• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fe-N/C-TsOH催化劑應(yīng)用堿性介質(zhì)催化氧還原的電催化活性

    2014-06-23 06:50:26潘國(guó)順梁曉璐羅桂海鄒春莉羅海梅
    物理化學(xué)學(xué)報(bào) 2014年2期
    關(guān)鍵詞:摩擦學(xué)催化活性清華大學(xué)

    徐 莉 潘國(guó)順,* 梁曉璐 羅桂海 鄒春莉 羅海梅

    (1清華大學(xué)摩擦學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京100084;2深圳清華大學(xué)研究院深圳市微納制造重點(diǎn)實(shí)驗(yàn)室,廣東深圳518057)

    1 Introduction

    In response to increasing awareness of environmental pollution and limiting energy source,great effort has been made worldwide to generate power in more efficient and environmental friendly ways.Fuel cells have attracted significant attention as a promising technology due to their advantages such as high energy density,high power density,and high energy conversion efficiency,as well as their low or zero emission.1However,there are two fundamental catalytic challenges remained at our current technology,including prohibitive cost and inadequate durability,hampered the commercialization of fuel cells.With respect to the high cost,Pt-based catalysts which have been regarded as the most electrocatalyst for oxygen reduction reaction(ORR)contributes over 50%of the total cost of a fuel cell stack.2One solution to overcome this predicament is to reduce the Pt content by a factor of ten by replacing the Pt-based catalysts with non-precious metal catalysts at the oxygen-reduction cathode.Fe-and Co-based electrocatalysts(M-Nx/C)for this reason have been developed for more than 50 years,but they were insufficiently active for the high efficiency and power density needed for applications such as stationary,portable,and automobile power supplies.3,4However,several breakthroughs occurred have improved the activity and durability of those kinds of catalysts,which can now be treated as potential competitors to Pt-based catalysts.

    In addition,it has been recognized that the nitrogen sources in the catalyst precursors during the M-Nx/C synthesis play a crucial role in ameliorating ORR activity as well as stability.And this is the reason why several different types of nitrogencontaining macrocycles,inorganic salts,and organometallic compounds have been employed as the precursors to form metalnitrogen complexes.5-11

    Polypyrrole(PPy),a conducting polymer with many pyrroletype N atoms,altering surface,and easy preparation and doping,has been widely used for the synthesis of M-Nx/C since it was first investigated by Yuasaet al.12in 2005.Yuasaet al.found that Co-PPy/C ORR activity enhanced after being pyrolyzed for the cobalt site forming four coordinate bonds with the nitrogen of the PPy rings(Co-N4).Bashyam and Zelenary3deposited PPy on carbon black to form a catalyst support(PPy/C)viaan oxidative polymerization process using hydrogen peroxide.After impregnating cobalt ions,a carbon-supported cobalt catalyst(Co-PPy/C)was generated.Research showed that sodium borohydride as reductive agent could improve the catalyst activity and stability and Co-N2may be active site.

    Furthermore,thermal-treatment has been recognized as a crucial role and sometimes necessary step to further improve the activity and stability.Although the heat-treatment effect on catalysts has been well documented,the mechanisms of the catalyst reaction during the heat-treatment process and the resulting improvement in activity are complicated and not fully understood.Reviewing many papers,thermal activation has significant impact on the metal particle size and size distribution,particle surface morphology,and metal dispersion on the support for such catalyst.Other benefits of heat treatment are to remove any undesirable impurities and allow a uniform dispersion and stable distribution of the transition metal on the support,and,therefore,to improve the electrocatalytic activity.13In addition,when the catalysts are pyrolyzed at a desired high temperature in a flowing inert atmosphere(nitrogen or argon),M-N precursor is partially or completely decomposed,resulting in a catalyst with much better catalytic activity and stability than a untreated catalyst.14

    To further improve the activity,dual-doped carbons with two different heteroatoms become one promising option for ORR by taking advantage of different heteroatoms in conjugated carbon backbone that can create new non-electron-neutral sites.In particular,the sulfur(or sulfo group),which has a close electronegativity to carbon,has been employed as a dualdopant in the preparation of M-Nxcatalysts.It was thought that the sulfur group doped to the M-Nx/C might be helpful for entrapping M ions in an environment rich in pyrrole-type nitrogen or pyridine-type nitrogen.For instance,N/S co-doped Vulcan XC-72R has been demonstrated to show superior ORR performance with excellent activity9and durability.14

    Based on the above conception,p-toluenesulfonic acid(TsOH)and polypyrrole were used as dual-dopant(S and N)to synthesize a novel non-precious metal catalyst based on carbon-supported ferrum,polypyrrole,and TsOH complex(Fe-N/CTsOH).In particular,TsOH,an organic compound,is known as tosyl group and not only was used as the S precursor,but also used as an“organic-soluble”acid catalyst to promote the oxidation of pyrrole.And a comparative study was carried out through the systematic analyses of Fe-N catalysts prepared without and with TsOH dopant by cyclic voltammeters(CVs),rotating disk electrode technique(RDE)in oxygen-saturated alkaline solutions,and scanning electron microscope(SEM),X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS)are used to characterize these catalysts in terms of their structures and compositions.

    2 Experimental

    2.1 Preparation of carbon black-supported Fe-N-S catalyst

    For preparation of carbon black supported Fe-N-S catalyst(Fe-N/C-TsOH),120 mg carbon black(Vulcan XC-72R with a BET surface area of 235 m2·g-1,purchased from Cabot)dispersed in 10 mL methanol(analytically pure)and then added 50 mg pyrrole(chemically pure),followed by 10 min of ultra-sonication.0.25 mL 30%H2O2and 50 mg TsOH(analytically pure,purchased from Guoyao)were added into this ultrasonication suspension while milling in a mortar for some time to obtain a slurry.10 mL methanol with 149 mg FeSO4·7H2O(analytically pure)was added into the mortar while followed by constant grinding for another 45 min,which was then dried in a vacuum at 60°C for 1 h to obtain a powder.This powder was further processed by thermal treatment under N2atmosphere at 200,400,600,and 700°C,respectively,for 2 h to optimize the heat-treatment temperature with respect to ORR electrolytic activity,forming the final carbon-supported Fe-N-S catalyst.To elucidate the effect of TsOH alone,a baseline sample of carbon loaded with TsOH-free Fe-N was also prepared under the same conditions depicted above,and is named as Fe-N/C-None in this paper.

