石 寧,劉琪英,王鐵軍,張 琦,廖玉河,馬隆龍?,蔡熾柳
(1. 中國(guó)科學(xué)院廣州能源研究所,中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2. 中國(guó)科學(xué)院大學(xué),北京 100049)
一步催化轉(zhuǎn)化纖維素制備化學(xué)品的研究進(jìn)展*
石 寧1,2,劉琪英1,王鐵軍1,張 琦1,廖玉河1,2,馬隆龍1?,蔡熾柳1
(1. 中國(guó)科學(xué)院廣州能源研究所,中國(guó)科學(xué)院可再生能源重點(diǎn)實(shí)驗(yàn)室,廣州 510640;2. 中國(guó)科學(xué)院大學(xué),北京 100049)
高效利用纖維素制備燃料及化學(xué)品對(duì)人類的可持續(xù)發(fā)展具有重要的意義。通過化學(xué)轉(zhuǎn)化,可以將纖維素轉(zhuǎn)化為一系列的小分子有機(jī)物,作為平臺(tái)化合物制取生物質(zhì)基液體燃料或材料。本文綜述了利用化學(xué)方法直接轉(zhuǎn)化纖維素制備小分子化學(xué)品(5-羥甲基糠醛、乳酸、乙二醇、山梨醇和異山梨醇)的研究進(jìn)展,并對(duì)后續(xù)研究進(jìn)行了展望。
生物質(zhì);纖維素;5-羥甲基糠醛(5-HMF);乳酸;乙二醇;山梨醇;異山梨醇
近兩百年來人類社會(huì)的快速發(fā)展建立在對(duì)煤、石油、天然氣等不可再生的化石資源的開發(fā)利用上。隨著化石資源的消耗以及環(huán)境污染等問題的日益嚴(yán)重,開發(fā)利用可再生資源以實(shí)現(xiàn)人類社會(huì)可持續(xù)發(fā)展成為急需解決的問題。生物質(zhì)作為自然界中儲(chǔ)量豐富的可再生含碳資源,必將成為液體燃料及有機(jī)化學(xué)品的重要來源。纖維素、半纖維素和木質(zhì)素是生物質(zhì)的三大主要成分,其中纖維素占生物質(zhì)組成的40%~60%,是自然界中最豐富的非糧碳水化合物,其催化轉(zhuǎn)化制取具有高附加值的化學(xué)品是實(shí)現(xiàn)人類社會(huì)可持續(xù)發(fā)展的關(guān)鍵,成為近年學(xué)術(shù)界的研究熱點(diǎn)[1-5]。
纖維素由脫水葡萄糖單元通過 β-1,4-糖苷鍵連接而成,通過水解纖維素中的糖苷鍵,可以把纖維素轉(zhuǎn)化為葡萄糖。以葡萄糖為平臺(tái),經(jīng)過催化轉(zhuǎn)化反應(yīng)可以得到一系列具有高附加值的化學(xué)品。圖 1列出了利用纖維素制備小分子化學(xué)品的轉(zhuǎn)化路徑。葡萄糖經(jīng)加氫反應(yīng)可以轉(zhuǎn)化為己糖醇(山梨醇和甘露醇);葡萄糖經(jīng)過逆醛醇縮合反應(yīng)可以得到乙醇醛,對(duì)乙醇醛進(jìn)行加氫可以得到乙二醇[6];葡萄糖經(jīng)異構(gòu)化反應(yīng)可轉(zhuǎn)化為果糖,果糖發(fā)生逆醛醇縮合反應(yīng)得到甘油醛和二羥基丙酮,甘油醛及二羥基丙酮均可通過脫水及重排反應(yīng)轉(zhuǎn)化為乳酸[7];果糖脫去三分子水可以轉(zhuǎn)化為5-羥甲基糠醛(5-HMF)[8]。5-HMF可以經(jīng)過水合反應(yīng)轉(zhuǎn)化為乙酰丙酸[9],經(jīng)過氧化反應(yīng)轉(zhuǎn)化為2,5-呋喃二甲酸(FDCA)[10],經(jīng)過加氫脫氧反應(yīng)轉(zhuǎn)化為 2,5-二甲基呋喃(DMF)[11]。
在一定的催化條件下將纖維素的水解及后續(xù)葡萄糖的轉(zhuǎn)化進(jìn)行耦合,可以實(shí)現(xiàn)直接轉(zhuǎn)化纖維素得到各類小分子化學(xué)品。相比于多步反應(yīng),直接轉(zhuǎn)化纖維素制備小分子化學(xué)品具有工藝流程短、反應(yīng)設(shè)備少、易于工業(yè)化的優(yōu)勢(shì)。本文綜述了一步轉(zhuǎn)化纖維素制備各類小分子化學(xué)品的國(guó)內(nèi)外研究進(jìn)展,包括一步轉(zhuǎn)化纖維素為5-羥甲基糠醛、乳酸、乙二醇、山梨醇及異山梨醇。
2.1 轉(zhuǎn)化纖維素制備5-HMF
