• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local Smooth Solutions to the 3-Dimensional Isentropic Relativistic Euler equations?

    2014-06-04 12:39:16YongcaiGENGYachunLI

    Yongcai GENG Yachun LI

    1 Introduction

    The Euler system of conservation laws for a perfect fluid in special relativity can be written as follows(see,e.g.,[1,18,26–27,33,39,41–47]):

    wherenandρa(bǔ)re the rest mass density and the mass-energy density,respectively,satisfying

    with the specific internal energye,andprepresents the pressure.The constantcis the speed of light,v=denotes the particle speed,andv=|v|satisfies the relativistic constraintAll these variables are the functions of(t,x)∈R+×R3.

    For the classical Euler system which is the non-relativistic version of(1.1),Makino,Ukai and Kawashima[31]introduced a new symmetrization to deduce the local-in-time solution even for the case with vacuum states.

    If the pressurepdepends only on the mass-energyρ,and the system of energy and momentum conservation laws is closed,(1.1)reduces to the following subsystem(see,e.g.,[1,18,26–27,33,39,41–47]):

    Great progress has been made with(1.3),yet mainly for the 1-dimensional or spherically symmetric 3-dimensional cases(see[2–4,6,11–13,15–17,20,22–25,32,34,37–38,40,48–49]and the references therein).

    For general multi-dimensional cases of(1.3),Makino-Ukai[29–30]constructed a suitable symmetrizer if a strictly convex entropy exists,and then by applying Friedrichs-Lax-Kato’s theory(see[14,28]),the authors established the local existence of solutions with the data away from the vacuum.For the vacuum case of(1.3),since the coefficient matrix in[29–30]is degenerate near the vacuum,Lefloch-Ukai[19]introduced a different symmetrization based on the generalized Riemann invariants and the normalized velocity,and then established the local existence results of smooth solutions by also using Friedrichs-Lax-Kato’s theory(see[14,28]).Moreover,for(1.3),the singularity formation of smooth solutions is studied in[10,35,37].

    In this paper,we consider the system of isentropic relativistic Euler equations,which corresponds to the conservation of the baryon numbers and momentum and reads as(see,e.g.,[1,18,26–27,33,39,41–47]):

    We know that,formally,the Newtonian limit of(1.4)is the following classical system of non-relativistic isentropic Euler equations(see[7,26,39]):

    which is one of the motivation for our study on(1.4).Another motivation for our study is that some special relativistic effects are revealed for 3-dimensional relativistic equations(see[8]),which do not appear in the corresponding non-relativistic case.

    We consider(1.4)with the equation of the state

    satisfying

    where 0≤≤∞are any non-negative constants subject to the subluminal condition≤.Note that ifp(ρ)=then=∞forγ=1 andρ?=forγ>1.

    The first law of thermodynamics(Gibb’s Equation)reads as

    with temperatureθand the specific entropyS.For isentropic fluids(S≡const.),we have

    Denote

    For simplicity,wein the sequel.From(1.8),we have

    withρmbeing any fixed number inandC=

    We consider the Cauchy problem(1.4)with initial data

    Research results of(1.4)is not so rich as that of(1.3),and all results are about 1-dimensional case(see[21,23,36,39,48]).Naturally,we are interested in the local existence of smooth solutions to the Cauchy problem(1.4)and(1.10)for both vacuum and non-vacuum cases.

    The main result of our paper is as follows.

    Theorem 1.1Suppose that the initial dataand there exists a positive constant δ0which is sufficiently small,such that

    and

    whereis the uniformly local Sobolev space defined in[14],are determined by(1.9)withorThen,the Cauchy problem(1.4)and(1.10)admits a unique solution(n(t,x),v(t,x))with n?≤n(t,x)≤n?,|v(t,x)|

    where T depends only on δ and thenormof the initial data.

    We shall prove the main theorem by symmetrizing(1.4)and applying the Friedrichs-Lax-Kato theory(see[14,28])of symmetric hyperbolic systems.Thus for both the non-vacuum and vacuum cases,the construction of a suitable symmetrizer is necessary and important.We borrow some ideas from[19,29–30],which are more complicated due to the structure of the system itself,and different to some extent since we involve variablesnand v instead ofρa(bǔ)nd v.