    2.2 Electrochemical measurements

    Electrochemical measurements were conducted using a rotating glassy carbon disk electrode(glassy carbon electrode with a geometric surface area of 0.19625 cm2,purchased from Gamry Instruments).According to the electrode preparation method described by Qiaoet al.,1410 μL of catalyst ink,which consists of 2.0 mg catalyst per mL,was pipetted onto the glassy carbon(GC)disk electrode.The loading of catalysts was 101 μg·cm-2.A saturated calomel electrode(SCE)and Pt wire were used as the reference and counter electrodes,respectively.All measured potentials were converted to the standard hydrogen electrode(SHE).

    A 0.1 mol·L-1KOH aqueous solution was used as the electrolyte.For cyclic votammograms(CVs),the electrode was scanned at a scan rate of 50 mV·s-1in the potential range between-0.80 and 0.30 V to measure the surface behavior of the catalyst in N2-saturated KOH solution,and the ORR activity of the catalyst in O2-saturated KOH solutions,respectively.For more quantitative measurements of ORR activity,linear sweep voltammetry(LSV)was conducted on the catalyst-coated RDE in the potential range between-0.76 and 0.15 V in O2-saturated KOH solution at various rotation rates from 300 to 2100 r·min-1.All measured potentials(vsSCE)in this work were converted to the standard hydrogen electrode(SHE),as shown in the relevant text and figures.

    2.3 Material characterization

    The structure and phase analyses of the catalyst samples were performed using X-ray diffraction(XRD)with CuKαradiation(λ=0.15406 nm)and operating at 40 kV and 40 mA.The morphology and particle size of the catalyst samples were studied using a scanning electron microscope with a Bruker TESCAN.Surface characterization of the catalyst samples was conducted by X-ray photoelectron spectroscopy on a PHI Quantera Scanning X-ray MicroprobeTM5300 system(ULVAC-PHI.INC)with AlKX-ray anode source(hv=1486.6 eV)at 300 W and 15.0 kV.

    3 Results and discussion

    3.1 Electrochemical activity of Fe-N/C-TsOH catalysts towards ORR

    CVs of the catalysts pyrolized at 600°C prepared without and with TsOH were measured in O2-saturated 0.1 mol·L-1KOH solutions with a scan rate of 50 mV·s-1and the results are presented in Fig.1.In this figure′s legends,“600H”indicated the sample pyrolyzed at 600°C.There are obvious redox peaks appeared for two catalysts with a characteristic reduction peak associated with the ORR suggesting that Fe-N/C catalyst has ORR activity regardless of whether they are decorated with TsOH or not.However,more excellent positive peak potential value and higher peak current density were obtained for Fe-N/C-TsOH-600H catalyst than those for Fe-N/C-None-600H catalyst,indicting a better ORR activity after TsOH-doping.That is to say,the addition of TsOH leads to a considerable activity enhancement of the catalysts relative to the TsOH-free catalyst,which makes us resolutely believe that it is the TsOH or sulfur that plays an important role in enhancing the electrocatalytic performance of carbon materials for the ORR.Yanget al.15confirmed that the dopant would break the electroneutrality of carbon materials because the different electroneutrality between carbon and dopant would create favorable positive charged sites for the side-on O2surface adsorption.Pyrolysis of the catalyst in the presence of sulfur could lead to amorphous carbon,resulting in an increased catalyst porosity and in turn enhanced catalyst performance.16Besides,larger capacitance current over the potential range for Fe-N/C-TsOH-600H indicated a larger catalyst surface area.

    To further clarify the effect of thermal treatment on the ORR activity,the polarization curves were measured using RDE technique with the electrode rotation rate of 1500 r·min-1in O2-saturated 0.1 mol·L-1KOH solution for catalysts pyrolyzed from 200 to 700°C,with the unpyrolyzed catalyst sample(Fe-N/C-TsOH-RT)(“RT”means untreated or unpyrolyzed catalyst)for comparison.And the results are given in Fig.2.The pyrolyzed catalysts show better activities than the unpyrolyzed catalyst.There is general agreement in the literature that a heattreatment step has beneficial effects on the activity.11,13,14,17And the optimal treating temperature is 600°C.The ORR onset potential(Eonset)and the potential at the current density of-1.5 mA·cm-2for Fe-N/C-TsOH-600H are 30 and 170 mV,respectively,more positive than Fe-N/C-TsOH-RT.In addition,the diffusion-limiting current for the Fe-N/C-TsOH-600H is also slightly higher than the rest catalysts and shows well-defined plateaus which means that the ORR kinetics catalyzed by Fe-N/C-TsOH-600H is fast enough to exhaust the O2concentration at the electrode surface.When the thermal temperature is below 600°C,with increasing heat-treatment temperature,more Fe-Nxactive sites could be produced.However,when temperature is higher than 600 °C,such as 700 °C,not only the structure of the material was collapsed under exceedingly high temperature,which results in the material morphology obviously changed,but also the undesired formation of secondary species can be increased,which could lead to a reduced concentration of Fe-Nxmoieties on the catalyst surface,as shown in the following SEM images and XRD patterns.