5-HMF被認(rèn)為是一種重要的生物質(zhì)基平臺(tái)化合物,可以用于制備多種高附加值的化學(xué)品及需求量極大的液體燃料。氧化5-HMF可以得到2,5-呋喃二甲酸。2,5-呋喃二甲酸可以作為一種聚酯單體,取代目前工業(yè)上制備聚酯的單體——對(duì)苯二甲酸[12]。5-HMF經(jīng)加氫脫氧反應(yīng)可以得到2,5-二甲基呋喃。2,5-二甲基呋喃的熱值與汽油接近,被認(rèn)為是一種理想的替代液體燃料[11]。
纖維素制備 5-HMF涉及到纖維素水解為葡萄糖和葡萄糖脫水兩個(gè)步驟。在葡萄糖的脫水過程中,目前普遍接受的觀點(diǎn)認(rèn)為葡萄糖首先需要異構(gòu)化為果糖,果糖再脫水形成 5-HMF[8]。近些年來國(guó)內(nèi)外研究者都開展了大量關(guān)于5-HMF制備的研究工作。關(guān)于 5-HMF的制備及應(yīng)用的詳細(xì)研究進(jìn)展可以見相關(guān)綜述[13-15],本文僅選取部分直接轉(zhuǎn)化纖維素制備5-HMF的進(jìn)展進(jìn)行介紹。
由于5-HMF在酸性水溶液中不穩(wěn)定,易轉(zhuǎn)化為乙酰丙酸,所以關(guān)于制備5-HMF的研究很少采用水作為反應(yīng)介質(zhì)。2010年,Asghari等[16]在單一水相中用磷酸鹽調(diào)節(jié)pH=2,在270℃條件下,纖維素轉(zhuǎn)化得到近30%的5-HMF(表1,序列1)。2011年,東北師范大學(xué)王曉紅團(tuán)隊(duì)[17]用 Cr[(DS)H2PW12O40]3作為催化劑,在 150℃的溫和條件下轉(zhuǎn)化纖維素得到5-HMF的收率為53%(表1,序列2)。這是至今在單一水相中獲得的最高5-HMF收率。他們認(rèn)為該催化劑既具有親水基團(tuán) CrH2PW12O40,又具有疏水基團(tuán)OSO3C12H25,催化劑的疏水基團(tuán)能夠有效吸附纖維素,從而催化纖維素的水解和脫水反應(yīng)。
離子液體是優(yōu)良的氫鍵受體,能夠在室溫下有效溶解纖維素[18],常被用作轉(zhuǎn)化纖維素制備5-HMF的反應(yīng)介質(zhì)。研究較多的離子液體有烷基咪唑氯化物或者烷基咪唑醋酸鹽[19]。大多數(shù)以離子液體作溶劑的反應(yīng)體系中常用氯鹽作為催化劑,比如 CrCl3、CuCl2-CrCl2、CrCl2-RuCl3等,得到5-HMF收率在50%~70%之間[20-22](表1,序列3~5)。Ding等在離子液體[Emim][Ac]中,采用CuCl2和[C4SO3Hmim][CH3SO3]作為催化劑轉(zhuǎn)化纖維素,得到69.7%的5-HMF[23]。然而,離子液體的價(jià)格昂貴,難以作為溶劑大規(guī)模工業(yè)化應(yīng)用。
除了離子液體,極性非質(zhì)子有機(jī)溶劑(DMSO、DMF、DMA等)由于能夠抑制5-HMF降解為乙酰丙酸,也常被用作制備5-HMF的反應(yīng)介質(zhì)。Binder等[24]采用DMA-LiCl作為反應(yīng)溶劑,在HCl和CrCl3的催化作用下,轉(zhuǎn)化纖維素可以得到54%的5-HMF(表1,序列6)。
對(duì)于由水和不與水互溶的有機(jī)溶劑組成的兩相體系作為反應(yīng)溶劑,由于其能夠?qū)⒉环€(wěn)定的5-HMF萃取到有機(jī)溶劑中避免其后續(xù)降解,也是一類被研究較多的反應(yīng)體系。四川大學(xué)胡常偉等[25]在水和四氫呋喃組成的兩相體系中以 AlCl3為催化劑轉(zhuǎn)化纖維素,可以得到37%的5-HMF(表1,序列7)。本研究團(tuán)隊(duì)在水-四氫呋喃組成的兩相體系中以NaHSO4-ZnSO4催化纖維素轉(zhuǎn)化,得到 53%的5-HMF[26](表1,序列8)。
此外,本團(tuán)隊(duì)開發(fā)了采用水蒸汽作為反應(yīng)介質(zhì)催化轉(zhuǎn)化纖維素制備 5-HMF的方法。采用硫酸氫鹽、磷酸二氫鹽等酸式鹽在水蒸汽中轉(zhuǎn)化纖維素,可以得到近30%的5-HMF收率[27,28](表1,序列9)。該方法避免了昂貴的離子液體作為溶劑及毒性較大的鉻鹽作為催化劑,較容易實(shí)現(xiàn)工業(yè)化,但是5-HMF的收率較低。
利用纖維素制備 5-HMF面臨的最大難題是產(chǎn)物選擇性低、副反應(yīng)嚴(yán)重以及碳利用率低。胡敏素是反應(yīng)過程中不可避免的副產(chǎn)物[29],特別是當(dāng)反應(yīng)過程中采用高濃度的纖維素作為原料時(shí),由于中間產(chǎn)物濃度的增加會(huì)極大地促進(jìn)縮聚反應(yīng)生成固體胡敏素,降低反應(yīng)過程中的碳利用率[26]。
