumer demand,modern manufacturing systems operate withincreasing complexity and flexibility.In such a system,order details, real-time status of production workshop and distribution of production facilities have an increasingly important effect on the performance of process planning and scheduling.If a process plan is carried out regardless of the scheduling objective,it may cause serious bottlenecks and obstacle to improve the productivity and responsiveness of the manufacturing systems[1].

    Integrated process planning and scheduling(IPPS)is an important method to meet the need of modern manufacturing system,which optimizes the manufacturing system by combining process planning and scheduling.This paper presents the application of an improved ant colony optimization(ACO)algorithm in IPPS problem,which makes use of alternative process route as inputs of scheduling,and determines appropriate operations and process routes according to the actual status of manufacturing systems.The scheme of process planning and scheduling is achieved through choosing alternative process routes based on the ACO under the restriction of optimization targets.

    2.Related Work

    The preliminary idea of IPPS was introduced by Chryssolouris et al. [2,3].Nasr and Essayed presented two heuristics based on mixed integer programming to determine an efficient schedule for n jobs m machines problem with alternative machine routings for each operation to minimize the mean flow time[4].Bandeimarte and Calderinideveloped a two-phase hierarchical tabu search[5].Kim et al.gave a scheduling system with flexible process plans and presented an auction-based task assignment method between multiple parts and multiple machines [6].Kim and Egbelu proposed a mixed integer programming model for a problem with n-job,m-process plan,and k-operation IPPS to minimize the makespan of jobs[7].Saygin and Kilic proposed a frame for IPPS to reduce the completion time.In order to solve the IPPS,a heuristic method was proposed[8].Tan presented a review in the process planning and scheduling area and discussed the extent of applicability of various approaches[9].

    Lee and Kim proposed an approach to the integration of process planning and scheduling using simulation based genetic algorithm s.A simulation module was used to compute performance measures based on process plan combinations and the results were fed into a genetic algorithm to improve the solution quality until the scheduling objectives were satisfied[10].Kim et al.proposed the symbiotic evolutionary algorithm(SEA)[11],which is a modified evolutionary algorithm based on the idea that parallel searches for different pieces of solution are more efficient than a single search for the entire solution.Kumar etal.attempted to use ACO for the IPPS problem,which is represented by graph with nodes and arcs.Individual ants move from the initial node to the final node through all nodes desired to be visited.The solution of the algorithm is a collective outcome of the solution found by all the ants[12].Tan and Khoshnevis presented a linearized polynomial mixed-integer programming model for IPPS[13].Wong et al.developed a multi-agent negotiation(MAN)approach for IPPS and established an agent-based framework to simulate the IPPS approach[14].Wang et al.presented a review in the distributed process planning and scheduling area[15].

    Recently,some research results for the IPPS are presented.Liand McMahon used a unified model and a simulated annealing-based approach to facilitate the integration and optimization process.Three strategies,including processing flexibility,operation sequencing flexibility and scheduling flexibility,were used for exploring the search space to support the optimization process effectively[16].Moon et al. dealt with IPPS in a supply chain,formulating a mixed integer programming model for integration,which considers alternative operation sequences and precedence constraints,and developing a newevolutionary search approach based on a topological sort[17].Shao et al.developed a new integration model and a modified genetic algorithm-based approach to facilitate the integration and optimization of process planning and scheduling,and efficient genetic representation and operator schemes to improve the optimization performance of the modified genetic algorithm-based approach[18].Li et al.developed a new hybrid algorithm based approach to solve the IPPS problem and efficient genetic representation,operator and local search strategy to improve the optimization performance[19].Leung et al.presented an ACO algorithm in an agent-based system to IPPS and proposed a graph-based solution method to minimize makespan[20].Wong et al. proposed a two-stage ACO algorithm by a multi-agent system to accomplish IPPS[21].

    3.Representations for Process Planning and Scheduling

    3.1.Statement of problem

    The IPPS problem can be described as follows[22].

    Given a set of n parts to be processed on machines with operations including alternative manufacturing resources,selecting suitable manufacturing resources and making sequence of operations so as to determine a schedule in which the precedence constraints among operations can be satisfied and corresponding objectives can be achieved.

    3.2.Representations for process planning and scheduling

    The IPPS is a typical combination optimization problem consisting of two sub-problems,process planning and job scheduling.This paper presents an approach to solve the IPPS problem through an AND/OR graph constructed on the ACO.For each part,all of the rational operations and feasible process routes are recorded in an AND/OR graph.The AND/OR graph structure can represent a set of possible alternative process routes [23].The AND-subgraph means the priority constraints among the operations of the same parts.The OR-subgraph means the correlations among the operations of the part,which indicates that one of the alternative process routes is accessed to be visited.To app ly the ACO algorithm to construct schedules for IPPS,the AND/OR graphs is represented.Given a disjunctive graph D=(O,U,V),where O is a set of nodes representing all processing operations Oi,j,U is a set of directed arcs,which corresponds to the precedence relationships among the operations of the same parts,and V is a set of undirected arcs,which connects all possible combination of the nodes and represents the visited relations of the same or different parts[24].Both U and V rep resent possible paths for ants to travel from one node to another.The ants are free to travel along the paths constructed on the AND/OR graph. To facilitate the implementation of ACO algorithm,two dummy nodes S and E are added as the starting and ending of the node[11,19].Fig.1 is the AND/OR graph with parts A and B,in which every note indicates certain operation.O11,the first node on the left belonging to part A,stands for the first operation of part A.The corresponding processing time is 7 s on machine W1and 6 s on machine W4.Fig.1 indicates that part A includes three alternative process routes consisting of 11 operations and part B includes six alternative process routes consisting of 13 operations.All process route available consisting of the operations from the two parts can be described in detail on the AND/OR graph.

