曹 建, 孫學(xué)輝, 路鐵剛
中國(guó)農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京100081
水稻矮桿基因在研究水稻株型發(fā)育機(jī)理,詮釋植物生長(zhǎng)發(fā)育機(jī)制中扮演著重要的角色。水稻的株高變矮是由矮桿主效基因控制,同時(shí)也受到修飾基因、調(diào)節(jié)基因以及抑制基因的共同影響。矮桿基因的作用可以導(dǎo)致水稻植株水平或者細(xì)胞水平的變化,如節(jié)間變短,細(xì)胞個(gè)數(shù)下降,進(jìn)而植株變矮。水稻的株高發(fā)育還與植物激素有關(guān)。在已克隆的與水稻株高發(fā)育有關(guān)的基因中,與赤霉素有關(guān)的有 SD1[1]、SLR1[2]和 EUI1[3]等,與油菜素內(nèi)酯(BR)有關(guān)的有 D11[4]、BRD1[5]和 D2[6]等。其中SLR1和EUI1為高桿基因,SD1為半矮稈基因,其余為矮桿基因。這些基因在赤霉素或油菜素內(nèi)酯的合成或信號(hào)轉(zhuǎn)導(dǎo)中發(fā)揮著重要作用。
水稻的籽粒大小是水稻產(chǎn)量的主要影響因素之一,并直接影響稻米的外觀和品質(zhì)。研究水稻控制水稻籽粒發(fā)育相關(guān)的基因,明確水稻籽粒生長(zhǎng)發(fā)育的機(jī)理,對(duì)于解釋水稻生殖生長(zhǎng)的模式以及培育高產(chǎn)優(yōu)質(zhì)的水稻品種有著重要作用。目前,水稻分子生物學(xué)家已經(jīng)利用突變體對(duì)小?;蜃鲞^(guò)了大量研究,如H346/L32以及Kitaake中的小?;?MI1和 MI2[7~14];來(lái)源于斯里蘭卡的突變體club mutant的圓短粒基因KR1[15]等。其余的小粒性狀基因還控制著稻谷芒、籽粒紋理、圓籽粒以及株高等性狀。伴隨籽粒紋理性狀出現(xiàn)小粒性狀的基因有LGT[16],伴隨圓籽粒性狀出現(xiàn)小粒性狀的基因有 RK1、RK2[17,18],伴隨芒性狀出現(xiàn)小粒性狀的基因有 AN6、AN7[15],伴隨矮桿性狀出現(xiàn)小粒性狀的基因有 D56、D2、D54、DK6、DWF33、DWF1 和 D38 等[6,14,19~21]。
本文以1份水稻矮桿小粒材料t129為基礎(chǔ),通過(guò)與水稻秈稻亞種Dualr雜交得到F1代和F2代群體,對(duì)該突變體的矮桿小粒性狀進(jìn)行遺傳分析,以確定該突變體的遺傳規(guī)律,同時(shí)利用Dular/t129雜交F2代群體定位了一個(gè)隱性矮桿小粒基因。
水稻矮桿小粒突變體來(lái)源于本實(shí)驗(yàn)室構(gòu)建的T-DNA插入突變體庫(kù)[22],遺傳背景為粳稻品種日本晴。經(jīng)過(guò)河北和海南多代自交和選擇,突變體表型穩(wěn)定,受種植環(huán)境影響極小,是遺傳穩(wěn)定的品系。本實(shí)驗(yàn)中,水稻野生型材料為粳稻品種日本晴(Oryza Sativa L.spp.Japonica cv.Nipponbare)和秈稻品種Dular。
將日本晴與純合突變體t129種植于田間,種植10行,每行10株。成熟后分別在中間兩行選擇20株,調(diào)查株高、千粒重、結(jié)實(shí)率。
以矮桿小粒突變體t129為母本(P1)與野生型粳稻品種日本晴(P2)進(jìn)行正反交,收取F1代種子,種植后進(jìn)行自交得到F2代種子。將F2代種子種植。觀察雜交組合F1、F2群體中出現(xiàn)野生型表型和矮稈小粒表型植株的數(shù)量,對(duì)矮桿小粒突變體進(jìn)行遺傳分析。