表1 利用纖維素直接制備5-HMF的研究Table 1 Direct conversion of cellulose into 5-HMF
2.2 直接轉(zhuǎn)化纖維素制備乳酸的研究
乳酸(Lactic acid)作為一個(gè)重要的基礎(chǔ)化學(xué)原料,被廣泛應(yīng)用于食品、醫(yī)藥及化妝品等行業(yè)[30]。工業(yè)上的乳酸是通過葡萄糖發(fā)酵得到。近年來由于可降解的生物質(zhì)基聚乳酸的應(yīng)用[31],對(duì)乳酸的需求量迅猛上升,通過催化轉(zhuǎn)化糖制取乳酸成為一個(gè)研究熱點(diǎn)。
目前公認(rèn)的纖維素制備乳酸的反應(yīng)路徑如下:(1)纖維素水解為葡萄糖;(2)葡萄糖異構(gòu)為果糖;(3)果糖發(fā)生逆醛醇縮合反應(yīng)轉(zhuǎn)化為甘油醛和二羥基丙酮;(4)甘油醛和二羥基丙酮脫水轉(zhuǎn)化為丙酮醛;(5)丙酮醛水合重排為乳酸。
堿可以催化葡萄糖的異構(gòu)化和果糖的逆醛醇縮合反應(yīng),從而催化纖維素轉(zhuǎn)化為乳酸。在水熱條件下以Ca(OH)2或Ba(OH)2為催化劑催化纖維素降解,可以得到20%~40%的乳酸[32,33](表2,序列1~2)。
Chambon等[34]發(fā)現(xiàn)在水熱條件下用 AlW 催化轉(zhuǎn)化纖維素得到27% 的乳酸(表2,序列3)。陜西師范大學(xué)董文生團(tuán)隊(duì)[35]則用稀土有機(jī)化合物催化轉(zhuǎn)化纖維素,得到的乳酸收率高達(dá)89%(表2,序列4)。廈門大學(xué)王野團(tuán)隊(duì)[36]利用二價(jià)鉛鹽(PbⅡ)催化轉(zhuǎn)化纖維素可以得到60%的乳酸,最近他們又發(fā)現(xiàn)釩氧根離子(VO2+)在水溶液中無氧條件下可以很有效地轉(zhuǎn)化纖維素為乳酸[37](表2,序列5~7)。
雖然現(xiàn)在采用纖維素能夠得到60%甚至89%的乳酸收率,但是目前卻尚未見到直接以生物質(zhì)為原料制備乳酸的報(bào)道。如果利用原始的生物質(zhì)原料也能得到與使用纖維素作原料時(shí)相當(dāng)?shù)娜樗崾章剩瑒t有望實(shí)現(xiàn)利用自然界中廣泛存在的生物質(zhì)原料制備乳酸的工業(yè)化。
表2 降解纖維素制備乳酸及其酯類Table 2 Production of lactic acid from cellulose
2.3 直接轉(zhuǎn)化纖維素制備乙二醇的研究
乙二醇(Ethylene glycol)是一種重要的化工基礎(chǔ)有機(jī)原料,用于生產(chǎn)樹脂、PET聚酯纖維(滌綸)、防凍劑等行業(yè)。目前工業(yè)上生產(chǎn)乙二醇的方法是環(huán)氧乙烷水合法,即首先由石油催化裂解制取乙烯,乙烯再經(jīng)環(huán)氧化制環(huán)氧乙烷,最后環(huán)氧乙烷經(jīng)過水合反應(yīng)得到產(chǎn)品乙二醇[38]。
利用纖維素制備乙二醇是大連化學(xué)物理研究所的張濤團(tuán)隊(duì)首先發(fā)現(xiàn)的,最近他們綜述了纖維素制備乙二醇的研究進(jìn)展[6,39]。2008年,張濤等發(fā)現(xiàn)采用Ni-W2C/AC為催化劑在518 K和6 MPa的氫氣壓力下可以一步轉(zhuǎn)化纖維素為乙二醇,且收率可達(dá)50%~74%[40,41](表3,序列1~2)。最初,他們認(rèn)為起催化作用的主要是碳化鎢,但是后來的研究表明用鎢與其他金屬組成的雙金屬加氫催化劑,比如Ru-W/AC、Pd-W/AC、Pt-W/AC、Ir-W/AC和Ni-W/SBA-15等,都能催化纖維素轉(zhuǎn)化為乙二醇,且收率達(dá)到50%~76%[42](表3,序列3~4)。另外,采用金屬加氫催化劑(鈀碳、釕碳、雷尼鎳)與各種含鎢的化合物(磷鎢酸、三氧化鎢、硅鎢酸、偏鎢酸銨、鎢酸)組成的二元催化體系也能有效催化纖維素降解,得到32%~65%的乙二醇[43-45](表3,序列5~7)。他們發(fā)現(xiàn)催化劑中的鎢類化合物在氫氣氣氛和水熱條件下會(huì)被還原為可溶于水的HxWO3,而HxWO3能夠有效催化纖維素的水解及葡萄糖的逆醛醇縮合反應(yīng),逆醛醇縮合反應(yīng)得到的乙醇醛則被加氫成為乙二醇[43](圖2)。