    4.An Improved ACO Algorithm for IPPS

    4.1.Standard ACO algorithm

    Because AND/OR graph represents every available process route of all parts,ant colony cantraverse all notes on the AND/OR to achieve the solution of IPPS.Every node on the AND/OR graph signifies an operation of the job,which can be processed by different machines. The ant colony is placed on the starting node.An artificial ant visits some nodes by emulating the behavior of real ants.At the end of the continuous traversal process,a scheduling solution for the IPPS is constructed.The ants deposit amount of pheromone on the visited path consisting of nodes and arcs including directed and undirected arcs. Generally,in order to complete the traversal process,all nodes on the AND/OR have to be visited.In IPPS,due to the alternative process route of the same part represented by OR-subgraphs on the AND/OR graph,not all the nodes have to be visited[20].For example,if node O12of part A is selected,the branch including nodes O14,O15,O17,and O111will be neglected because they belong to another alternative process route.

    k ants are de ployed at the starting node S initially.They are allowed to go through the whole AND/OR graph along the nodes and arcs in accordance with the precedence relationship constraints of different nodes,until a scheduling solution is generated for all parts.Due to the machine flexibility,once a node is visited by an ant,all the other nodes of the same operation but of other alternative machines will be ignored,as the nodes and arcs of the AND/OR graph are pheromone carriers.When an ant chooses the next node v among all the possible nodes connecting to current node u,the pheromone amount τuvand the heuristic desirability ηuvwill construct an important factor to guide the ant to search the optimalpath.

    The heuristic desirability ηuvshall reflect the attraction of selecting the next node.It will be calculated according to the process time of current operation on the selected machine[14].The heuristic desirability ηuvcan be given as

    where E is a positive constant.Eq.(1)shows that the nodes with smaller processing time have higher desirability value,which have more attraction to the ants.

    The pheromone amount τuvindicates the attraction of arcs for the following ants,which specifies how good the previous scheduling solution obtained from those ants arrived at the end node are.It willbe updated according to the makespan for every ant to complete the scheduling.The pheromone amount τuvcan be given as

    Fig.1.The AND/ORgraph of an IPPSproblem with two parts.

    where ρ is an evaporation coefficient to arc(u,v),andis the quantity of pheromone trail on the arc(u,v)by ant k in each iteration.We also have

    where Q is a positive constant and Ckis the makespan by ant k.Before ant colony begins the iteration,the pheromone amount on every arc is set to be τ0initially.

    The heuristic desirability and the pheromone amount construct a probability of moving from a node from another for an ant.The more the pheromone amount on the arcs or the higher the heuristic desirability on the nodes,the higher the selective probability.For ant k,the

    where α and β denote the weighting parameters controlling the relative importance of pheromone amount and heuristic desirability,respectively,and Skrepresents the set of nodes,to which the ant has an access to move.

    4.2.The improved strategy generated from standard ACO

    When ACO is used to solve a combination optimization problem,the performance of ant colony algorithm may not be competitive compared with the other evolutional algorithms.Usually,two obstacles have to be faced,local convergence and stagnation[24].In order to get rid of them, several improvements and modifications are suggested to improve the performance of standard ACO algorithm.If all of the ants constructalmost the same scheduling solution repeatedly at the early stage of ACO algorithm,the algorithm will fall in to local convergence.The local convergence is the extraordinary accumulation of pheromone on the arcs caused by some non-typical factors,which makes the further exploration of new paths impossible.To void the local convergence,a parameter Mrptcontrolling the repeated number of the same scheduling solution is set in advance.

    To avoid the local convergence,we adopt the method of reducing the pheromone amount on the arcs and enhancing the attraction of nodes as follows.The impact coefficient of pheromone amount E is ad justed to enhance the attraction of nodes,which can be given as

    where E0is the initial value of E,which is set by trial and error method according to the complexity of IPPS.

    Eq.(2)shows that both pheromone evaporation coefficient ρ and coefficient of incremental pheromone Q affect the pheromone amount on the arcs,so ρ is ad justed to

    where ρ0is the initial value of ρ.In order to avoid unlimited accumulation of the trail,the value of ρ is limited in[0,1].

    Once the local convergence occurs,the faster the pheromone on the arc falls,the higher the probability of escaping from the local convergence for the ants.Q is ad justed to

    where Q0is the initial value of Q,set by trial and error method according to the complexity of the IPPS.