利用矮桿小粒突變體t129/秈稻品種Dular(P3)的F2(P1/P3)群體作為基因定位群體。
根據(jù)突變體t129與Dular雜交組合F2代植株表型,選取隱性表型單株10株,分成兩組各5株,每組剪取等量葉片混合,構(gòu)建隱性表型基因池。采用改進(jìn)的CTAB法[23]提取隱性表型基因池。精細(xì)定位時(shí)用同樣方法提取用于連鎖分析的F2代單株DNA。
本實(shí)驗(yàn)所用InDel引物由北京擎科新業(yè)生物技術(shù)有限公司合成。利用網(wǎng)上所公布的粳稻亞種日本晴和秈稻亞種9311的全基因組序列進(jìn)行比對(duì),利用在秈稻粳稻之間片段大小差異設(shè)計(jì)引物,引物設(shè)計(jì)軟件為DNAMAN,引物設(shè)計(jì)完成后,在日本晴和Dular兩個(gè)雜交親本之間檢測(cè)多態(tài)性。然后利用多態(tài)性引物對(duì)前述Dualr/t129 F2隱性表型混池進(jìn)行初定位,再用與該混池連鎖的初定位標(biāo)記對(duì)隱性F2代全部單株進(jìn)行連鎖分析,確定引物與F2代隱性表型群體的連鎖關(guān)系。本研究開(kāi)發(fā)的部分InDel標(biāo)記見(jiàn)表1。
PCR 擴(kuò)增體系(10 μL)為:ddH2O 6.1 μL,10× PCR Buffer 1 μL,MgCl2(25mmol/L)0.6 μL,dNTP Mix(1mmol/L)0.2 μL,引物(2 pmol,正向+反向)1 μL ,Takarar Taq(5 U/μL)0.1 μL,DNA模板(20 ng/μL)1 μL。PCR 擴(kuò)增程序?yàn)?94℃預(yù)變性 5min;94℃變性 30 s,56℃退火 30 s,72℃延伸30 s,擴(kuò)增 5個(gè)循環(huán);第二步,94℃變性30 s,58℃退火30 s,72℃延伸 30 s,擴(kuò)增33 個(gè)循環(huán);最后72℃下延伸7min。反應(yīng)產(chǎn)物在8%聚丙烯酰胺凝膠上電泳,電壓200 V,時(shí)間2 h 10min。電泳完成后用銀染顯色,在膠片觀察燈下觀察結(jié)果并照相。將電泳圖譜進(jìn)行數(shù)值轉(zhuǎn)換:與隱性親本帶型一致的記為1型帶,與顯性親本帶型一致的記為2型帶,同時(shí)具有雙親本帶型的的記為3型帶。
表1 本研究開(kāi)發(fā)的多態(tài)性InDel標(biāo)記Table 1 Polymorphic InDel markers used in this study.
利用Mapmaker軟件對(duì)轉(zhuǎn)換數(shù)據(jù)進(jìn)行分析,并進(jìn)行遺傳作圖[24],對(duì)矮桿小?;蜻M(jìn)行定位分析。
2.1.1 t129突變體與野生型親本的性狀差異通過(guò)田間測(cè)定,原始親本日本晴植株平均高度為91cm,而 t129突變表型植株平均高度為51cm,突變植株高度明顯下降矮化(見(jiàn)圖1A,彩圖見(jiàn)227頁(yè)圖版)。同時(shí)突變植株與原始親本植株日本晴的粒長(zhǎng)相比也明顯縮短(見(jiàn)圖1B),平均長(zhǎng)度由野生表型的0.768cm縮短為0.562cm,千粒重也明顯下降(見(jiàn)表2)。
圖1 成熟期野生型t129的植株形態(tài)與籽粒粒型Fig.1 Phenotype of the wild type and t129 mutant at mature stage.