    More precisely,in Section 2,we firstly solve out the strictly convex entropy function of(1.4)for the non-vacuum case according to[9],then we construct a symmetrizer as in[29–30].In Section 3 for the vacuum case,due to the degeneracy of the symmetrized system near the vacuum,as in[19],we transform(1.4)into a symmetric form in terms of the generalized Riemann invariants and the normalized velocity.

    2 Non-vacuum Case

    In this section,we will establish the existence of local smooth solutions to the Cauchy problem(1.4)and(1.10)for the non-vacuum case in Theorem 1.1.For clarity,we will divide it into two subsections:Strictly convex entropy function and symmetrization.

    2.1 Strictly convex entropy function

    If an entropy-entropy flux pair of(1.4)exists,then we may construct a symmetrizer accordingly.According to[9],we first find the strictly convex entropy function of(1.4).To do this,we fit(1.4)into the following general form of conservation laws:

    where

    and

    whereis the Kronecker symbol.

    A scalar functionη(u)is called the entropy to(2.1)if there exist scalar functions(j=1,2,3)satisfying

    Let z=(n,By direct but tedious computations,we have

    and

    wherestands for the 3×3 identity matrix.

    Similarly,we have

    where=

    Using(2.4)together with(2.5),we get

    where

    From(2.2),we have

    Settingη=η(n,y)and=Q(n,y),wherey=(2.7)becomes

    which yields

    where=Furthermore,(2.9)leads to

    It follows from the first equation of(2.9)that

    whereGdepends only onn.

    Inserting this equation into the third equation of(2.9),we have

    Furthermore,plugginginto(2.12),we obtain

    Assumingq(n,y)=(2.13)becomes

    Integrating this equation with respect to the variablen,we have

    Substituting(2.15)into(2.13)and separating variables,we get

    where the left-hand side of(2.16)depends only onn,and the right-hand side depends only ony.So both sides of(2.16)should be equal to the same constant,assumed asD,which implies

    Noting(1.8),we solve the first equation of(2.17)to have

    whereis a constant.

    From the fact that

    it holds that

    Solving the second ordinary differential equation of(2.17),we have

    whereis a constant.

    Inserting(2.20)and(2.21)into(2.15),we have

    whereis an integration constant.Notingq(n,y)=we obtain

    Inserting(2.22)into(2.14)and using(1.8),we get

    Integrating this equation yields

    Thus substituting(2.23)–(2.24)into(2.11)leads to

    whereD1=andD3is a constant.

    Noting that

    we define

    whereK:=Together with(2.19),we have

    Φ(ρ)can be expanded with respect toat 0 as

    Similarly,we also expandwith respect toat 0 as

    From(2.25)and(2.28)–(2.9),we have

    To choose the constantswe consider the entropy function of the corresponding non-relativistic fluid,which is

    which can be obtained in exactly the same way as(2.31).

    Lettingc→∞in(2.31)and comparing with(2.32),we choose=0.Then it holds that

    2.2 Symmetrization

    In this subsection,we use the obtained strictly convex entropy function to construct a suitable symmetrization of(1.4)and verify the positive definiteness of the coefficient matrix.

    Define

    The existence of a strictly convex entropy guarantees that classical solutions to the initialvalue problem depend continuously on the initial data,even within the broader class of admissible bounded weak solutions(see[5,Theorem 5.2.1]or[35,Theorem B]).Thus,if the initial datatake values in any compact subsetDof={z:n?

    Let w=It holds that

    whereαstands for one of the argumentst,Then the system(2.1)reduces to

    If we set

    (2.35)can be rewritten as

    whose coefficient matrices(w)(α=0,1,2,3)satisfy the following:

    A hyperbolic system(2.37)satisfying(2.38)is called a symmetric hyperbolic system(see[15,29]).