    In order to accelerate the convergence of the algorithm,a new pheromone updating rule is proposed.The new rule refers to repeated pheromone update of local visited arcs,on which the best schedule in current iteration by the total number of ant k is generated.When ant k completes the schedule,the pheromone mount of those arcs visited by ant k will be updated by Eq.(2).This rule referred to as“global update”consists of Eqs.(2),(3),(6)and(7).When all of the ants complete the schedule,an ant achieved the best schedule generates in the current iteration.The pheromone mount on its visited arcs will be updated again by Eq.(2).The arcs visited by the ant and achieving the best schedule in the current iteration execute twice pheromone update by Eq.(2).This rule may be referred to as“l(fā)ocal update”.The pheromone amount of those arcs will deposit fast at the early stage.Themore the pheromone amount on the arcs,the higher the selective probability of moving from a node from another node,which can accelerate the convergence of the algorithm to the near optimal solution.

    5.Experiments and Results

    Many parameters need to be ad justed while ACO is applied in the combination optimization.The same condition has to be faced to solve the IPPS.Those parameters include K,ρ,α,β,E0,Q0,and τ0.In order to achieve the optimal scheduling solution,it is necessary to ad just those parameters according to the complexity of IPPS.This paper takes the IPPS in Fig.1 as an example to verify the proposed ACO approach.A lot of preliminary experiments are dominated to test the effect of various parameters.In each experiment,one parameter is changed and the other parameters are fixed,and the effect of the changed parameter on the algorithm properties is analyzed at different levels.The experiment result shows that the performance of the algorithm is preferable at K=10,ρ0=0.8,α=2,β=1,E0=10,Q0=50,τ0=1,Mrpt=5, and Nite=200.The makespan turns out to be 38 by the proposed ACO approach.A Gantt chart of the result is presented in Fig.2.

    Simulation experiments are extended to the large-scale IPPS problems provided by Kim et al.[25].These problems involve 18 parts with various combinations of flexibility levels.Each part consists of a minimum of 8 and a maximum of 22 operations.24 test-bed problems are constructed with the 18 parts.These problems are tested with the improved ACO and standard ACO algorithm s.

    The choice of parameters is very important to the results.The method of determining these parameters is more complex than the selection method in the example in Fig.1 due to the enlargement of problemsize.In the preliminary experiments,problem 3 is taken as an example to exp lain the choices of k,ρ,α,β,E0,Q0,τ0,etc.Problem 3 is solved with different values of k∈{20,50,80,100},ρ∈{0.05,0.1, 0.25,0.5,0.8},α∈{0.5,1,5,10},β∈{0.5,1,5,10},E0∈{50,60,75, 95},Q0∈{200,300,450,650},Mrpt∈{5,10,20,50},and Nite∈{100, 500,1000,2000},and fixed value τ0=1.Experimental observation has shown that k=50,ρ0=0.8,α=1,β=1,E0=60,Q0=450, τ0=1,Mrpt=20,and Nite=500 are the best choices for these parameters.Fig.3 shows the Gantt chart problem 3 with makes pan 345.

    For each problem,100 trials of simulation are carried ou t and the average resu lt is taken.The results are compared in Table 1.Columns 2,3,and 4 report the average Cmax,machine utilization,average run time among 100 runs of the improved ACO,respectively,while columns 5,6 and 7 give those of the standard ACO.Column 8 com pares the improved ACO with standard ACO in term s of average Cmax.

    Fig.2.Gantt chart.

    Fig.3.Gantt chart.

    In Table 2,the makes pan generated by the improved ACO is compared with those of SEA by Kim et al.[11],MAN by Wong et al.[14], the agent-based ACO by Leung etal.[20],aswellas the two-stage ACO by Wong[21].Not all the problemsets con tribute to the overall improve ment.For example,the improved ACO(345.1)is superior to SEA (355.2)and two-stage ACO(366),inferior to MAN(282.6)and agent based ACO(273.8)in problem 3.However,the improved ACO(378.7) has the most optimal solution(345.1)compared to SEA(378.9),MAN (463),agent-based ACO(401.5)and two-stage ACO(398.2).Thus the improved ACO is more competitive in large scale problems.

    6.Conclusions

    An improved ACO algorithm is developed to integrate process planning and scheduling in this paper.Firstly,a graph-based representation for integrated process planning and scheduling is developed.The graph consists of three basic elements including set of nodes,set of arcs,and relation of AND/OR,which respectively stands for all of the processing operations,directed/undirected arcs connecting all possible nodes,and the alternative process plans of individual parts.Secondly,an approach is designed for IPPS based on the graph.In order to avoid local convergence and stagnation,several improvements are conducted to improve the performance of standard ACO algorithm.To verify the feasibility of the proposed approach,a number of simulation experiments are carried out to com pare this approach with other previously developed approaches.The experimental results show that the proposed approach can effectively generate good solutions.

    Table 1Comparison of makes pan,machine utilization,and runtime for the improved ACO and standard ACO

    Table 2Comparison of average makespan of different approaches

    However,the improved strategy for ACO is simple.Further work is to use additional criteria to improve the performance of ACO and apply this approach to enhance the performance of manufacturing system.