2.1.2 突變體t129的遺傳分析 將純合t129突變體與日本晴進(jìn)行雜交,獲得F1代雜交種子。種植F1代植株,對(duì)其植株高度和籽粒形態(tài)進(jìn)行觀察。如表3所示,F(xiàn)1代粒長(zhǎng)均偏向于野生型親本。如日本晴/t129的F1代粒長(zhǎng)平均值為0.742cm,明顯偏向于野生型親本日本晴(平均粒長(zhǎng)為0.768cm)。在日本晴/t129雜交F1代中株高性狀也同樣偏向于日本晴。由此可見(jiàn),t129突變體矮桿小粒的性狀受隱性基因控制。
表2 突變體t129日本晴的農(nóng)藝性狀分析Table 2 Agronomic traits of the wild type and the t129 mutant.
表3 突變體t129與日本晴及其雜種F1代株高和粒長(zhǎng)性狀統(tǒng)計(jì)Table 3 Statistics on plant height and grain length among parents and F1.
為了進(jìn)一步明確矮稈、小粒突變表型是否由單基因控制,將F1代植株進(jìn)行自交獲得F2代植株群體,并對(duì)其進(jìn)行遺傳分析統(tǒng)計(jì)。如表4所示,t129突變體與日本晴的組合F2代分離群體中,野生型表型246株,突變型植株數(shù)85株,卡方值,無(wú)顯著性差異,符合3∶1的孟德?tīng)栠z傳理論分離比例。日本晴與t129突變體雜交組合F2代分離群體中,野生型表型植株309株,突變體表型植株107株??ǚ街?3.84,同樣無(wú)顯著性差異,符合3∶1的孟德?tīng)栠z傳理論分離比例。以上研究結(jié)果表明,矮桿小粒突變體受一對(duì)隱形單基因控制。
表4 F2代分離群體的統(tǒng)計(jì)分析Table 4 Statistical analysis of the phenotype of F2segregating population.
為了進(jìn)一步克隆突變基因,將日本晴背景的純合t129突變體與Dular雜交獲得F1代,而后F1代自交獲得F2代分離群體,對(duì)其突變位點(diǎn)進(jìn)行精細(xì)定位。
用600對(duì)InDel引物對(duì)親本Dular和日本晴進(jìn)行多態(tài)性分析,有151對(duì)引物在Dular和日本晴之間有多態(tài)性。這151對(duì)引物均勻分布在水稻的12條染色體上。用此151對(duì)引物對(duì)Dular/t129 F2代群體隱性表型植株混池(5株/混池)進(jìn)行初步染色體定位,發(fā)現(xiàn)兩個(gè)DNA混池與5號(hào)染色體長(zhǎng)臂上rm5-6標(biāo)記完全連鎖。進(jìn)而取20株突變體表型單株和10株野生型表型單株對(duì)該標(biāo)記進(jìn)行驗(yàn)證,證明 rm5-6與 t129突變位點(diǎn)連鎖,在rm5-6標(biāo)記上下游合成InDel引物,其中有20對(duì)在親本間具有多態(tài)性,其中多態(tài)性較好的標(biāo)記是InDel3、InDel6、InDel8、InDel31、InDel43、InDel51、InDel57和InDel65,利用88個(gè)突變體表型單株將t129定位在rm5-6與InDel65之間,進(jìn)一步利用426株突變表型(隱性單株)群體和新開(kāi)發(fā)的分子標(biāo)記最終把t129基因定位在5號(hào)染色體InDel43與InDel57之間,物理距離約430 kb(見(jiàn)圖2),其中與InDel51共分離(見(jiàn)圖3)。
圖2 t129基因在第5號(hào)染色體上的分子定位Fig.2 Molecular mapping of T129 on the chromosome 5.
圖3 t129突變位點(diǎn)與InDel51標(biāo)記連鎖分析Fig.3 Linkage analysis of the mutant locus of t129 with Indel51 marker.