    Fig.1 CVs of catalysts doped with and without TsOH in O2-saturated 0.1 mol·L-1KOH solution

    Fig.2 Polarization curves for Fe-N/C-TsOH catalysts pyrolyzed at different heat-treatment temperatures

    For a more quantitative evaluation of the ORR catalytic activity of the catalysts developed in our work,RDE voltammetry measurements were also carried out at different electrode rotation rates(ω)from 300 to 2100 r·min-1,which was demonstrated in Fig.3.The parameters obtained about the two catalysts are listed in Table 1,The difference in diffusion-limiting currents between Fe-N/C-TsOH-600H and Fe-N/C-None-600H may suggest that the ORR mechanisms catalyzed by these catalysts are different,particularly in terms of the overall electron transfer number.The ORR catalyzed by pyrolyzed Fe-N/C-TsOH may have more electron numbers(or fewer two-electron processes for peroxide production)than that of the pyrolyzed Fe-N/CNone.The overall electron transfer number(n)during the ORR can be evaluated from the Koutecky-Levich equation.1The peroxide production yield(y,%)is calculated from the ring-disk measurements according to the following equation:18,19

    Fig.3 Polarization curves for ORR on Fe-N/C-TsOH-600H and Fe-N/C-None-600H catalysts in O2-saturated 0.1 mol·L-1KOH electrolytes at various rotation rates

    Table 1 Comparison of electrochemical data for Fe-N/C-TsOH-600H and Fe-N/C-None-600H catalysts

    where,jis the current density at specific potential,such as-0.6 V,-0.5 V,etc,jdis the disk ORR current density,jkis the kinetic current density,nis the overall number of electrons transferred per molecule of O2reduced,Fis Faraday′s constant(F=96485 C·mol-1),COis the concentration of oxygen dissolved(1.1×10-6mol·cm-3),DOis the diffusion coefficient of O2in the bulk solution(1.9×10-5cm2·s-1),andνis the kinetic viscosity of the solution(1.0×10-2cm2·s-1).The Koutecky-Levich plots are shown in Fig.4.Based on those plots,we can see that:the averagenvalues were determined to be 3.098 for Fe-N/CNone-600H,while 3.899 for Fe-N/C-TsOH-600H,which is very close to 4,suggesting that the catalysts doped with TsOH have a higher overall ORR electron number than the catalysts without TsOH,indicating a very difference in the mechanisms catalyzed by these two catalysts.Accordingly,the percentageof H2O2produced in the potential range for Fe-N/C-TsOH-600H was less than 15%,while 50%for Fe-N/C-None-600H.In other words,the ORR catalyzed by Fe-N/C-TsOH-600H is a 4-electron transfer process from O2to H2O,whereas Fe-N/CNone-600H catalysts generally tend to catalyze the ORR through a(2+2)-electron pathway,producing H2O2,which is capable of oxidizing and splitting active sites.

    Fig.4 Overall electron transfer number(n)and the amount of peroxide produced during the ORR on the disk electrode and calculated by Eq.(3)for(a)Fe-N/C-TsOH-600H and(b)Fe-N/C-None-600H catalysts in O2-saturated 0.1 mol·L-1 KOH at the potentials between-0.6 and-0.2 V

    3.2 Morphology and structure of the prepared catalysts

    The morphologies of the samples were examined by SEM.As displayed in Fig.5,we can see that the temperature of thermal treatment has a direct influence on the morphology and crystal structure of the catalysts.In our study,the catalyst without thermal treatment shows some perfect carbon spheres with a smooth surface and a narrow diameter range from 40 to 200 nm(Fig.5(a)).After being heat-treated at 600°C,the shape of the materials looks like deformed spheres and the aggregate size decreases.What?s more,there are many small pores on the surfaces of the particles,which help to increase BET surface area of the materials(Fig.5(b)).For the catalyst sample pyrolyzed at 700°C,the material morphology has obviously changed,not only the diameter of the sample increased,but also the pores on the surface of the particle decreased(Fig.5(c)).It confirmed that the structure of the material was collapsed under exceedingly high temperature.

    Fig.6 XRD patterns of non-pyrolyzed and pyrolyzed Fe-N/C-TsOH catalysts at 600 and 700°C

    In order to make clear of pyrolysis effect on the ORR activity,Fe-N/C-TsOH-RT,Fe-N/C-TsOH-600H,and Fe-N/C-TsOH-700H samples were chosen for further XRD measurements.The representative diffractograms are shown in Fig.6.A large broad peak located at about 2θ=25°in all the XRD patterns is assigned to the(002)carbon planes of the carbon support with a remarkable disordered structure.From Fig.6,it can be seen that Fe-N/C-TsOH-RT shows some quite strong diffraction peaks due to the crystalline nature of FeSO4·7H2O.However,those peaks disappeared after heat treatment.Instead,some additional diffraction signals were formed at 600 and 700°C,which can be due to the generation of metallic iron(α-Fe),iron carbide(Fe3C),and iron oxide like magnetite(Fe3O4)as well as FeS.These results indicate that the structure of the Fe(II)-PPy precursor complex may have decomposed during the heat-treatment process.And those species could be a kind of ORR active sites with much less activity than that expected for Fe-Nxsites.It is noted that the diffraction signals for Fe-N/C-TsOH-700H are much stronger and sharper than those for Fe-N/C-TsOH-600H.Due to the formation of these less ORR activity species,the quantity of ORR active Fe-Nxactive sites would be reduced,resulting in a less ORR activity of the Fe-N/C-TsOH-700H.20