    Nomenclature

    E impact coefficient of pheromone amount

    k number of ants in each ant colony

    Mrptmaximum repeated number of the same scheduling solution

    m total number of machines in the process

    Nitenumber of iterations

    Nrptrepeated number of the same scheduling solution

    n total number of jobs to be scheduled

    Oijoperation j of job i(i=1,2,…,n)

    Q coefficient of incremental pheromone

    tijkprocessing time for operation Oijon machine k(k=1,2,…,m)

    u source nodes

    v possible destination nodes

    α weighting parameters of ηuv

    β weighting parameters of τuv

    ηuvheuristic in formation on the arc from u to v

    ρ pheromone evaporation coefficient

    τuvpheromone in formation on the arc from u to v

    [1]R.Shafaei,P.Brunn,Workshop scheduling using practical(inaccurate)data.Part3:a framework to integrate job releasing,routing and scheduling functions to create a robust predictive schedule,Int.J.Prod.Res.38(1)(2000)85-99.

    [2]G.Chryssolouris,S.Chan,W.Cobb,Decision making on the factory floor:an integrated approach to process planning and scheduling,Robot.Com put.Integr. Manuf.1(3-4)(1984)315-319.

    [3]G.Chryssolouris,S.Chan,An integrated approach to process planning and scheduling, CIRP Ann.Manuf.Technol.34(1)(1985)413-417.

    [4]N.Nasr,A.Elsayed,Job shop scheduling with alternative machines,Int.J.Prod.Res. 28(9)(1990)1595-1609.

    [5]P.Bandemarte,M.Calderini,A heuristic bicriterion approach to integrated process plan selection and job shop scheduling,Int.J.Prod.Res.33(1)(1995)161-181.

    [6]K.H.Kim,J.Y.Song,K.H.Wang,A negotiation based scheduling for item s with flexible process plan,Com put.Ind.Eng.33(3-4)(1997)785-788.

    [7]K.H.Kim,P.J.Egbelu,A mathematical model for job shop scheduling with multiple process plan consideration per job,Prod.Plan.Control9(3)(1998)250-259.

    [8]C.Saygin,S.E.Kilic,Integrating flexible process plans with scheduling in flexible manufacturing systems,Int.J.Adv.Manuf.Technol.15(4)(1999)265-280.

    [9]W.Tan,Integration of process planning and scheduling—a review,J.Intell.Manuf. 11(1)(2000)51-63.

    [10]H.Lee,S.S.Kim,Integration of process planning and scheduling using simulation based genetic algorithms,Int.J.Adv.Manuf.Technol.18(8)(2001)586-590.

    [11]Y.K.Kim,K.Park,J.Ko,A symbiotic evolutionary algorithm for the integration of process planning and job shop scheduling,Com put.Oper.Res.30(8)(2003) 1151-1171.

    [12]R.Kumar,M.K.Tiwari,R.Shankar,Schedu ling of flexible manufacturing systems:an ant colony optimization approach,P.I.MECH.ENG.B-J.ENG.217(11)(2003) 1443-1453.

    [13]W.Tan,B.Khoshnevis,A linearized polynomial mixed integer programming model for the integration of process planning and scheduling,J.Intell.Manuf.15(5)(2004) 593-605.

    [14]T.N.Wong,C.W.Leung,K.L.Mak,R.Y.K.Fung,An agent-based negotiation approach to integrate process p lann ing and scheduling,Int.J.Prod.Res.44(7)(2006) 1331-1351.

    [15]L.H.Wang,W.M.Shen,Q.Hao,An overview of distributed process planning and its integration with scheduling,Int.J.Com put.Appl.Technol.26(1-2)(2006)3-14.

    [16]W.D.Li,C.A.McMahon,A simulated annealing-based optimization approach for integrated process planning and scheduling,Int.J.Com put.Integr.Manuf.20(1) (2007)80-95.

    [17]C.Moon,Y.H.Lee,C.S.Jeong,Y.S.Yun,Integrated process planning and scheduling in a supply chain,Com put.Ind.Eng.54(4)(2008)1048-1061.

    [18]X.Y.Shao,X.Y.Li,L.Gao,Ch.Y.Zhang,Integration of process planning and scheduling—a modified genetic algorithm-based approach,Com put.Oper.Res.36(6)(2009) 2082-2096.

    [19]X.Y.Li,X.Y.Shao,L.Gao,W.R.Qian,An effective hybrid algorithm for integrated process planning and scheduling,Int.J.Prod.Econ.126(2)(2010)289-298.

    [20]C.W.Leung,T.N.Wong,K.L.Mak,R.Y.K.Fung,Integrated process planning and scheduling by an agent-based ant colony optimization,Com put.Ind.Eng.59(1) (2010)166-180.

    [21]T.N.Wong,S.C.H.Zhang,G.Wang,L.P.Zhang,Integrated process planning and scheduling—multi-agent system with two-stage ant colony optimization algorithm,Int.J.Prod.Res.50(21)(2012)6188-6201.

    [22]Y.W.Guo,W.D.Li,A.R.Mileham,G.W.Owen,Applications of particle swarm and optimization in integrated process planning and scheduling,Robot.Com put.Integr. Manuf.25(2)(2009)280-288.

    [23]Y.C.Ho,C.L.Moodie,So lving cell formation problems in a manufacturing environment with flexible processing and routing capabilities,Int.J.Prod.Res.34(10) (1996)2901-2923.