水稻是研究單子葉植物的模式植物之一。水稻矮桿、半矮稈突變體在研究單子葉植物生長(zhǎng)發(fā)育調(diào)控模式中也扮演著不可或缺的作用[25,26]。水稻矮桿、半矮稈基因在水稻植株中不僅決定了植株高矮,還在分蘗、莖稈、育性等性狀中發(fā)揮作用,參與水稻植株形態(tài)建成的各種生理生化過(guò)程。目前,發(fā)現(xiàn)和報(bào)道的水稻矮桿、半矮稈突變體已超過(guò)了80個(gè)。研究表明大部分分離克隆的矮桿和半矮稈基因與植物的赤霉素、油菜素內(nèi)酯(BR)和獨(dú)腳金素內(nèi)酯這三種激素的合成代謝、信號(hào)轉(zhuǎn)導(dǎo)有關(guān)系。如前述的SD1基因編碼GA20氧化酶,是赤霉素合成途徑中的關(guān)鍵酶[27];水稻GID1基因是從一個(gè)極矮、GA不敏感突變體gid1中克隆出來(lái)的,它編碼一個(gè)類(lèi)似于激素敏感脂肪酶蛋白,作用于植物特有的GRAS轉(zhuǎn)錄因子N端的DELLA結(jié)構(gòu)域,參與赤霉素信號(hào)轉(zhuǎn)導(dǎo)[28];水稻GID2基因突變也表現(xiàn)出極端矮化的表型,其通過(guò)參與泛素介導(dǎo)的蛋白質(zhì)降解負(fù)調(diào)控GA信號(hào)轉(zhuǎn)導(dǎo);從水稻矮桿突變體d11中克隆的CYP724B1基因在BR合成中起著關(guān)鍵作用[29];水稻BRD1基因發(fā)生突變可以表現(xiàn)出植株極端矮化,所有節(jié)間均不伸長(zhǎng)等表型,該基因編碼一個(gè)在BR合成中重要的限速酶[30];此外,調(diào)控水稻BR信號(hào)轉(zhuǎn)導(dǎo)的主要基因如 DLT、IBH1等發(fā)生突變也會(huì)導(dǎo)致植株矮化[31,32]。因此,對(duì)于水稻矮桿突變體進(jìn)行研究,能夠進(jìn)一步揭示水稻株型發(fā)育的分子機(jī)制與遺傳機(jī)制。目前,在水稻理想株型育種實(shí)踐中,矮桿、半矮稈突變體發(fā)揮著重要作用,對(duì)矮桿、半矮稈基因的克隆,對(duì)其參與的生物學(xué)途徑的研究,能夠?yàn)槲覀冞x育優(yōu)良水稻品種、研究水稻生長(zhǎng)發(fā)育的分子機(jī)理提供很大幫助。
此外,籽粒大小也是影響水稻產(chǎn)量的重要因素。粒長(zhǎng)基因在遺傳基礎(chǔ)上決定著籽粒大小。從以往的報(bào)道中我們可以看出,粒長(zhǎng)主要為數(shù)量性狀[32~37]。但也有研究表明粒長(zhǎng)受單基因控制[38]。在已克隆的與水稻粒長(zhǎng)粒型有關(guān)的基因中,GW5和GW2與泛素介導(dǎo)的蛋白質(zhì)降解過(guò)程有關(guān)[39,40],而 GS3 與細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)的負(fù)調(diào)控有關(guān)[41]。此外,根據(jù)前人報(bào)道,水稻籽粒的發(fā)育還受植物激素調(diào)節(jié),如前述的在BR合成中起關(guān)鍵作用的 D11基因,其突變體也表現(xiàn)為小粒表型[4],此外,具有小粒表型的 d2、brd1突變體同樣存在 BR 合成障礙[6,30]。因此,研究控制水稻籽粒發(fā)育的基因,對(duì)增進(jìn)植物發(fā)育的分子機(jī)理以及細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)過(guò)程的認(rèn)識(shí)大有裨益。
本研究對(duì)一矮桿小粒突變體t129進(jìn)行了表型分析和初步定位。其株高約為野生型一半,籽粒粒長(zhǎng)較野生型明顯減少,是研究水稻株型發(fā)育與籽粒發(fā)育分子機(jī)理的良好材料。在分析突變體與野生型配置的正反交雜交組合后,F(xiàn)2群體中野生型表型與突變體表型分離比例符合3:1的遺傳分離比例,由此表明t129突變體由常染色體隱性單基因控制。經(jīng)過(guò)精細(xì)定位將t129定位到5號(hào)染色體長(zhǎng)臂上,引物InDel43和InDel57之間,物理距離為430 kb,并與標(biāo)記InDel51共分離。該結(jié)果為進(jìn)一步研究水稻株高粒型調(diào)控基因、深入研究基因功能奠定基礎(chǔ)。
[1]Sasaki A,Ashikari M,Matsuoka M M,et al..A mutant gibberellin-synthesis gene in rice[J].Nature,2002,416:701-702.