    The chemical nature of Fe-N/C-TsOH was further investigated by XPS analysis.The N 1sand S 2pcore levels of the catalyst material were recorded for both the unpyrolyzed and pyro-lyzed Fe-N/C-TsOH samples.As a typical candidate,the catalyst pyrolyzed at 600°C was selected as the target analysis material.Fig.7(a,b)shows the N 1sbinding energy region,where the peaks of N 1sat 398.9 and 400.5 eV can be attributed to pyridinic-N and pyrrolic-N(or pyridone-N),respectivity.8,21It should be mentioned that pyridinic-N is a type of nitrogen that contributes onep-electron to the aromaticp-system and has a lone electron pair in the plane of the carbon matrix.The pyridinic-N can be found on the edge of a carbon plane and a carbon vacancy.Since the pyridinic-N has a lone electron pair in the plane of the carbon matrix,this can increase electrondonor property of the catalyst,and thus weaken the O―O bondviathe bonding between oxygen and nitrogen and/or the adjacent carbon atom,and facilitate the reduction of oxygen.In other words,the pyridinic N species may have converted the ORR reaction mechanism from a 2e-dominated process to a 4e-dominated process and improved the ORR onset potential.While pyrrolic-N atoms are incorporated into five-membered heterocyclic rings,where each N atom is bonded to two carbon atoms and contributes twop-electrons to theπsystem.Although some progresses toward the identity and role of the electrocatalytic active center have been made,the precise relationship between catalytic activity and nitrogen species,is still unclear.22From the Fig.7(a,b),we know that increasing the thermal treatment temperature transforms more of the pyridinic nitrogen to pyrrolic nitrogen,where Fe-N/C-TsOH heat-treated at 600°C has larger fraction of the pyrrolic nitrogen groups compared to the pyridinic nitrogen groups,and it shows the higher activity than the catalyst unpyrolyzed as CVs and RDE results showed(Fig.1 and Fig.2).This indicates that the pyrrolic nitrogen group is more active for oxygen reduction and the catalyst pyrolyzed at 600°C has more active sites(pyrrolic nitrogen)to facilitate oxygen adsorption.The result agrees well with the reports that pyrrolic nitrogen is responsible for the unique activity of Fe-containing catalysts which was claimed earlier.23In addition,the preferred protonation of pyridinic sites may explain why higher heat-treatment temperature,which leads to more pyrrolic nitrogen and less pyridinic nitrogen,24results in more stable catalysts.25Fig.7(c)shows the S 2pXPS spectra measured for unpyrolyzed catalyst samples.It can be seen that the catalyst without thermal treatment shows a large band at 167.0-171.0 eV,which could be assigned to sulfate in catalyst precusor.14,16After pyrolyzed at 600°C,the deconvolution of the S signals gave two bands with binding energies of 163.8 and 168.8 eV,as shown in Fig.7(d).These peaks could be attributed to the binding sulfurs in C―Sn―C(n=1,2)bonds and oxidized―SOn―bonds,which are expected to occur at the edges of carbon.26,27Guoet al.28found that―C―S―C―plays the key role in promoting the ORR.The fact may explain the result that the catalyst pyrolyzed at 600°C shows better catalytic activity for the ORR as demonstrated in this work.It is believed that pyrolysis of the catalyst in the presence of sulfur could lead to amorphous carbon,resulting in an increased catalyst porosity and in turn enhanced catalyst performance.16,29,30Besides,sulfur group doped into the M-Nx-C might be helpful for entrapping M ions in an environment rich in pyrrole-type nitrogen.Thus,it was surmised that not only nitrogen doping but also sulfur doping of carbon play a key role in im-proving electrocatalytic activity of the ORR.

    Fig.5 SEM images of Fe-N/C-TsOH(a)without thermal treatment,(b)pyrolyzed at 600 °C,and(c)pyrolized at 700 °C

    Fig.7 XPS spectra of deconvoluted(a,b)N 1s and(c,d)S 2p for Fe-N/C-TsOH catalyst

    4 Conclusions

    In short,non-noble metal Fe-N/C electrocatalysts were prepared without and with TsOH dopant.The dual-doped catalysts show better catalytic activity for the oxygen reduction in alkaline solution than the catalysts doped only with N in terms of on-set potential,half-wave potential,as well as limited current potential values.The percentage of H2O2produced in the potential range for Fe-N/C-TsOH were less than 15%,while 50%for Fe-N/C-None,indicating a difference in the mechanisms catalyzed by these two catalysts.Furthermore,the catalytic activity strongly depended on the thermal temperature for the catalyst synthesis,and the best ORR performance was obtained at 600°C.In particular,Eonsetand the potential at the current density of-1.5 mA·cm-2for Fe-N/C-TsOH-600H are 30 and 170 mV more positive than Fe-N/C-TsOH-RT,respectively.Instrumental analysis and the SEM,XRD,and XPS results all showed that most of the active sites were formed after the samples were pyrolyzed at 600°C.

    (1) Qiao,J.L.;Xu,L.;Ding,L.;Shi,P.H.;Zhang,L.;Baker,R.;Zhang,J.J.Int.J.Electrochem.Sci.2013,8,1189.

    (2) Kromera,M.A.;Joseck,F.;Rhodes,T.;Guernsey,M.;Marcinkoski,J.Int.J.Hydrog.Energy2009,34,8276.doi:10.1016/j.ijhydene.2009.06.052

    (3) Bashyam,R.;Zelenary,P.Nature2006,443,63.doi:10.1038/nature05118

    (4) Lee,K.;Zhang,L.;Lui,H.;Hui,R.;Shi,Z.;Zhang,J.Electrochim.Acta2009,54,4704.doi:10.1016/j.electacta.2009.03.081

    (5) Baker,R.;Wilkinson,D.P.;Wilkinson,J.Electrochim.Acta2008,53,6906.doi:10.1016/j.electacta.2008.01.055

    (6) Xu,Z.;Li,H.;Cao,G.;Zhang,Q.;Li,K.;Zhao,Z.J.Mol.Catal.A:Chem.2011,335,89.doi:10.1016/j.molcata.2010.11.018

    (7) Ding,L.;Qiao,J.L.;Feng,X.;Zhang,J.;Tian,B.Int.J.Hydrog.Energy2012,37,14103.doi:10.1016/j.ijhydene.2012.07.046

    (8) Li,X.;Liu,G.;Popov,B.N.J.Power Sources2010,195,6373.doi:10.1016/j.jpowsour.2010.04.019

    (9) Qiao,J.;Xu,L.;Xu,P.;Shi,J.;Wang,H.Electrochim.Acta2013,96,298.doi:10.1016/j.electacta.2013.02.030

    (10) Jaouen,F.;Goellne,V.;Lefèvre,M.;Herranz,J.Proietti,E.;Dodelet,J.P.Electrochim.Acta2013,87,619.doi:10.1016/j.electacta.2012.09.057

    (11) Charreteur,F.;Ruggeri,S.;Jaouen,F.;Dodelet,J.P.Electrochim.Acta2008,53,6881.doi:10.1016/j.electacta.2007.12.051

    (12)Yuasa,M.;Yamaguchi,A.;Itsuki,H.;Tanaka,K.;Yamamoto,M.;Oyaizu,K.Chem.Mater.2005,17,4278.doi:10.1021/cm050958z

    (13) Hinds,G.Preparation and Characterisation of PEM Fuel Cell Electrocatalysts:a Review.InNPL Report DEPC-MPE 019;National Physical Laboratory:Teddington,Middlesex,United Kingdom,2005;p 10.