    [24]M.Dorigo,V.Maniezzo,A.Colorni,The ant system:optimization by a colony of cooperating agents,IEEETrans.Syst.Man Cybern.Syst.26(2)(1996)29-41.

    [25]Y.K.Kim,A set of data for the integration of process planning and job shop scheduling,Available at/http://syslab.chonnam.ac.kr/links/data-pp&s.doc 2003.

    ☆Supported by the Fundamental Research Funds for the Central Universities (13MS100),the HebeiProvince Research Foundation of NaturalScience(E2011502024) and the NationalNaturalScience Foundation of China(51177046).

    *Corresponding author.

    E-mailaddress:wm 803@sohu.com(J.Wang).

    男人操女人黄网站| 国产男靠女视频免费网站| 法律面前人人平等表现在哪些方面| 中文字幕人妻熟女乱码| 午夜福利,免费看| 亚洲一区中文字幕在线| 国产av一区在线观看免费| 精品久久蜜臀av无| 一进一出抽搐动态| 露出奶头的视频| 19禁男女啪啪无遮挡网站| 人人妻人人爽人人添夜夜欢视频| 亚洲国产毛片av蜜桃av| 中文亚洲av片在线观看爽| 色婷婷久久久亚洲欧美| 久久精品亚洲精品国产色婷小说| 女人被狂操c到高潮| 久久九九热精品免费| 中国美女看黄片| 88av欧美| 色在线成人网| 亚洲全国av大片| 亚洲五月色婷婷综合| 99国产精品99久久久久| 精品不卡国产一区二区三区| 咕卡用的链子| 一级毛片女人18水好多| 无人区码免费观看不卡| 操出白浆在线播放| 99香蕉大伊视频| 女人被狂操c到高潮| 久久热在线av| 免费久久久久久久精品成人欧美视频| 欧美中文日本在线观看视频| 婷婷丁香在线五月| 亚洲五月天丁香| 欧美日本中文国产一区发布| 88av欧美| 欧美黑人精品巨大| 97人妻精品一区二区三区麻豆 | 一区二区三区国产精品乱码| 淫妇啪啪啪对白视频| 国内精品久久久久久久电影| 国产午夜精品久久久久久| 国产成人系列免费观看| 丁香欧美五月| 亚洲精品久久成人aⅴ小说| 久热爱精品视频在线9| 色婷婷久久久亚洲欧美| 级片在线观看| a在线观看视频网站| 午夜亚洲福利在线播放| 久久中文字幕人妻熟女| 少妇被粗大的猛进出69影院| 久久婷婷成人综合色麻豆| 国产男靠女视频免费网站| 精品国产亚洲在线| 日本五十路高清| 一a级毛片在线观看| 欧美乱色亚洲激情| 脱女人内裤的视频| 99riav亚洲国产免费| 99香蕉大伊视频| 日韩大码丰满熟妇| 国产一区二区三区综合在线观看| 日本 av在线| 亚洲成av片中文字幕在线观看| 精品一品国产午夜福利视频| 天堂动漫精品| 久久中文字幕一级| 一区二区三区精品91| 日韩高清综合在线| 午夜福利视频1000在线观看 | av天堂在线播放| 12—13女人毛片做爰片一| 亚洲全国av大片| 国产精品99久久99久久久不卡| 欧美精品亚洲一区二区| 国产99久久九九免费精品| 熟妇人妻久久中文字幕3abv| 手机成人av网站| 亚洲国产精品合色在线| 性欧美人与动物交配| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品 国内视频| 精品国产一区二区三区四区第35| 久久婷婷人人爽人人干人人爱 | 日日夜夜操网爽| 久久人人爽av亚洲精品天堂| 国产成人av教育| 操出白浆在线播放| 亚洲男人的天堂狠狠| 亚洲av电影不卡..在线观看| 最近最新中文字幕大全免费视频| 欧美黑人精品巨大| 亚洲国产欧美日韩在线播放| 亚洲av成人一区二区三| 不卡一级毛片| 亚洲,欧美精品.| 视频在线观看一区二区三区| 真人一进一出gif抽搐免费| 狂野欧美激情性xxxx| 久久香蕉激情| 欧美黄色淫秽网站| 欧美精品啪啪一区二区三区| 国产欧美日韩一区二区三| 国产成人影院久久av| 亚洲精品国产色婷婷电影| 中文亚洲av片在线观看爽| 国产一区二区三区综合在线观看| aaaaa片日本免费| av电影中文网址| 在线视频色国产色| 欧美在线一区亚洲| 黄色丝袜av网址大全| 国产一区二区三区视频了| 久久久久久国产a免费观看| 非洲黑人性xxxx精品又粗又长| netflix在线观看网站| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 国产激情久久老熟女| 一级a爱视频在线免费观看| 国产人伦9x9x在线观看| 国产亚洲精品久久久久久毛片| 欧美亚洲日本最大视频资源| 