[2]IkedaA,Ueguchi-Tanaka M,Sonoda Y,et al..Slender rice,a constitutive gibberellin response mutant,is caused by a null mutation of the SLR1 gene,an ortholog of the height-regulating gene GAI/RGA/RHT/D8 [J].Plant Cell,2001,13(5):999-1010.
[3]Luo A,Qian Q,Yin H,et al..EUI1,encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice.[J].Plant Cell Physiol.,2006,47(2):181-191
[4]Tanabe S,Ashikari M,F(xiàn)ujioka S,et al..A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant,dwarf11,with reduced Seed Length[J].Plant Cell,2005,17(3):776-790.
[5]Hong Z,Ueguchi-Tanaka M,Shimizu-Sato S,et al..Loss-offunction of a rice brassinosteroid biosynthetic enzyme,C-6 oxidase,prevents the organized arrangement and polar elongation of cells in the leaves and stem[J].Plant J,2002,32(4):495-508.
[6]Chen Y,Wang M, Ouwerkerk PB F.. Molecular and environmental factors determining grain quality in rice[J].Food Energy Secur.,2012,1(2):111-132.
[7]Hashimoto Z,Mori N,Kawamura M,et al..Genetic diversity and phylogeny of Japanese sake-brewing rice as revealed by AFLP and nuclear and chloroplast SSR markers[J].Theor.Appl.Genet.,2004,109(8):1586-1596.
[8]Shao G,Wei X,Hu P,et al..Allelic variation for a candidate gene for GS7,responsible for grain shape in rice[J].Theor.Appl.Genet.,2012,125(6):1303-1312.
[9]Liu T M,Shao D,Xing Y Z,et al..Mapping and validation of quantitative trait loci for spikelets per panicle and 1,000-grain weight in rice(Oryza sativa L.)[J].Theor.Appl.Genet.,2010,120(5):933-942.
[10]Rabello A R, Guimar?esC M, RangelP H, et al..Identification of drought-responsive genes in roots of upland rice(Oryza sativa L.)[J].BMC Genomics,2008,485(9):1-13.
[11]Pietsch C,Sreenivasulu N,Wobus U,et al..Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling [J].BMC Plant Biol.,2009,9(4):1-11.
[12]Feng B H,Yang Y,Wu J L,et al..Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv.oryzae.[J].J.Integr.Plant Biol.,2013,55(5):473-483.
[13]Huang T Y,Wang Z,Hu Y G.Genetic analysis and primary mapping of pms4,a photoperiod-sensitive genic male sterility gene in rice(Oryza sativa)[J].Rice Sci.,2008,15(2):153-156.
[14]Yan C J,Zhou J H, Yan S, et al.. Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice(Oryza sativa L.)[J].Theor.Appl.Genet.,2007,115(8):1093-1100.
[15]Xie X,Mihee Song M H,Jin F,et al..Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon [J].Theor.Appl.Genet.,2006,113(5):885-894.
[16]Furukawa T,Maekawa M,Oki T,et al..The Rc and Rd genes areinvolved in proanthocyanidin synthesis in rice pericarp[J].Plant J.,2007,49(1):91-102.
[17]Li H,Xue D,Gao Z,et al..A putative lipase gene EXTRA GLUME1 regulates both empty-glume fate and spikelet development in rice[J].Plant J,2009,57(4):593-605.
[18]Liu S,Wang F,Gao L J,et al..Genetic analysis and fine mapping of LH1 and LH2,a set of complementary genes controlling late heading in rice(Oryza sativa L.)[J].Breed Sci.,2012,62(4):310-319.
[19]Yoshimura A,Ideta O,Iwata N.NAL1 allele from a rice landrace greatly increases yield in modern indica cultivars[J].Proc.Natl.Acad.Sci.USA,2013,110(51):20431-20436.