張濤等[46,47]還研究了在氫氣中用Ni-W2C/AC催化轉(zhuǎn)化未經(jīng)處理的生物質(zhì),最高可以得到54%的乙二醇(相對(duì)于纖維素和半纖維素),以及46%的酚類(相對(duì)于木質(zhì)素)。他們發(fā)現(xiàn)生物質(zhì)的組成,尤其是木質(zhì)素的含量對(duì)乙二醇的收率具有很大的影響。
除了含鎢的催化劑,Xiao等[48]采用 Cu-Cr與Ca(OH)2共同催化纖維素的轉(zhuǎn)化,得到31.6%的乙二醇。其中 Ca(OH)2催化葡萄糖的逆醛醇反應(yīng),而Cu-Cr催化乙醇醛的加氫反應(yīng)(表3,序列8)。
目前被廣泛接受的催化纖維素制備乙二醇路徑為:(1)纖維素水解為葡萄糖;(2)葡萄糖發(fā)生逆醛醇縮合反應(yīng)轉(zhuǎn)化為赤蘚糖和乙醇醛,赤蘚糖再發(fā)生逆醛醇縮合反應(yīng)轉(zhuǎn)化為兩個(gè)乙醇醛;(3)乙醇醛再經(jīng)后續(xù)的加氫反應(yīng)轉(zhuǎn)化為乙二醇[6]。
圖2 鎢類化合物在催化纖維素制備乙二醇的作用機(jī)制Fig. 2 Action mechanism of tungsten compounds on cellulose conversion into ethylene glycol
表3 利用纖維素及生物質(zhì)制備乙二醇的研究Table 3 Production of ethylene glycol from cellulose
2.4 直接轉(zhuǎn)化纖維素制備己糖醇的研究
己糖醇(Hexitol,山梨醇和甘露醇)在食品、醫(yī)藥、聚酯材料等諸多領(lǐng)域都具有廣泛應(yīng)用[49]。工業(yè)上在120℃~150℃、4 MPa~12 MPa的反應(yīng)條件下,對(duì)葡萄糖進(jìn)行加氫制備己糖醇。利用纖維素制備己糖醇涉及到纖維素的水解和葡萄糖的加氫兩個(gè)反應(yīng),通常是在氫氣氣氛下、于水溶液中進(jìn)行。最近華南理工大學(xué)武書彬等[50]對(duì)近年來山梨醇的制備及應(yīng)用方面的進(jìn)展進(jìn)行了綜述。
2006年,F(xiàn)ukuoka等[51]報(bào)道了在190℃、5 MPa氫氣壓力條件下,在水溶液中采用Pt/γ-Al2O3催化纖維素水解-加氫,一步得到31%的己糖醇(表4,序列1)。他們認(rèn)為吸附到貴金屬Pt上的氫原子會(huì)溢流到載氣表面形成原位質(zhì)子酸催化纖維素的水解。清華大學(xué)劉海超團(tuán)隊(duì)[52]則采用Ru/C在245℃的高溫液態(tài)水中轉(zhuǎn)化纖維素,得到39.3%的山梨醇(表4,序列2)。他們指出高溫液態(tài)水電離出的氫離子可以催化纖維素的水解。
由于貴金屬催化劑性能能夠在水熱條件下保持穩(wěn)定,甚至能與液體酸組合而不失去活性,大多數(shù)一步轉(zhuǎn)化纖維素制備山梨醇的研究采用具有催化加氫能力的貴金屬(Ru、Pt、Rh)與具有催化水解能力的固體酸或液體酸相結(jié)合。Sels等[53]采用Ru/H-USY與濃度僅為106 ppm的HCl協(xié)同催化經(jīng)球磨處理的纖維素,可以得到90%以上的糖醇收率(表 4,序列 3)。他們認(rèn)為如此低濃度的鹽酸不會(huì)對(duì)反應(yīng)設(shè)備造成腐蝕。采用雜多酸(H4SiW12O40、Cs3.5SiW)與貴金屬Ru/C構(gòu)成的二元組合催化劑轉(zhuǎn)化微晶纖維素和球磨纖維素,可以分別得到38%和85%以上的己糖醇[54,55](表4,序列4~6)。部分研究也采用固體酸負(fù)載貴金屬制成的金屬-酸雙功能催化劑催化纖維素轉(zhuǎn)化為己糖醇。釕負(fù)載于酸性載體上得到的 Ru/Cs3PW12O40、Ru/SiO2-SO3H、Ru/NbOPO4催化轉(zhuǎn)化球磨處理的纖維素能得到45%以上的己糖醇收率[56-58](表4,序列7~9)。
此外,將價(jià)格較為低廉的鎳負(fù)載于固體酸上形成的雙功能催化劑,比如Ni/ZSM-5、3.0%Ni/CNF、16%Ni2P/AC等,也能催化轉(zhuǎn)化纖維素得到 50%~70%的己糖醇[59-63](表4,序列10~13)。鎳基催化劑雖然價(jià)格低廉,但是在高溫水熱條件下穩(wěn)定性較差,易失活。