中出人妻视频一区二区| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 美女午夜性视频免费| 国产精品久久视频播放| 国产成人av激情在线播放| 国产精品综合久久久久久久免费 | 国产成人av教育| 超碰成人久久| 美女高潮喷水抽搐中文字幕| 两人在一起打扑克的视频| 免费在线观看视频国产中文字幕亚洲| 黄片小视频在线播放| 午夜精品久久久久久毛片777| 精品高清国产在线一区| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费激情av| 啦啦啦韩国在线观看视频| 久久久久亚洲av毛片大全| 搡老妇女老女人老熟妇| 成人18禁在线播放| 久久婷婷成人综合色麻豆| 黄色视频,在线免费观看| 成人三级做爰电影| 亚洲人成网站在线播放欧美日韩| 91成年电影在线观看| 老司机福利观看| 在线观看免费视频日本深夜| 嫩草影院精品99| 婷婷丁香在线五月| 国产午夜福利久久久久久| 久久久国产精品麻豆| 国产成人欧美在线观看| 一边摸一边做爽爽视频免费| 国产精品精品国产色婷婷| 亚洲av电影不卡..在线观看| 免费在线观看影片大全网站| av视频在线观看入口| 午夜久久久久精精品| 一进一出抽搐gif免费好疼| 99国产综合亚洲精品| 国产亚洲欧美精品永久| 精品国产超薄肉色丝袜足j| 久久久国产精品麻豆| 熟女少妇亚洲综合色aaa.| 亚洲中文字幕日韩| 久久久国产精品麻豆| 色av中文字幕| 亚洲电影在线观看av| 成人亚洲精品一区在线观看| 亚洲第一电影网av| 久久人人97超碰香蕉20202| 午夜亚洲福利在线播放| 久久久久久久久免费视频了| 亚洲自拍偷在线| 18美女黄网站色大片免费观看| 国产99久久九九免费精品| 丁香欧美五月| 国产成人av教育| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 精品欧美一区二区三区在线| 老熟妇仑乱视频hdxx| 少妇裸体淫交视频免费看高清 | 麻豆av在线久日| 国产99久久九九免费精品| 日本欧美视频一区| 丝袜人妻中文字幕| 亚洲国产欧美网| 久久亚洲精品不卡| 国产麻豆成人av免费视频| 亚洲最大成人中文| 欧美日本中文国产一区发布| 在线播放国产精品三级| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 成人永久免费在线观看视频| 欧美日本中文国产一区发布| 亚洲欧洲精品一区二区精品久久久| 18禁观看日本| 这个男人来自地球电影免费观看| 免费在线观看视频国产中文字幕亚洲| 久久久久久久午夜电影| 国产成人啪精品午夜网站| 欧美亚洲日本最大视频资源| 免费看十八禁软件| 丝袜美足系列| 亚洲,欧美精品.| 欧美黄色淫秽网站| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| 久久青草综合色| 亚洲精品国产区一区二| 黄色视频不卡| 1024视频免费在线观看| 国产精品一区二区在线不卡| 中文亚洲av片在线观看爽| 亚洲成人国产一区在线观看| 免费女性裸体啪啪无遮挡网站| 欧美丝袜亚洲另类 | 国产乱人伦免费视频| 久久婷婷人人爽人人干人人爱 | 动漫黄色视频在线观看| 日韩欧美三级三区| 两性夫妻黄色片| 看免费av毛片| 亚洲专区中文字幕在线| 久久久国产精品麻豆| 桃色一区二区三区在线观看| 成人永久免费在线观看视频| 欧美在线黄色| av视频在线观看入口| 亚洲avbb在线观看| 免费在线观看视频国产中文字幕亚洲| 色在线成人网| av视频在线观看入口| 午夜久久久在线观看| 欧美精品亚洲一区二区| 1024香蕉在线观看| 午夜免费激情av| 日韩大尺度精品在线看网址 | 精品欧美国产一区二区三| 一级毛片女人18水好多| 变态另类成人亚洲欧美熟女 | 亚洲人成伊人成综合网2020| 99久久综合精品五月天人人| 亚洲一区二区三区不卡视频| 亚洲精品粉嫩美女一区| 高清在线国产一区| 国产成人系列免费观看| 精品国产一区二区久久| 亚洲成人免费电影在线观看| 一个人观看的视频www高清免费观看 | av欧美777| 国产成人精品久久二区二区91| 黑人欧美特级aaaaaa片| 亚洲精品在线观看二区| 亚洲aⅴ乱码一区二区在线播放 | 午夜精品国产一区二区电影| 在线天堂中文资源库| 性少妇av在线| 亚洲自偷自拍图片 自拍| www日本在线高清视频| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡 | 一本大道久久a久久精品| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 国产伦一二天堂av在线观看| 黄色女人牲交| 免费在线观看亚洲国产| 亚洲国产精品合色在线| 国产一区二区三区综合在线观看| 欧美丝袜亚洲另类 | 久久精品国产综合久久久| 国产精品综合久久久久久久免费 | 久久性视频一级片| 91九色精品人成在线观看| АⅤ资源中文在线天堂| 级片在线观看| 欧美午夜高清在线| 91麻豆av在线| 欧美在线黄色| 国产亚洲欧美98| 