[20]Hada H,Hidema J,Maekawa M,et al..Higher amounts of anthocyanins and UV-absorbing compounds effectively lowered CPD photorepair in purple rice(Oryza sativa L.)[J].Plant Cell Environ.,2003,26(10):1691-1701.
[21]Wang Y H,Li J Y.The plant architecture of rice(Oryza sativa)[J].Plant Mol.Biol.,2005,59(1):75-84.
[22]Wan S,Wu J,Zhang Q,et al..Activation tagging,an efficient tool for functional analysis of the rice genome[J].Plant Mol.Biol.,2009,69,69-80.
[23]Zhang W,Sun X,Yuan H,et al..The pattern of insertion/deletion polymorphism in Arabidopsis thaliana [J]. Mol.Genet.Genomics.,2008,280(4):351-361.
[24]Lim J H,Yang H J,Jung K H,et al..Quantitative trait locus mapping and candidate gene analysis for plant architecture traits using whole genome re-sequencing in rice [J].Mol.Cells,2014,37(2):149-160.
[25]Sakamoto T,Miura K, Itoh H, et al.. An overview of gibberellins metabolism enzyme genes and their related mutants in rice[J].Plant Physiol.,2004,134(4):1642-1653.
[26]Xue Y,Li J,Xu Z.Recent highlights of the China rice functional genomics program [J].Trends Genet.,2003,19(7):390-394.
[27]Sasaki A,Ashikari M,Ueguchi-Tanaka M,et al..Green revolution:a mutant gibberellin-synthesis gene in rice[J].Nature,2002,416(6882):701-702.
[28]Ueguchi-Tanaka M, AshikariM, Nakajima M, et al..GIBBERELLIN INSENSITIVE DWARF1encodes asoluble receptor for gibberellin[J].Nature,2005,437(7059):693-698.
[29]Zhang C,BaiM Y, ChongK. Brassinosteroid-mediated regulation of agronomic traits in rice[J].Plant Cell Rep.,2014,33(5):683-696.
[30]Mori M, Nomura T, Ooka H, et al.. Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis[J].Plant Physiol.,2002,130(3):1152-1161.
[31]Tong H, LiuL, JinY, et al.. DWARFAND LOWTILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice[J].Plant Cell,2012,24(6):2562-2577.
[32]Zhang L Y,Bai M Y,Wu J X,et al..Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis[J].Plant Cell,2009,21:125-139.
[33]Li Z F,Wan J M,Xia J F,et al..Mapping quantitative trait loci underlying appearance quality of rice grains(Oryza sativa L.)[J].Acta Genet.Sin.,2003,30:251-259.
[34]Xing Y Z,Tan Y F,Xu C G,et al..Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population [J].Acta Bot.Sin.,2001,43(8):840-845.
[35]Li Z K,Yu S B,Lafitte H R,et al..QTL × environment interactions in rice.I.Heading date and plant height[J].Theor.Appl.Genet.,2003,108(1):141-153.
[36]Tian F,Zhu Z F,Zhang B S,et al..Fine mapping of a quantitative trait locus for grain number per panicle from wild rice(Oryza rufipogon Griff.) [J].Theor.Appl.Genet.,2006,113(4):619-629.
[37]Yoshida S,Ik egami M,Kuz e J,et al..QTL analysis for plant and grain characters of sake brewing rice using a doubled haploid population[J].Breeding Sci,2002,52:309-317.
[38]Chang T T,Somrith B.Grain quality traits of a candidate rice variety PB-95 [J].Asian J.Plant Sci.,2003,2(6):483-484.
[39]Weng J, Gu S, Wan X, et al.. Isolation and initial characterization of GW5,a major QTL associated with rice grain width and weight[J].Cell Res.,2008,18(12):1199-1209.
[40]Song X J,Huang W,Lin H X,et al..A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nat.Genet.,2007,39(5):623-630.
[41]Mao H L,Sun S Y,Zhang Q F,et al..Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J].Proc.Natl.Acad.Sci.USA,2010,107(45):19579-19584.