    Now we figure out the expressions of(w)and(w)(j=1,2,3),and verify the positive definiteness of(w).w can be written as

    then we can compute that

    It is not easy to show by direct calculation that

    and

    (w)

    It is obvious that(w)(j=1,2,3)are symmetric forms.Now we prove thatis uniformly bounded.Firstly,we verify that(w)has a strict lower bound.In fact,for any given four-dimensional vector r=it holds

    where

    Settingwith 0<δ

    under the condition that

    i.e.,

    Since the right-hand side of the above inequality has a positive lower bound,denoted byδ?,we can takeδ

    we have

    Thanks to the fact that(n,v)∈Ωz,we get the upper bound of

    Then the local existence of smooth solutions to the Cauchy problem(1.4)and(1.10)for the non-vacuum case follows from Friedrichs-Lax-Kato theory(see[14,28]).

    3 The Vacuum Case

    In this section,when the initial data(n0,v0)are allowed to contain vacuum states,the coefficientsA0(w)for(1.4)will blow-up near the vacuum.Thus the symmetric method to the non-vacuum case will not be valid any longer.To overcome this difficulty,we adopt Lefloch-Ukai’s symmetrization(see[19])for(1.3),however our transformation is about variables ofnand v instead of variables ofρa(bǔ)nd v in[19].The coefficient matrix of the new system under this transformation is no longer degenerate near vacuum.Then we use Friedrichs-Lax-Kato theory(see[14,28])to prove the local existence of smooth solutions to(1.4)and(1.10)with the initial data of the vacuum case.

    Now our initial datan0,v0satisfy the condition(1.12).Before proceeding,we first introduce some notations as in[19].

    The modified mass density variablewis

    wherecsis the local sound speed in the fluid.

    The modified velocity scalar is

    and we refer to

    as the generalized Riemann invariant variables.

    We also introduce the normalized velocityand the associated projection operatorP(v)as follows:

    Here we present some useful identities in[19],

    Proposition 3.1

    For the convenience of the reader,we give a simple proof here.

    Proof of Proposition 3.1

    (1)

    (2)

    where we used

    (3)Similarly to(2),we get

    (4)On the one hand,noting that=1,we have

    On the other hand,it holds that

    From the definition ofP(v)in(3.4),(4)is proved.

    3.1 Symmetric form of Euler equations

    In this section,we will deduce a symmetric formulation of(1.4)with respect to the general Riemann invariants and the normalized velocity defined by(3.1)–(3.2).We conclude as follows.

    Lemma 3.1In terms of the generalized Riemann invariant variables()and the normalized velocitydefined by(3.3)–(3.4),respectively,the relativistic Euler equations reduce to the following symmetric form:

    where z±are real valued andis a unit vector satisfying||=1.

    ProofIn Section 1,we know from(1.8)that

    whereqis defined asq:=+ρ.

    Using(3.7),we expand the conservation equation of baryon numbers in(1.4)as follows:

    Multiplying(3.8)bywe have

    Expanding the momentum conservation equation of(1.4)and using(3.7),we have

    where we used

    From(3.9)–(3.10),we have

    Moreover,multiplying(3.9)by(ρ),(3.11)can be simplified as

    From the definition ofuin(3.2),we have

    then(3.12)reduces to

    By(3.11)can be rewritten as

    Multiplying this equation byand using(3.13),(3.15)becomes

    To obtain the expression of,we multiply(3.11)by the projectionP(),and due to(3.5)and the definition ofw,we get

    To obtain the expression ofw,we combine(3.14)and(3.16)to give

    Using the definition ofuin(3.2)again,we have

    Plugging this into(3.16),we have

    Substituting(3.19)for(3.18)leads to

    To derive our desired symmetric form,?needs to be transformed,and from(4)in(3.5),we have

    Plugging this identity into(3.20)–(3.21),and together with(3.17),we have

    Using the generalized Riemann invariant variables=u±w,it is easy to obtain the symmetric formulation(3.6).

    Moreover,(3.6)can be written as the symmetric form(2.37),in which(w)andw)are,respectively,

    where

    Remark 3.1By this lemma,although(1.3)–(1.4)are different,they are symmetrized to the same form(3.6).

    The following proof is the same as that in[19]and for the reader’s convenience,here we briefly list the main steps.

    Observe that the above matrix(w)allows the density to vanish,since the coefficients remain bounded as the density approaches to zero.

    Moreover,from(3.23),we observe that

    wheredenotes the Eucilidian inner product inand

    From(3.24),the matrix(w)is positively definite as long as the velocity v never vanishes.According to the Friedrichs-Lax-Kato theory(see[14,28]),a local in-time solution exists.