    (14) Qiao,J.;Xu,L.;Ding,L.;Zhang,L.;Baker,L.;Dai,X.;Zhang,J.Appl.Catal.B:Environ.2012,125,197.doi:10.1016/j.apcatb.2012.05.050

    (15)Yang,Y.;Jiang,S.;Zhao,Y.;Zhu,L.;Chen,S.;Wang,X.;Wu,Q.;Ma,J.;Ma,Y.;Hu,Z.Angew.Chem.Int.Edit.2011,50,7132.doi:10.1002/anie.v50.31

    (16) Kramm,U.I.;Herrmann,I.;Fiechter,S.;Zehl,G.;Zizak,I.;Abs-Wurmbach,I.;Radnik,J.;Dorbandt,I.;Bogdanoff,P.ECS Trans.2009,25,659.

    (17) Cheng,H.;Yan,W.;Scott,K.Fuel Cells2007,7,16.

    (18) Paulus,A.U.;Schmidt,H.A.;Gasteiger,R.J.;Behm,R.J.Electroanal.Chem.2001,495,134.doi:10.1016/S0022-0728(00)00407-1

    (19) Bezerra,C.W.B.;Zhang,L.;Lee,K.;Liu,H.;Zhang,J.;Shi,Z.;Marques,A.L.B.;Marques,E.P.;Wu,S.;Zhang,J.Electrochim.Acta2008,53,7703.doi:10.1016/j.electacta.2008.05.030

    (20) Jaouen,F.;Dodelet.J.P.Electrochim.Acta2007,52,5975.doi:10.1016/j.electacta.2007.03.045

    (21) Subramanian,N.P.;Li,X.;Nallathambi,V.;Kumaraguru,S.P.;Colon-Mercado,H.;Wu,G.;Lee,J.W.;Popov,B.N.J.Power Sources2009,188,38.doi:10.1016/j.jpowsour.2008.11.087

    (22)Wang,H.;Maiyalagan,T.;Wang,X.ACS Catal.2012,2,781.doi:10.1021/cs200652y

    (23)Wu,G.;Chen,Z.;Artyushkova,K.;Garzon,F.H.;Zelenay,P.ECS Trans.2008,16,159.

    (24)Kundu,S.;Nagaiah,T.C.;Xia,W.;Wang,Y.;Dommele,S.V.;Bitter,J.H.;Santa,M.;Grundmeier,G.;Bron,M.;Schuhmann,W.;Muhler,M.J.Phys.Chem.C2009,113,14302.doi:10.1021/jp811320d

    (25)Wu,G.;Artyushkova,K.;Ferrandon,M.;Kropf,J.;Myers,D.;Zelenay,P.ECS Trans.2009,25,1299.

    (26) Bubnova,O.;Khan,Z.U.;Malti,A.;Braun,S.;Fahlman,M.;Berggren,M.;Crispin,X.Nat.Mater.2011,10,429.doi:10.1038/nmat3012

    (27) Paraknowitsch,J.P.;Wienert,B.;Zhang,Y.;Thomas,A.Chem.Eur.J.2012,18,15416.doi:10.1002/chem.v18.48

    (28)Wang,H.;Bo,X.;Zhang,Y.;Guo,L.Electrochim.Acta2013,108,404.doi:10.1016/j.electacta.2013.06.133

    (29) Herrmann,I.;Kramm,U.I.;Radnik,J.;Fiechter,S.;Bogdanoff,P.J.Electrochem.Soc.2009,156,1283.doi:10.1149/1.3185852

    (30) Grabke,H.J.;Moszynski,D.;Muller-Lorenz,E.M.;Schneider,A.Surf.Interface Anal.2002,34,369.