亚洲一区二区三区色噜噜| 18美女黄网站色大片免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产视频一区二区在线看| 日日干狠狠操夜夜爽| 亚洲中文日韩欧美视频| 亚洲av美国av| 亚洲天堂国产精品一区在线| 国产私拍福利视频在线观看| 色尼玛亚洲综合影院| 欧美av亚洲av综合av国产av| 桃色一区二区三区在线观看| 午夜影院日韩av| 99久久国产精品久久久| 欧美一区二区精品小视频在线| 禁无遮挡网站| 中文亚洲av片在线观看爽| 母亲3免费完整高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美+亚洲+日韩+国产| 后天国语完整版免费观看| 一边摸一边做爽爽视频免费| 十八禁人妻一区二区| 欧美日韩精品网址| 51午夜福利影视在线观看| 国产熟女xx| 91精品三级在线观看| 久久影院123| av视频免费观看在线观看| 老司机福利观看| 亚洲成人精品中文字幕电影| 国产97色在线日韩免费| 最好的美女福利视频网| 久久久精品国产亚洲av高清涩受| 久久欧美精品欧美久久欧美| 美女 人体艺术 gogo| 麻豆久久精品国产亚洲av| 这个男人来自地球电影免费观看| 黄色成人免费大全| 亚洲aⅴ乱码一区二区在线播放 | 亚洲自偷自拍图片 自拍| 国产精品自产拍在线观看55亚洲| 精品久久久精品久久久| 久久中文字幕一级| 亚洲国产日韩欧美精品在线观看 | 亚洲成a人片在线一区二区| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 午夜福利高清视频| 久9热在线精品视频| 一区二区三区激情视频| 日韩大码丰满熟妇| 黄网站色视频无遮挡免费观看| 亚洲精品久久国产高清桃花| 久久香蕉精品热| 亚洲精华国产精华精| 亚洲色图av天堂| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影 | 中文亚洲av片在线观看爽| 久久精品成人免费网站| 久热爱精品视频在线9| 亚洲五月天丁香| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| 九色亚洲精品在线播放| 在线观看午夜福利视频| 夜夜看夜夜爽夜夜摸| 在线观看午夜福利视频| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看| 精品国产亚洲在线| 好男人在线观看高清免费视频 | АⅤ资源中文在线天堂| 一级毛片精品| 成在线人永久免费视频| 欧美乱色亚洲激情| 国产高清有码在线观看视频 | 精品欧美一区二区三区在线| avwww免费| 成熟少妇高潮喷水视频| 一区二区日韩欧美中文字幕| 国产av一区在线观看免费| 精品国产美女av久久久久小说| 午夜久久久在线观看| 男女做爰动态图高潮gif福利片 | 国产高清激情床上av| 欧美另类亚洲清纯唯美| 欧美黑人精品巨大| 午夜久久久久精精品| 宅男免费午夜| 精品一区二区三区av网在线观看| 亚洲精品美女久久av网站| 国内精品久久久久精免费| 国产一区二区三区综合在线观看| 国产成人精品久久二区二区免费| 精品国产乱码久久久久久男人| 国产熟女xx| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 亚洲国产精品成人综合色| 国产精品一区二区精品视频观看| 免费看十八禁软件| 久久久久久免费高清国产稀缺| 两性夫妻黄色片| 99久久久亚洲精品蜜臀av| 99在线视频只有这里精品首页| 精品电影一区二区在线| 精品一区二区三区四区五区乱码| 91成人精品电影| 国产区一区二久久| 国产精品久久久av美女十八| 国产精品永久免费网站| 黄片小视频在线播放| 午夜免费鲁丝| 国产一区二区三区在线臀色熟女| 不卡av一区二区三区| 一个人观看的视频www高清免费观看 | 岛国视频午夜一区免费看| 法律面前人人平等表现在哪些方面| 久久亚洲精品不卡| 高清在线国产一区| 88av欧美| 色播在线永久视频| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 亚洲国产欧美一区二区综合| 亚洲三区欧美一区| 国产欧美日韩综合在线一区二区| 亚洲成人精品中文字幕电影| 欧美国产日韩亚洲一区| 岛国视频午夜一区免费看| 可以在线观看毛片的网站| 一二三四社区在线视频社区8| 一级毛片女人18水好多| 日韩视频一区二区在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久精品欧美日韩精品| 高潮久久久久久久久久久不卡| 国产精品香港三级国产av潘金莲| 这个男人来自地球电影免费观看| 黄色a级毛片大全视频| 久久狼人影院| 欧美中文日本在线观看视频| 日韩欧美国产一区二区入口| 中文字幕人妻熟女乱码| 亚洲 欧美 日韩 在线 免费| 黄色视频,在线免费观看| 啦啦啦韩国在线观看视频| 91麻豆精品激情在线观看国产| 91麻豆av在线| 国产野战对白在线观看| 色av中文字幕| 97碰自拍视频| 欧美中文日本在线观看视频| 精品人妻在线不人妻| 国产在线精品亚洲第一网站| 亚洲人成77777在线视频| 久久精品亚洲精品国产色婷小说| 午夜福利在线观看吧| 动漫黄色视频在线观看| 亚洲人成伊人成综合网2020| av欧美777| 91老司机精品| 国产精品av久久久久免费| 不卡av一区二区三区| 久久精品成人免费网站| 午夜精品国产一区二区电影| 中出人妻视频一区二区| 亚洲,欧美精品.