球磨處理可以有效降低纖維素的結(jié)晶度和聚合度,從而降低纖維素轉(zhuǎn)化的反應(yīng)溫度,并提高山梨醇的收率。Hilgert等[64]用機(jī)械球磨負(fù)載有硫酸的纖維素,發(fā)現(xiàn)球磨處理能夠?qū)⒗w維素轉(zhuǎn)化為水溶性低聚物。他們對(duì)球磨后的可溶低聚物在氫氣中 150℃的溫和條件下以釕碳為催化劑進(jìn)行加氫,得到94%的己糖醇收率(表4,序列14)。雖然球磨處理纖維素可以有效降低其轉(zhuǎn)化的溫度和提高產(chǎn)物的收率,但是球磨本身就是一個(gè)高能耗的過程,難以實(shí)現(xiàn)工業(yè)化。
表4 利用纖維素制備己糖醇的研究Table 4 Production of hexitols from cellulose
2.5 直接轉(zhuǎn)化纖維素制備異山梨醇的研究
山梨醇在酸性催化劑的作用下脫去兩分子水可以得到異山梨醇(Isosorbide)。異山梨醇可以作為聚合物功能材料的單體、新型有機(jī)溶劑、醫(yī)藥藥物,甚至作為燃料或燃料添加劑,具有廣泛的應(yīng)用前景。異山梨醇的制備及應(yīng)用見Rose等的綜述[65]。
纖維素一步制取異山梨醇的反應(yīng)通常采用貴金屬Ru/C和固體或液體酸組合的二元催化體系。Liang等[66]采用HCl與Ru/C組成的二元催化劑在215℃下催化纖維素轉(zhuǎn)化,得到49.5%的異山梨醇(表5,序列1)。Op de Beeck等[67]采用H4SiW12O40與Ru/C相結(jié)合去催化纖維素,一步得到的50%以上的異山梨醇。當(dāng)采用脫去木質(zhì)素的麥草紙漿作原料時(shí),能夠得到63%的異山梨醇(表5,序列2~3)。
Sun等[68]采用介孔磷酸鈮負(fù)載貴金屬Ru制備的雙功能催化劑 Ru/NbOPO4轉(zhuǎn)化纖維素制備異山梨醇,得到的收率可達(dá)50%。他們發(fā)現(xiàn)Ru粒子大小對(duì)異山梨醇收率具有較大影響(表5,序列4)。與之相比,華東理工大學(xué)王艷琴等[69]采用Ru/NbOPO4催化纖維素降解,卻僅得到20%的異山梨醇。然而,他們采用連續(xù)的兩步法轉(zhuǎn)化纖維素卻得到56%的異山梨醇收率,即首先用介孔磷酸鈮負(fù)載釕(Ru/NbOPO4)催化纖維素的水解和加氫,之后采用NbOPO4催化第一步反應(yīng)得到的液體產(chǎn)物脫水。
表5 纖維素制備異山梨醇的研究Table 5 Production of isosorbide from cellulose
纖維素制備小分子有機(jī)化學(xué)品是一個(gè)新興的充滿機(jī)遇和挑戰(zhàn)的研究課題,近十年來進(jìn)展非常迅速。然而,目前各種轉(zhuǎn)化路徑都還存在各種各樣的問題。
由于纖維素結(jié)構(gòu)穩(wěn)定,所以對(duì)纖維素的轉(zhuǎn)化條件一般都較為苛刻,導(dǎo)致副產(chǎn)物較多,目標(biāo)產(chǎn)物收率低。如果能夠充分利用轉(zhuǎn)化過程中的副產(chǎn)物,則能夠有效提高轉(zhuǎn)化過程的碳利用率。另外,轉(zhuǎn)化木質(zhì)纖維素制備小分子化學(xué)品時(shí)常用的溶劑是水。水作為自然界中廣泛存在的綠色溶劑具有諸多好處,比如來源廣泛、污染較小等。但是,大多數(shù)固體催化劑在水熱條件下穩(wěn)定性較差、易失活。尋找高水熱穩(wěn)定性的固體催化劑是后續(xù)研究的重點(diǎn)。
本文所討論的技術(shù)都能夠從纖維素得到各類高附加值的化學(xué)品,但是自然界中的纖維素主要存在于生物質(zhì)中,而生物質(zhì)中其他組分(木質(zhì)素、半纖維素、灰分)會(huì)對(duì)纖維素的轉(zhuǎn)化產(chǎn)生重要影響。研究木質(zhì)纖維素類生物質(zhì)在上述反應(yīng)過程中的轉(zhuǎn)化是上述技術(shù)實(shí)現(xiàn)工業(yè)化應(yīng)用的關(guān)鍵。
[1] Verendel J J, Church T L, Andersson P G. Catalytic One-Pot Production of Small Organics from Polysaccharides[J]. Synthesis-Stuttgart, 2011, (11): 1649-1677.