    猜你喜歡
    摩擦學(xué)催化活性清華大學(xué)
    清華大學(xué):“如鹽在水”開(kāi)展課程思政
    論喬斯特的摩擦學(xué)學(xué)術(shù)思想
    ——紀(jì)念摩擦學(xué)創(chuàng)始人喬斯特博士誕生100周年
    摩擦學(xué)分會(huì)再獲殊榮
    我的清華大學(xué)自主招生經(jīng)歷
    央視《大家》欄目:摩擦學(xué)家雒建斌
    他永遠(yuǎn)是我們的老學(xué)長(zhǎng)——清華大學(xué)受助研究生來(lái)信摘編
    稀土La摻雜的Ti/nanoTiO2膜電極的制備及電催化活性
    環(huán)化聚丙烯腈/TiO2納米復(fù)合材料的制備及可見(jiàn)光催化活性
    Fe3+摻雜三維分級(jí)納米Bi2WO6的合成及其光催化活性增強(qiáng)機(jī)理
    LaCoO3催化劑的制備及其在甲烷催化燃燒反應(yīng)中的催化活性
    女性被躁到高潮视频| 久久精品国产亚洲av香蕉五月 | 夜夜夜夜夜久久久久| 9色porny在线观看| 亚洲精品成人av观看孕妇| 欧美在线黄色| 亚洲av熟女| 久久这里只有精品19| 精品国产乱子伦一区二区三区| 欧美成人午夜精品| 高清视频免费观看一区二区| 男人操女人黄网站| 99精品在免费线老司机午夜| 国产无遮挡羞羞视频在线观看| 欧美在线黄色| 色精品久久人妻99蜜桃| 国产人伦9x9x在线观看| 丰满饥渴人妻一区二区三| 黄色女人牲交| 91国产中文字幕| 成熟少妇高潮喷水视频| 一二三四在线观看免费中文在| 亚洲第一av免费看| 精品福利永久在线观看| 高清在线国产一区| 激情视频va一区二区三区| 久久精品国产清高在天天线| 91国产中文字幕| 丰满迷人的少妇在线观看| 麻豆乱淫一区二区| 午夜福利,免费看| 一边摸一边抽搐一进一小说 | 久久精品国产清高在天天线| 一区在线观看完整版| 久久热在线av| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 国产成人av教育| 国产激情欧美一区二区| 亚洲伊人色综图| 国产免费现黄频在线看| 十分钟在线观看高清视频www| 亚洲欧美一区二区三区久久| 无遮挡黄片免费观看| 久久中文字幕人妻熟女| 欧美一级毛片孕妇| 亚洲精品一卡2卡三卡4卡5卡| 久久精品熟女亚洲av麻豆精品| 日本a在线网址| 亚洲成国产人片在线观看| 天天躁日日躁夜夜躁夜夜| 99久久人妻综合| 视频区欧美日本亚洲| 在线观看免费午夜福利视频| 午夜91福利影院| 日本五十路高清| 天天添夜夜摸| 婷婷丁香在线五月| 亚洲五月色婷婷综合| 国产精品香港三级国产av潘金莲| 成人18禁高潮啪啪吃奶动态图| 免费在线观看视频国产中文字幕亚洲| 色在线成人网| 麻豆av在线久日| 成人18禁在线播放| 美女视频免费永久观看网站| 精品久久久久久久毛片微露脸| 性少妇av在线| 美女国产高潮福利片在线看| 黄片小视频在线播放| 欧美日韩成人在线一区二区| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 国产一区二区三区在线臀色熟女 | 色播在线永久视频| 一级a爱片免费观看的视频| 免费女性裸体啪啪无遮挡网站| 国产单亲对白刺激| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 国产亚洲欧美98| 日韩免费高清中文字幕av| 一级a爱片免费观看的视频| 大型av网站在线播放| 校园春色视频在线观看| 天堂俺去俺来也www色官网| 日韩欧美三级三区| 无人区码免费观看不卡| 咕卡用的链子| 午夜福利乱码中文字幕| 一区二区三区精品91| 久久久久久久久免费视频了| 好男人电影高清在线观看| 老司机影院毛片| 国产在线精品亚洲第一网站| 好男人电影高清在线观看| 黑丝袜美女国产一区| 女人精品久久久久毛片| 亚洲五月色婷婷综合| 黄色女人牲交| 国产国语露脸激情在线看| 丝袜美足系列| 亚洲第一av免费看| 中文欧美无线码| 看免费av毛片| tube8黄色片| 高清黄色对白视频在线免费看| 色尼玛亚洲综合影院| 国产亚洲精品久久久久久毛片 | 天天躁日日躁夜夜躁夜夜| 国产一区有黄有色的免费视频| 亚洲av欧美aⅴ国产| 成人影院久久| www.自偷自拍.com| 黄频高清免费视频| 精品第一国产精品| 十八禁高潮呻吟视频| 黄频高清免费视频| 国产精品欧美亚洲77777| 一区二区三区激情视频| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| 亚洲一区中文字幕在线| 人妻一区二区av| 久9热在线精品视频| 看片在线看免费视频| av天堂在线播放| 狠狠婷婷综合久久久久久88av| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9 | 欧美激情高清一区二区三区| 欧美日韩av久久| 久久人人97超碰香蕉20202| 午夜两性在线视频| 中文字幕人妻丝袜一区二区| 老司机午夜十八禁免费视频| 精品少妇一区二区三区视频日本电影| 亚洲国产看品久久| 91精品三级在线观看| 极品教师在线免费播放| 国产精品亚洲av一区麻豆| 又黄又爽又免费观看的视频| 国产三级黄色录像| 法律面前人人平等表现在哪些方面| 在线观看免费视频日本深夜| 亚洲九九香蕉| 淫妇啪啪啪对白视频| 91字幕亚洲| 狠狠婷婷综合久久久久久88av| 丰满人妻熟妇乱又伦精品不卡| 老司机靠b影院| 欧美日韩亚洲综合一区二区三区_| 一级片'在线观看视频| 亚洲三区欧美一区| 丝袜美腿诱惑在线| 亚洲精品国产色婷婷电影| 欧美亚洲日本最大视频资源| 亚洲七黄色美女视频| 久久久久精品国产欧美久久久| 不卡一级毛片| 最近最新中文字幕大全免费视频| 久久人妻av系列| 欧美+亚洲+日韩+国产| 一夜夜www| 伦理电影免费视频| 国产野战对白在线观看| 超色免费av| 成人精品一区二区免费| 久久久精品免费免费高清| 久久香蕉激情| av免费在线观看网站| 一二三四社区在线视频社区8| 精品国产一区二区久久| 国产乱人伦免费视频| 精品乱码久久久久久99久播| 老司机午夜福利在线观看视频| 亚洲五月色婷婷综合| 日韩熟女老妇一区二区性免费视频| 亚洲第一欧美日韩一区二区三区| 亚洲国产欧美日韩在线播放| 亚洲av欧美aⅴ国产| 精品国内亚洲2022精品成人 | 最新的欧美精品一区二区| 真人做人爱边吃奶动态| 亚洲,欧美精品.