| 成人精品一区二区免费| 精品免费久久久久久久清纯| 亚洲成人免费电影在线观看| 久久这里只有精品19| 日韩 欧美 亚洲 中文字幕| 成人18禁高潮啪啪吃奶动态图| 久久久久久国产a免费观看| 老司机深夜福利视频在线观看| 免费搜索国产男女视频| 99久久久亚洲精品蜜臀av| 国产97色在线日韩免费| 他把我摸到了高潮在线观看| 91精品国产国语对白视频| 51午夜福利影视在线观看| 亚洲人成网站在线播放欧美日韩| 美女 人体艺术 gogo| 99re在线观看精品视频| 午夜免费鲁丝| 午夜亚洲福利在线播放| 日韩中文字幕欧美一区二区| 性少妇av在线| 色综合亚洲欧美另类图片| 一级毛片精品| 69av精品久久久久久| 黄网站色视频无遮挡免费观看| 热99re8久久精品国产| 国产xxxxx性猛交| 正在播放国产对白刺激| 淫秽高清视频在线观看| 国语自产精品视频在线第100页| 男人操女人黄网站| 美女大奶头视频| 正在播放国产对白刺激| or卡值多少钱| 国产乱人伦免费视频| 午夜精品久久久久久毛片777| 日韩成人在线观看一区二区三区| 久久人妻av系列| 女性生殖器流出的白浆| 亚洲色图av天堂| 欧美人与性动交α欧美精品济南到| av中文乱码字幕在线| 国产精品永久免费网站| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 国产欧美日韩一区二区精品| 免费少妇av软件| 制服人妻中文乱码| 淫秽高清视频在线观看| 少妇 在线观看| 欧美日韩福利视频一区二区| 日本欧美视频一区| 免费观看精品视频网站| 性色av乱码一区二区三区2| 在线观看免费视频日本深夜| aaaaa片日本免费| 色综合亚洲欧美另类图片| 男男h啪啪无遮挡| 一个人观看的视频www高清免费观看 | 亚洲av成人av| 久久久久国产精品人妻aⅴ院| 男人操女人黄网站| 国产xxxxx性猛交| 免费观看精品视频网站| 大型av网站在线播放| 12—13女人毛片做爰片一| 精品日产1卡2卡| 久久久水蜜桃国产精品网| 欧美日韩瑟瑟在线播放| 波多野结衣一区麻豆| 搡老岳熟女国产| 精品国产乱子伦一区二区三区| 少妇裸体淫交视频免费看高清 | 窝窝影院91人妻| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区视频在线观看免费| 少妇的丰满在线观看| 亚洲久久久国产精品| 国产精品乱码一区二三区的特点 | 成人三级黄色视频| 人妻丰满熟妇av一区二区三区| 国产伦人伦偷精品视频| 黄色 视频免费看| 日韩有码中文字幕| 波多野结衣高清无吗| 成年女人毛片免费观看观看9| 日韩 欧美 亚洲 中文字幕| 色精品久久人妻99蜜桃| 国语自产精品视频在线第100页| 亚洲精华国产精华精| 亚洲五月色婷婷综合| 一本久久中文字幕| 久久精品91蜜桃| 成人手机av| 日韩免费av在线播放| 桃色一区二区三区在线观看| 亚洲片人在线观看| 中文字幕久久专区| 国内毛片毛片毛片毛片毛片| 一二三四在线观看免费中文在| 嫁个100分男人电影在线观看| 妹子高潮喷水视频| 国产熟女午夜一区二区三区| 18禁观看日本| 亚洲成a人片在线一区二区| 日韩成人在线观看一区二区三区| 精品午夜福利视频在线观看一区| 亚洲片人在线观看| 久久久久精品国产欧美久久久| 欧美激情 高清一区二区三区| 亚洲色图综合在线观看| 99国产综合亚洲精品| 国产乱人伦免费视频| 欧美色视频一区免费| 黑人巨大精品欧美一区二区蜜桃| 三级毛片av免费| 国产男靠女视频免费网站| 国产精品 欧美亚洲| 国产一区二区三区综合在线观看| 国产免费男女视频| 18禁美女被吸乳视频| 777久久人妻少妇嫩草av网站| 午夜免费激情av| 妹子高潮喷水视频| 国产精品 国内视频| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 91字幕亚洲| 可以免费在线观看a视频的电影网站| 啦啦啦 在线观看视频| 侵犯人妻中文字幕一二三四区| 99久久精品国产亚洲精品| 99国产精品免费福利视频| 岛国在线观看网站| x7x7x7水蜜桃| 日韩欧美三级三区| 成人国产综合亚洲| 操美女的视频在线观看| 免费高清视频大片| 精品福利观看| 在线av久久热| 啦啦啦 在线观看视频| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 成人亚洲精品一区在线观看| 亚洲电影在线观看av| 91麻豆av在线| 国产一区二区三区在线臀色熟女| 欧美日韩黄片免| 亚洲精品国产一区二区精华液| 极品教师在线免费播放| 色哟哟哟哟哟哟| 伦理电影免费视频|