    However,the matrix(w)may lose its positive definiteness,since the coefficientc0of?tin the third equation vanishes at v=0.On this occasion,we apply a well-chosen Lorentz transformation,which allows the Lorentz-transformed velocity not to exceed the light speed and remain bounded away from zero.

    For the reader’s convenience,we list some technical results about the Lorentz-transformed velocity(see[19]).

    3.2 Lorentz transformation

    Assume thatKandare two reference frames,in which(t,x)andrepresent the space-time coordinates corresponding toKandrespectively.Kmoves with respect toat the velocity V.The transformation

    is called a Lorentz transformation,where=is the Lorentz factor.

    From(3.26),there holds the velocity transformation law

    where v=Denote

    Then we have the following lemma.

    Lemma 3.2(Uniform Bounds for the Velocity)(see[19])Given any∈(0,1)and any vectorV∈satisfying<1,there exist positive constants0<<<1dependingonly on r0and,such that the Lorentz-transformed velocity(3.27)is uniform bound away from both the origin and the light speed,i.e.,

    holds for anywhere:={y∈

    Using the Lorentz invariance of relativistic Euler equations,(2.37)can also be expressed in the transformed coordinatesdefined by(3.26),that is,

    and(3.25)becomes

    In view of the upper and lower bounds(3.29),we conclude that the transformed matrixis positively definite in the coordinate systemHence the Friedrichs-Lax-Kato theory(see[14,28])applies to the initial-value problem(3.30),provided that the initial data are imposed on the initial hypersurface=0.In the relativistic setting,the initial plane:t=0 is not preserved under the transformation(3.26).However,in the new coordinate systemthe initial plane becomes

    In order to prove the local well-posedness of the oblique initial-value problem(3.30)with the data on,it is convenient to introduce a further change of the coordinates

    which maps the hyperplaneto the hyperplane

    This transformation puts(3.31)into the following form:

    where the matrixis still positively definite(see[19]).

    Now Friedrichs-Lax-Kato theory(see[14,28])guarantees the existence of a solution defined in a small neighborhood of this hyperplane.Making the transformation back to the original variables,we obtain a solution in a small neighborhood of the initial linet=0.This completes the proof of the main theorem for the vacuum case.

    [1]Anile,A.M.,Relativistic Fluids and Magneto-Fluids,Cambridge Monographs on Mathematical Physics,Cambridge University Press,New York,1989.

    [2]Chen,G.Q.and Li,Y.C.,Stability of Riemann solutions with oscillation for the relativistic Euler equations,J.Dif f.Eq.,202,2004,332–353.

    [3]Chen,G.Q.and Li,Y.C.,Relativistic Euler equations for isentropic fluids:stability of Riemann solutions with large oscillation,Z.Angew.Math.Phys.,55,2004,903–926.

    [4]Chen,J.,Conservation laws for relativisticp-system,Commu.Part.Dif f.Eq.,20,1995,1605–1646.

    [5]Dafermos,C.M.,Hyperbolic Conservation Laws in Continuum Physics,Spring-Verlag,Berlin,2000.

    [6]Frid,H.and Perepelista,M.,Spatially periodic solutions in relativistic isentropic gas dynamics,Commun.Math.Phys.,250,2004,335–370.

    [7]Geng,Y.C.and Li,Y.C.,Non-relativistic global limits of entropy solutions to the extremely relativistic Euler equations,Z.Angew.Math.Phys.,61,2010,201–220.

    [8]Geng,Y.C.and Li,Y.C.,Special relativistic effects revealed in the Riemann problem for threedimensional relativistic Euler equations,Z.Angew.Math.Phys.,62,2011,281–304.

    [9]Godunov,S.K.,An interesting class of quasilinear systems,Dokl.Acad.Nauk.SSSR,139,1961,521–523.

    [10]Guo,Y.and Tahhvildar-Zadeh,S.,Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics,Cntemp.Math.,238,2009,151–161.

    [11]Hao,X.W.and Li,Y.C.,Non-relativistic global limits of entropy solutions to the Cauchy problem of the three dimensional relativistic Euler equations with spherical symmetry,Commun.Pure Appl.Anal.,9,2010,365–386.