| 精品无人区乱码1区二区| 老司机在亚洲福利影院| 露出奶头的视频| 欧美成人免费av一区二区三区 | 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 精品乱码久久久久久99久播| 欧美日韩亚洲国产一区二区在线观看 | 在线观看舔阴道视频| 久热这里只有精品99| 国产欧美日韩综合在线一区二区| 亚洲国产精品合色在线| 日韩熟女老妇一区二区性免费视频| 亚洲国产中文字幕在线视频| 老司机靠b影院| 满18在线观看网站| 成人特级黄色片久久久久久久| a级片在线免费高清观看视频| 精品久久久久久电影网| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人 | 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 美女高潮到喷水免费观看| 熟女少妇亚洲综合色aaa.| 中文字幕制服av| 亚洲黑人精品在线| 欧美乱色亚洲激情| 色94色欧美一区二区| 欧美中文综合在线视频| 亚洲伊人色综图| 又大又爽又粗| 激情在线观看视频在线高清 | 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av成人av| 中文字幕最新亚洲高清| 久久国产精品男人的天堂亚洲| tocl精华| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| www.熟女人妻精品国产| 亚洲欧美色中文字幕在线| 久9热在线精品视频| 下体分泌物呈黄色| 国内毛片毛片毛片毛片毛片| 我的亚洲天堂| 国产av一区二区精品久久| 无人区码免费观看不卡| 丝袜在线中文字幕| 一级,二级,三级黄色视频| 精品国产国语对白av| 国产精品免费一区二区三区在线 | 天天躁夜夜躁狠狠躁躁| 午夜精品在线福利| 又紧又爽又黄一区二区| 最近最新中文字幕大全免费视频| 天天躁日日躁夜夜躁夜夜| 一本一本久久a久久精品综合妖精| 亚洲成国产人片在线观看| 每晚都被弄得嗷嗷叫到高潮| 久久99一区二区三区| 男男h啪啪无遮挡| 精品国产美女av久久久久小说| 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 99国产精品一区二区蜜桃av | 亚洲av日韩在线播放| 国产精品电影一区二区三区 | 真人做人爱边吃奶动态| 老汉色av国产亚洲站长工具| 9色porny在线观看| 丰满的人妻完整版| 美女扒开内裤让男人捅视频| 亚洲av成人不卡在线观看播放网| 久久九九热精品免费| 欧美不卡视频在线免费观看 | 日本vs欧美在线观看视频| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| 欧美日韩一级在线毛片| 亚洲欧美日韩另类电影网站| 欧美黄色片欧美黄色片| 午夜老司机福利片| 少妇粗大呻吟视频| 1024视频免费在线观看| 欧美精品亚洲一区二区| 国产精品久久久久久人妻精品电影| 中文字幕高清在线视频| 99在线人妻在线中文字幕 | 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 午夜福利一区二区在线看| 在线av久久热| 精品人妻1区二区| 中文欧美无线码| 欧美日韩精品网址| 男女免费视频国产| av电影中文网址| 亚洲精品国产精品久久久不卡| 91大片在线观看| 精品一品国产午夜福利视频| 国产亚洲欧美精品永久| 国产精品久久久av美女十八| e午夜精品久久久久久久| 国产一区二区三区视频了| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 老司机影院毛片| 日日夜夜操网爽| 日韩欧美三级三区| 欧美久久黑人一区二区| 国产精品香港三级国产av潘金莲| 久久久国产一区二区| 新久久久久国产一级毛片| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 在线观看日韩欧美| 国产成人欧美| 一级作爱视频免费观看| 飞空精品影院首页| 欧美日韩福利视频一区二区| 日韩免费av在线播放| 如日韩欧美国产精品一区二区三区| 九色亚洲精品在线播放| 欧美日韩乱码在线| 国产亚洲精品一区二区www | 在线观看66精品国产| 男女之事视频高清在线观看| 无限看片的www在线观看| 露出奶头的视频| 丁香六月欧美| 久久久国产精品麻豆| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 最新美女视频免费是黄的| 两个人免费观看高清视频| 一级片'在线观看视频| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| 亚洲少妇的诱惑av| 日本一区二区免费在线视频| 亚洲专区中文字幕在线| av福利片在线| ponron亚洲| 欧美人与性动交α欧美精品济南到| 久久国产精品影院| 国产精品久久视频播放| 欧美成人午夜精品| 国产精华一区二区三区| 亚洲中文字幕日韩| 亚洲五月婷婷丁香| 亚洲精品在线美女| 久久香蕉激情| 自线自在国产av| 国产精品美女特级片免费视频播放器 | 国产成人av激情在线播放| 1024香蕉在线观看| 人人澡人人妻人| 在线免费观看的www视频| 国产精品永久免费网站| 丰满的人妻完整版| 欧美久久黑人一区二区| 精品人妻熟女毛片av久久网站| 国产aⅴ精品一区二区三区波| 午夜福利乱码中文字幕| 亚洲精品国产色婷婷电影| 黄色女人牲交| 久久ye,这里只有精品| 在线观看免费视频网站a站| 久久久久国产一级毛片高清牌| 无遮挡黄片免费观看| 精品国产一区二区久久| 又紧又爽又黄一区二区| 精品久久久久久久毛片微露脸| 欧美久久黑人一区二区| 欧美黄色片欧美黄色片| av国产精品久久久久影院| 成年人免费黄色播放视频| 国产成人av激情在线播放| 麻豆国产av国片精品| 激情视频va一区二区三区| 国产精华一区二区三区| 12—13女人毛片做爰片一| 两性夫妻黄色片| 日本黄色视频三级网站网址 | 亚洲少妇的诱惑av| 精品久久蜜臀av无| av在线播放免费不卡| 色综合欧美亚洲国产小说| 国产一区有黄有色的免费视频| 亚洲第一欧美日韩一区二区三区| 久久精品熟女亚洲av麻豆精品| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产亚洲av香蕉五月 | 国产免费现黄频在线看| 美国免费a级毛片| 亚洲九九香蕉| 国产精品国产高清国产av | 老司机靠b影院| 99精品久久久久人妻精品| 久久国产精品影院| 制服诱惑二区| 日韩免费av在线播放| 国产成人一区二区三区免费视频网站| 久久久国产欧美日韩av| 