[2] Zhang X, Tu M B, Paice M G. Routes to Potential Bioproducts from Lignocellulosic Biomass Lignin and Hemicelluloses[J]. Bioenergy Research, 2011, 4(4): 246-257.
[3] Mulhaupt R. Green Polymer Chemistry and Bio-based Plastics: Dreams and Reality[J]. Macromolecular Chemistry and Physics, 2013, 214(2): 159-174.
[4] Song J L, Fan H L, Ma J, et al. Conversion of glucose and cellulose into value-added products in water and ionic liquids[J]. Green Chemistry, 2013, 15(10): 2619-2635.
[5] Jin F M, Enomoto H. Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalysed and oxidation reactions[J]. Energy & Environmental Science, 2011, 4(2): 382-397.
[6] Wang A Q, Zhang T. One-Pot Conversion of Cellulose to Ethylene Glycol with Multifunctional Tungsten-Based Catalysts[J]. Accounts of Chemical Research, 2013, 46(7): 1377-1386.
[7] Rasrendra C B, Fachri B A, Makertihartha I G B N, et al. Catalytic Conversion of Dihydroxyacetone to Lactic Acid Using Metal Salts in Water[J]. ChemSusChem, 2011, 4(6): 768-777.
[8] Zhao H B, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007, 316(5831): 1597-1600.
[9] Girisuta B, Janssen L P B M, Heeres H J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid[J]. Green Chemistry, 2006, 8(8): 701-709.
[10] Verdeguer P, Merat N, Gaset A. Catalytic-Oxidation of Hmf to 2,5-Furandicarboxylic Acid[J]. Journal of Molecular Catalysis, 1993, 85(3): 327-344.
[11] Dumesic J A, Roman-Leshkov Y, Barrett C J, et al. Production of dimethylfuran for liquid fuels from biomassderived carbohydrates[J]. Nature, 2007, 447(7147): 982-U985.
[12] Ma J P, Pang Y, Wang M, et al. The copolymerization reactivity of diols with 2,5-furandicarboxylic acid for furan-based copolyester materials[J]. Journal of Materials Chemistry, 2012, 22(8): 3457-3461.
[13] Rosatella A A, Simeonov S P, Frade R F M, et al. 5-Hydroxymethylfurfural (HMF) as a building block platform: Biological properties, synthesis and synthetic applications[J]. Green Chemistry, 2011, 13(4): 754-793.
[14] Saha B, Abu-Omar M M. Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents[J]. Green Chemistry, 2014, 16(1): 24-38.
[15] Dutta S, Pal S. Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: Combined solvent-nanocatalysis approach for biorefinary[J]. Biomass & Bioenergy, 2014, 62: 182-197.
[16] Asghari F S, Yoshida H. Conversion of Japanese red pine wood (Pinus densiflora) into valuable chemicals under subcritical water conditions[J]. Carbohydrate Research, 2010, 345(1): 124-131.
[17] Zhao S, Cheng M X, Li J Z, et al. One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Bronsted-Lewis-surfactant-combined heteropolyacid catalyst[J]. Chemical Communications, 2011, 47(7): 2176-2178.
[18] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J]. Journal of the American Chemical Society, 2002, 124(18): 4974-4975.
[19] Zavrel M, Bross D, Funke M, et al. High-throughput screening for ionic liquids dissolving (ligno-)cellulose[J]. Bioresource Technology, 2009, 100(9): 2580-2587.
[20] Yu S, Brown H M, Huang X W, et al. Single-stepconversion of cellulose to 5-hydroxymethylfurfural (HMF), a versatile platform chemical[J]. Applied Catalysis a-General, 2009, 361(1/2): 117-122.
[21] Li C Z, Zhang Z H, Zhao Z B K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation[J]. Tetrahedron Letters, 2009, 50(38): 5403-5405.
[22] Yu H B, Wang P, Zhan S H, et al. Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid[J]. Bioresource Technology, 2011, 102(5): 4179-4183.
[23] Ding Z D, Shi J C, Xiao J J, et al. Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and co-catalyst[J]. Carbohydrate Polymers, 2012, 90(2): 792-798.
[24] Binder J B, Raines R T. Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals[J]. Journal of the American Chemical Society, 2009, 131(5): 1979-1985.
[25] Yang Y, Hu C W, Abu-Omar M M. Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system[J]. Green Chemistry, 2012, 14(2): 509-513.
[26] Shi N, Liu Q Y, Zhang Q, et al. High yield production of 5-hydroxymethylfurfural from cellulose by high concentration of sulfates in biphasic system[J]. Green Chemistry, 2013, 15(7): 1967-1974.
[27] Shi N, Liu Q Y, Ma L L, et al. Direct degradation of cellulose to 5-hydroxymethylfurfural in hot compressed steam with inorganic acidic salts[J]. Rsc Advances, 2014, 4(10): 4978-4984.
[28] Shi N, Liu Q Y, Wang T J, et al. One-Pot Degradation of Cellulose into Furfural Compounds in Hot Compressed Steam with Dihydric Phosphates[J]. Acs Sustainable Chemistry & Engineering, 2014, 2(4): 637-642.