    [12]Hsu,C.H.,Lin,S.and Makino,T.,Spherically symmetric solutions to the compressible Euler equation with an asymptoticγ-law,Japan J.Indust.Appl.Math.,20,2003,1–15.

    [13]Hsu,C.H.,Lin,S.and Makino,T.,On spherically symmetric solutions of the relativistic Euler equation,J.Dif f.Eq.,201,2004,1–24.

    [14]Kato,T.,The Cauchy problem for quasi-linear symmetric hyperbolic systems,Arch.Rational Mech.Anal.,58,1975,181–205.

    [15]Kunik,M.Qamar,S.and Warnecke,G.,Kinetic schemes for the ultra-relativistic Euler equations,J.Comput.Phys.,187,2003,572–596.

    [16]Kunik,M.,Qamar,S.and Warnecke,G.,Second-order accurate kinetic schemes for the relativistic Euler equations,J.Comput.Phys.,192,2003,695–726.

    [17]Kunik,M.,Qamar,S.and Warnecke,G.,Kinetic schemes for the relativistic gas dynamics,Numer.Math.,97,2004,159–191.

    [18]Landau,L.D.and Lifchitz,E.M.,Fluid Mechanics,2nd edition,Pergamon Press,New York,1987,505–512.

    [19]Lefloch,P.and Ukai,S.,A symmetrization of the relativistic Euler equations in sevaral spatial variables,Kinet.Relat.Modles.,2,2009,275–292.

    [20]Li,Y.C.,Feng,D.and Wang,Z.,Global entropy solutions to the relativistic Euler equations for a class of large initial data,Z.Angew.Math.Phys.,56,2005,239–253.

    [21]Li,Y.C.and Geng,Y.,Non-relativistic global limits of Entropy solutions to the isentropic relativistic Euler equations,Z.Angew.Math.Phys.,57,2006,960–983.

    [22]Li,Y.C.and Ren,X.,Non-relativistic global limits of entropy solutions to the relativistic euler equations withγ-law,Commun.Pure Appl.Anal.,5,2006,963–979.

    [23]Li,Y.C.and Shi,Q.,Global existence of the entropy solutions to the isentropic relativistic Euler equations,Commun.Pure Appl.Anal.,4,2005,763–778.

    [24]Li,Y.C.and Wang,A.,global entropy solutions of the cauchy problem for the nonhomogeneous relativistic Euler equations,Chin.Ann.Math.,27B(5),2006,473–494

    [25]Li,Y.C.and Wang,L.,Global stability of solutions with discontinuous initial containing vaccum states for the relativistic Euler equations,Chin.Ann.Math.,26B(4),2005,491–510.

    [26]Li,T.T.and Qin,T.,Physics and Parital Differential Equations(in Chinese),2nd edition,Higher Eudcation Press,Beijing,2005.

    [27]Liang,E.P.T.,Relativistic simple waves:Shock damping and entropy production,Astrophys.J.,211,1977,361–376.

    [28]Majda,A.,Compressible fluid flow and systems of conversation laws in several space variable.Comm.Pure Appl.Math.,28,1975,607–676.

    [29]Makino,T.and Ukai,S.,Local smooth solutions of the relativistic Euler equation,J.Math.Kyoto Univ.,35,1995,105–114.

    [30]Makino,T.and Ukai,S.,Local smooth solutions of the relativistic Euler equation II,Kodai Math.J.,18,1995,365–375.

    [31]Makino,T.,Ukai,S.and Kawashima,S.,Sur la solutionssupport compact de lquation d’Euler compressible.,Japen J.Appl.Math.,3,1986,249–257.

    [32]Min,L.and Ukai,S.,Non-relativistic global limits of weak solutions of the relativistic Euler equation,J.Math.Kyoto.Univ.,38,1995,525–537.

    [33]Misner,C.W.,Thorne,K.S.and Wheeler,J.A.,Gravitation,Freeman,San Fransisco,1973.

    [34]Mizohata,K.,Global solutions to the relativistic Euler equation with spherical symmetry,Japan J.Indust.Appl.Math.,14,1997,125–157.

    [35]Pan,R.and Smoller,J.,Blowup of smooth solutions for relativistic Euler equations,Commun.Math.Phys.,262,2006,729–55.