欧美成人免费av一区二区三区 | 在线av久久热| 精品视频人人做人人爽| 最新美女视频免费是黄的| 深夜精品福利| 男男h啪啪无遮挡| 黑丝袜美女国产一区| 欧美乱色亚洲激情| 久久久久久久久久久久大奶| 一区二区三区激情视频| 在线观看免费午夜福利视频| 涩涩av久久男人的天堂| 婷婷丁香在线五月| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 99精国产麻豆久久婷婷| 热99国产精品久久久久久7| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 国产色视频综合| 老汉色∧v一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费成人在线视频| 国产亚洲欧美精品永久| 国产精品免费一区二区三区在线 | 丰满的人妻完整版| xxxhd国产人妻xxx| 久久久久久久午夜电影 | 久久久国产欧美日韩av| 日韩欧美在线二视频 | 欧美日韩国产mv在线观看视频| 久久中文字幕人妻熟女| 手机成人av网站| 免费看十八禁软件| 一进一出抽搐gif免费好疼 | 又黄又爽又免费观看的视频| 欧美亚洲 丝袜 人妻 在线| 妹子高潮喷水视频| 三级毛片av免费| 精品亚洲成a人片在线观看| 成人国语在线视频| 少妇被粗大的猛进出69影院| 夜夜躁狠狠躁天天躁| 亚洲av日韩精品久久久久久密| 女人爽到高潮嗷嗷叫在线视频| 高清黄色对白视频在线免费看| 又紧又爽又黄一区二区| 亚洲人成电影免费在线| 亚洲欧美色中文字幕在线| 多毛熟女@视频| 午夜福利,免费看| 美女福利国产在线| 亚洲七黄色美女视频| 久久国产精品影院| 免费在线观看黄色视频的| 精品亚洲成国产av| 欧美中文综合在线视频| 老汉色av国产亚洲站长工具| 香蕉久久夜色| 亚洲一区二区三区欧美精品| 女人被躁到高潮嗷嗷叫费观| 夜夜夜夜夜久久久久| 国产精品香港三级国产av潘金莲| 国产精品欧美亚洲77777| 99re在线观看精品视频| 精品久久久久久久久久免费视频 | 狠狠婷婷综合久久久久久88av| 精品福利观看| 午夜精品久久久久久毛片777| 极品少妇高潮喷水抽搐| 亚洲国产中文字幕在线视频| 亚洲av成人av| 日韩免费高清中文字幕av| 老鸭窝网址在线观看| 热re99久久精品国产66热6| 久久久精品国产亚洲av高清涩受| 国产精品香港三级国产av潘金莲| 人人妻人人添人人爽欧美一区卜| 极品教师在线免费播放| 久久国产精品影院| 99久久国产精品久久久| 国产又爽黄色视频| 淫妇啪啪啪对白视频| 国产男女超爽视频在线观看| 色老头精品视频在线观看| 国产精品成人在线| 亚洲精品在线观看二区| 欧美国产精品一级二级三级| 国产一区二区激情短视频| 免费在线观看视频国产中文字幕亚洲| 十八禁人妻一区二区| 嫩草影视91久久| 久久久国产一区二区| 国产精品二区激情视频| 欧美乱色亚洲激情| 国产精华一区二区三区| 91成人精品电影| 国产高清videossex| 国产一区二区激情短视频| 热99国产精品久久久久久7| 男人的好看免费观看在线视频 | 久久人妻福利社区极品人妻图片| 国产精品1区2区在线观看. | 久久久精品区二区三区| aaaaa片日本免费| 欧美黑人精品巨大| 久久国产亚洲av麻豆专区| 国产精品九九99| 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 丁香欧美五月| 国产精品一区二区免费欧美| 日韩欧美免费精品| 精品国产超薄肉色丝袜足j| 99久久精品国产亚洲精品| 两个人免费观看高清视频| 免费一级毛片在线播放高清视频 | 欧美日韩亚洲综合一区二区三区_| 一级黄色大片毛片| 亚洲人成伊人成综合网2020| 他把我摸到了高潮在线观看| 一级毛片高清免费大全| 母亲3免费完整高清在线观看| 美女视频免费永久观看网站| 99久久综合精品五月天人人| 亚洲男人天堂网一区| 9191精品国产免费久久| 18在线观看网站| 亚洲精品在线观看二区| 国产精品 欧美亚洲| 亚洲熟妇中文字幕五十中出 | 久久久久久人人人人人| 亚洲avbb在线观看| 成年人免费黄色播放视频| 亚洲国产精品合色在线| 精品熟女少妇八av免费久了| 久久亚洲精品不卡| 丁香六月欧美| a级毛片在线看网站| 嫩草影视91久久| 免费av中文字幕在线| av有码第一页| 少妇 在线观看| 热99re8久久精品国产| 两个人免费观看高清视频| 看黄色毛片网站| a级毛片在线看网站| 丝瓜视频免费看黄片| 久久久久精品国产欧美久久久| 免费高清在线观看日韩| 麻豆成人av在线观看| 热99re8久久精品国产| 少妇被粗大的猛进出69影院| 午夜91福利影院| 大香蕉久久成人网| 午夜影院日韩av| 久久影院123| 黄色视频,在线免费观看| 中文亚洲av片在线观看爽 | 国产在线观看jvid| 伦理电影免费视频| 一本一本久久a久久精品综合妖精| 看免费av毛片| 久久精品人人爽人人爽视色| 丝袜美足系列| а√天堂www在线а√下载 | 最新的欧美精品一区二区| 国产成人欧美| 人人妻人人澡人人看| 国产精品久久久久久人妻精品电影| 亚洲专区中文字幕在线| 伦理电影免费视频| 欧美激情高清一区二区三区| 亚洲国产欧美日韩在线播放| 国产精品久久电影中文字幕 | 久久久久久久久免费视频了| 在线看a的网站| 成人特级黄色片久久久久久久| 狂野欧美激情性xxxx| 91精品三级在线观看| 老熟妇乱子伦视频在线观看| 视频区图区小说| 久久中文看片网| 免费日韩欧美在线观看| av福利片在线| 精品国产美女av久久久久小说| 成人永久免费在线观看视频| 成年人黄色毛片网站| 精品视频人人做人人爽| 亚洲av片天天在线观看| a在线观看视频网站| 亚洲国产精品sss在线观看 | 韩国av一区二区三区四区| 桃红色精品国产亚洲av| 国产一区在线观看成人免费| 国产1区2区3区精品| 中亚洲国语对白在线视频| 自线自在国产av| xxx96com| 交换朋友夫妻互换小说| 免费看a级黄色片| 免费观看精品视频网站| 亚洲av欧美aⅴ国产| 国产日韩欧美亚洲二区| 脱女人内裤的视频| 久久精品成人免费网站| 国产在线观看jvid| 中文字幕高清在线视频| 亚洲五月婷婷丁香| 成年动漫av网址| 女人爽到高潮嗷嗷叫在线视频| 麻豆国产av国片精品| 亚洲精品久久成人aⅴ小说| 女人爽到高潮嗷嗷叫在线视频| 一级,二级,三级黄色视频| 涩涩av久久男人的天堂| 精品国内亚洲2022精品成人 | 国产精品国产高清国产av | 亚洲视频免费观看视频| 中文字幕精品免费在线观看视频| 操出白浆在线播放| 国产不卡av网站在线观看|