[29] van Zandvoort I, Wang Y H, Rasrendra C B, v et al. Formation, Molecular Structure, and Morphology of Humins in Biomass Conversion: Influence of Feedstock and Processing Conditions[J]. ChemSusChem, 2013, 6(9): 1745-1758.
[30] Fan Y X, Zhou C H, Zhu X H. Selective Catalysis of Lactic Acid to Produce Commodity Chemicals[J]. Catalysis Reviews-Science and Engineering, 2009, 51(3): 293-324.
[31] 曹燕琳, 尹靜波, 顏世峰. 生物可降解聚乳酸的改性及其應(yīng)用研究進(jìn)展[J]. 高分子通報(bào), 2006, 10: 90-97.
[32] Yan X Y, Jin F M, Tohji K, et al. Hydrothermal Conversion of Carbohydrate Biomass to Lactic Acid[J]. Aiche Journal, 2010, 56(10): 2727-2733.
[33] Esposito D, Antonietti M. Chemical Conversion of Sugars to Lactic Acid by Alkaline Hydrothermal Processes[J]. ChemSusChem, 2013, 6(6): 989-992.
[34] Chambon F, Rataboul F, Pinel C, et al. Cellulose hydrothermal conversion promoted by heterogeneous Bronsted and Lewis acids: Remarkable efficiency of solid Lewis acids to produce lactic acid[J]. Applied Catalysis B-Environmental, 2011, 105(1/2): 171-181.
[35] Wang F F, Liu C L, Dong W S. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts[J]. Green Chemistry, 2013, 15(8): 2091-2095.
[36] Wang Y L, Deng W P, Wang B J, et al. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nature Communications, 2013, 4: 1-7.
[37] Tang Z C, Deng W P, Wang Y L, et al. Transformation of Cellulose and its Derived Carbohydrates into Formic and Lactic Acids Catalyzed by Vanadyl Cations[J]. ChemSusChem, 2014, 7(6): 1557-1567.
[38] 金棟, 崔小明. 我國(guó)乙二醇生產(chǎn)技術(shù)進(jìn)展及市場(chǎng)分析[J]. 精細(xì)與專用化學(xué)品, 2010, 18(5): 4-13.
[39] Zheng M Y, Pang J F, Wang A Q, et al. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: From fundamental discovery to potential commercialization[J]. Chinese Journal of Catalysis, 2014, 35(5): 602-613.
[40] Ji N, Zhang T, Zheng M Y, et al. Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts[J]. Angewandte Chemie-International Edition, 2008, 47(44): 8510-8513.
[41] Zhang Y H, Wang A Q, Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol[J]. Chemical Communications, 2010, 46(6): 862-864.
[42] Zheng M Y, Wang A Q, Ji N, et al. Transition Metal-Tungsten Bimetallic Catalysts for the Conversion of Cellulose into Ethylene Glycol[J]. ChemSusChem, 2010, 3(1): 63-66.
[43] Tai Z J, Zhang J Y, Wang A Q, et al. Temperaturecontrolled phase-transfer catalysis for ethylene glycol production from cellulose[J]. Chemical Communications, 2012, 48(56): 7052-7054.
[44] Tai Z J, Zhang J Y, Wang A Q, et al. Catalytic Conversion of Cellulose to Ethylene Glycol over a Low-Cost Binary Catalyst of Raney Ni and Tungstic Acid[J]. ChemSusChem, 2013, 6(4): 652-658.
[45] Liu Y, Luo C, Liu H C. Tungsten Trioxide Promoted Selective Conversion of Cellulose into Propylene Glycol and Ethylene Glycol on a Ruthenium Catalyst[J]. Angewandte Chemie-International Edition, 2012, 51(13): 3249-3253.
[46] Li C Z, Zheng M Y, Wang A Q, et al. One-pot catalytic hydrocracking of raw woody biomass into chemicals over supported carbide catalysts: simultaneous conversion of cellulose, hemicellulose and lignin[J]. Energy & Environmental Science, 2012, 5(4): 6383-6390.
[47] Pang J F, Zheng M Y, Wang A Q, et al. Catalytic Hydrogenation of Corn Stalk to Ethylene Glycol and 1,2-Propylene Glycol[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6601-6608.
[48] Xiao Z, Jin S, Pang M, et al. Conversion of highly concentrated cellulose to 1,2-propanediol and ethylene glycol over highly efficient CuCr catalysts[J]. Green Chemistry, 2013, 15(4): 891-895.
[49] 王成福, 趙光輝, 孫魯, 等. 功能糖醇的生產(chǎn)與應(yīng)用[J].中國(guó)食品添加劑, 2012, S1: 182-186.
[50] Zhang J, Li J B, Wu S B, et al. Advances in the Catalytic Production and Utilization of Sorbitol[J]. Industrial & Engineering Chemistry Research, 2013, 52(34): 11799-11815.
[51] Fukuoka A, Dhepe P L. Catalytic conversion of cellulose into sugar alcohols[J]. Angewandte Chemie-International Edition, 2006, 45(31): 5161-5163.