    [36]Pant,V.,Global entropy solutions for isentropic relativistic fluid dynamics,Commu.Part.Dif f.Eq.,21,1996,1609–1641.

    [37]Rendall,A.,Local and global existence theorems for the Einstein equations,Living Rev.Rel.,3,2000,1–35.

    [38]Ruan,L.and Zhu,C.,Existence of global smooth solution to the relativistic Euler equations,Nonlinear Analysis,60,2005,993–1001.

    [39]Shi,C.C.,Relativistic Fluid Dynamics,Science Press,Beijing,1992,161–232.

    [40]Smoller,J.and Temple,B.,Global solutions of the relativistic Euller equation,Commun.Math.Phys.,156,1993,67–99.

    [41]Taub,A.H.,Relativistic Rankine-Hugoniot equations,Phys.Rev.,74,1948,328–334.

    [42]Taub,A.H.,Approximate solutions of the Einstein equations for isentropic motions of plane symmetric distributions of perfect fluids,Phys.Rev.,107,1957,884–900.

    [43]Taub,A.H.,Relativistic hydrodynamics,relativistic theory and astrophysics 1,Relativity and Cosmology,Ehlers,J.(ed.),A.M.S.,Providence,RI,1967,170–193.

    [44]Thompson,K.,The special relativistic shock tube,J.Fluid Mech.,171,1986,365–375.

    [45]Thorne,K.S.,Relativistic shocks:The Taub adiabatic,Astrophys.J.,179,1973,897–907.

    [46]Weinberg,S.,Gravitation and Cosmology:Applications of the General Theory of Relativity,Wiley,New York,1972.

    [47]Whitham,G.B.,Linear and Non-linear Waves,Wiley,New York,1974.

    [48]Xu,Y.and Dou,Y.,Global existence of shock front solutions in 1-dimensional piston problem in the relativistic equations,Z.Angew.Math.Phys.,59,2008,244–263.

    [49]Yin,G.and Sheng,W.,Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations,Chin.Ann.Math.,29B(6),2008,611–622.