[52] Luo C, Wang S A, Liu H C. Cellulose conversion intopolyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water[J]. Angewandte Chemie-International Edition, 2007, 46(40): 7636-7639.
[53] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid[J]. Chemical Communications, 2011, 47(19): 5590-5592.
[54] Geboers J, Van de Vyver S, Carpentier K, et al. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon[J]. Chemical Communications, 2010, 46(20): 3577-3579.
[55] Geboers J, Van de Vyver S, Carpentier K, et al. Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C[J]. Green Chemistry, 2011, 13(8): 2167-2174.
[56] Liu M, Deng W P, Zhang Q H, Wang Y L, et al. Polyoxometalate-supported ruthenium nanoparticles as bifunctional heterogeneous catalysts for the conversions of cellobiose and cellulose into sorbitol under mild conditions[J]. Chemical Communications, 2011, 47(34): 9717-9719.
[57] Zhu W W, Yang H M, Chen J Z, et al. Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst[J]. Green Chemistry, 2014, 16(3): 1534-1542.
[58] Xi J X, Zhang Y, Xia Q N, Liu X H, et al. Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst[J]. Applied Catalysis a-General, 2013, 459: 52-58.
[59] Liang G F, Cheng H Y, Li W, et al. Selective conversion of microcrystalline cellulose into hexitols on nickel particles encapsulated within ZSM-5 zeolite[J]. Green Chemistry, 2012, 14(8): 2146-2149.
[60] Van de Vyver S, Geboers J, Dusselier M, et al. Selective Bifunctional Catalytic Conversion of Cellulose over Reshaped Ni Particles at the Tip of Carbon Nanofibers[J]. ChemSusChem, 2010, 3(6): 698-701.
[61] Pang J F, Wang A Q, Zheng M Y, et al. Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts[J]. Green Chemistry, 2012, 14(3): 614-617.
[62] Ding L N, Wang A Q, Zheng M Y, et al. Selective Transformation of Cellulose into Sorbitol by Using a Bifunctional Nickel Phosphide Catalyst[J]. ChemSusChem, 2010, 3(7): 818-821.
[63] Van de Vyver S, Geboers J, Schutyser W, et al. Tuning the Acid/Metal Balance of Carbon Nanofiber-Supported Nickel Catalysts for Hydrolytic Hydrogenation of Cellulose[J]. ChemSusChem, 2012, 5(8): 1549-1558.
[64] Hilgert J, Meine N, Rinaldi R, et al. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols[J]. Energy & Environmental Science, 2013, 6(1): 92-96.
[65] Rose M, Palkovits R. Isosorbide as a Renewable Platform chemical for Versatile Applications—Quo Vadis?[J]. ChemSusChem, 2012, 5(1): 167-176.
[66] Liang G F, Wu C Y, He L M, et al. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst[J]. Green Chemistry, 2011, 13(4): 839-842.
[67] Op de Beeck B, Geboers J, Van de Vyver S, et al. Conversion of (Ligno)Cellulose Feeds to Isosorbide with Heteropoly Acids and Ru on Carbon[J]. ChemSusChem, 2013, 6(1): 199-208.
[68] Sun P, Long X D, He H, et al. Conversion of Cellulose into Isosorbide over Bifunctional Ruthenium Nanoparticles Supported on Niobium Phosphate[J]. ChemSusChem, 2013, 6(11): 2190-2197.
[69] Xi J X, Zhang Y, Ding D Q, et al. Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process[J]. Applied Catalysis a-General, 2014, 469: 108-115.
Progress in One-Pot Catalytic Transformation of Cellulose into Valuable Chemicals
SHI Ning1,2, LIU Qi-ying1, WANG Tie-jun1, ZHANG Qi1, LIAO Yu-he1,2, MA Long-long1, CAI Chi-liu1
(1.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
Efficient transformation of cellulose into liquid fuels and chemicals is one key route for sustainable development of human society. With the chemical conversion, cellulose can be transformed to various small molecule organics, which are regarded as platform for production of liquid fuel or material. The progress in direct catalytic conversion of cellulose into valuable chemicals is reviewed in this paper, including preparation of 5-hydroxymethylfurfural (5-HMF), lactic acid, ethylene glycol, sorbitol and isosorbide. Finally, subsequent research topics on transformation of cellulose into valuable chemicals are prospected.
biomass; cellulose; 5-hydroxymethylfurfural (5-HMF); lactic acid; ethylene glycol; sorbitol; isosorbide
TK6;TQ211
A
10.3969/j.issn.2095-560X.2014.04.001
2095-560X(2014)04-0245-09
石 寧(1987-),男,博士研究生,主要從事生物質(zhì)催化解聚方面研究。
2014-06-05
2014-07-09
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(國(guó)家973計(jì)劃,2012CB215304);國(guó)家自然科學(xué)基金(51376185和51161140331);廣東省自然科學(xué)基
金(S2013010011612)
? 通信作者:馬隆龍,E-mail:mall@ms.giec.ac.cn
馬隆龍(1964-),男,工學(xué)博士,研究員,主要從事生物質(zhì)的高值化利用新技術(shù)與基礎(chǔ)科學(xué)問題研究。