    校园春色视频在线观看| 日本黄大片高清| 美女免费视频网站| 亚洲熟妇中文字幕五十中出| 日本一二三区视频观看| 欧洲精品卡2卡3卡4卡5卡区| 白带黄色成豆腐渣| 国产午夜精品久久久久久一区二区三区 | 一a级毛片在线观看| 中文字幕熟女人妻在线| 少妇人妻精品综合一区二区 | 波多野结衣巨乳人妻| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 国产精品国产三级国产av玫瑰| 九色成人免费人妻av| 国产精品久久视频播放| 午夜精品国产一区二区电影 | 免费av不卡在线播放| 亚洲精品一区av在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲四区av| 国产av一区在线观看免费| 亚洲无线观看免费| av在线观看视频网站免费| 有码 亚洲区| 午夜福利视频1000在线观看| 乱码一卡2卡4卡精品| 亚洲色图av天堂| 亚洲精品成人久久久久久| 舔av片在线| 简卡轻食公司| 一级毛片aaaaaa免费看小| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| 亚洲七黄色美女视频| 97超级碰碰碰精品色视频在线观看| 国产激情偷乱视频一区二区| 日本五十路高清| 一级毛片电影观看 | 哪里可以看免费的av片| 狂野欧美白嫩少妇大欣赏| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 国产精品三级大全| 男人和女人高潮做爰伦理| 真实男女啪啪啪动态图| 久久久久国产精品人妻aⅴ院| 婷婷精品国产亚洲av| 精品久久久久久久久亚洲| 精品免费久久久久久久清纯| 极品教师在线视频| 波野结衣二区三区在线| 国产成年人精品一区二区| 最近手机中文字幕大全| 欧美最黄视频在线播放免费| 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| a级毛色黄片| 亚洲人成网站在线观看播放| 日本色播在线视频| 99国产精品一区二区蜜桃av| 高清毛片免费看| 精品福利观看| 亚洲av免费在线观看| 午夜免费激情av| 男女那种视频在线观看| 大型黄色视频在线免费观看| 久久久久久大精品| 久久草成人影院| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 国产精品久久久久久av不卡| 精品久久久噜噜| 国内精品美女久久久久久| 国产高清视频在线观看网站| 韩国av在线不卡| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 一区二区三区四区激情视频 | 国产精品一区二区三区四区免费观看 | 国产美女午夜福利| 熟妇人妻久久中文字幕3abv| 一a级毛片在线观看| 天天躁日日操中文字幕| 国产av一区在线观看免费| 在线天堂最新版资源| 久久中文看片网| 插阴视频在线观看视频| 亚洲人成网站在线观看播放| 国产一区二区在线观看日韩| 亚洲欧美清纯卡通| 少妇的逼水好多| 蜜臀久久99精品久久宅男| 淫秽高清视频在线观看| 精品日产1卡2卡| 99久久九九国产精品国产免费| 久久这里只有精品中国| 18禁裸乳无遮挡免费网站照片| 日本在线视频免费播放| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 3wmmmm亚洲av在线观看| 免费观看的影片在线观看| 免费观看精品视频网站| 在线观看av片永久免费下载| 亚洲七黄色美女视频| 亚洲图色成人| 国产极品精品免费视频能看的| 欧美精品国产亚洲| 最近的中文字幕免费完整| 亚洲精华国产精华液的使用体验 | 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 日韩人妻高清精品专区| 欧美一区二区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 在线观看66精品国产| 91麻豆精品激情在线观看国产| 日韩亚洲欧美综合| 欧美绝顶高潮抽搐喷水| 国产精品国产三级国产av玫瑰| 国产淫片久久久久久久久| 欧美高清成人免费视频www| 国产精品福利在线免费观看| 高清毛片免费观看视频网站| 人妻制服诱惑在线中文字幕| 日本 av在线| 在线观看午夜福利视频| 真实男女啪啪啪动态图| 97碰自拍视频| av卡一久久| 十八禁国产超污无遮挡网站| 日本五十路高清| 一区二区三区四区激情视频 | 欧美三级亚洲精品| 男女边吃奶边做爰视频| 精品99又大又爽又粗少妇毛片| 国产免费男女视频| 亚州av有码| 可以在线观看的亚洲视频| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影| 男人和女人高潮做爰伦理| 午夜免费男女啪啪视频观看 | 丝袜喷水一区| 91午夜精品亚洲一区二区三区| 国产精品女同一区二区软件| 真实男女啪啪啪动态图| 无遮挡黄片免费观看| 欧美激情在线99| 国产精品一区二区免费欧美| 搡老岳熟女国产| 欧美xxxx黑人xx丫x性爽| 啦啦啦观看免费观看视频高清| 日日啪夜夜撸| 亚洲精品久久国产高清桃花| 国产午夜精品论理片| 热99在线观看视频| 欧美xxxx性猛交bbbb| 国产精品99久久久久久久久| 亚洲精品色激情综合| 国产精品美女特级片免费视频播放器| 色综合色国产| 十八禁网站免费在线| 麻豆乱淫一区二区| 女同久久另类99精品国产91| 中文字幕熟女人妻在线| 国产高清三级在线| av中文乱码字幕在线| 欧美成人a在线观看| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 成人午夜高清在线视频| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| 日本欧美国产在线视频| 久久久久国产精品人妻aⅴ院| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| 国语自产精品视频在线第100页| 国产国拍精品亚洲av在线观看| 久久精品国产99精品国产亚洲性色| 欧美区成人在线视频| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 我的老师免费观看完整版| 日韩欧美免费精品| 国产综合懂色| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 午夜日韩欧美国产| 亚洲自偷自拍三级| 九九爱精品视频在线观看| 三级国产精品欧美在线观看| 欧美成人a在线观看| 亚洲av中文字字幕乱码综合| 日韩精品有码人妻一区| 久久人人爽人人片av| 国产白丝娇喘喷水9色精品| 久久精品影院6| 男人狂女人下面高潮的视频| 日韩av不卡免费在线播放| 亚洲av熟女| 天堂网av新在线| 成人三级黄色视频| 最近2019中文字幕mv第一页| 你懂的网址亚洲精品在线观看 | 长腿黑丝高跟| 男人狂女人下面高潮的视频| 身体一侧抽搐| 狠狠狠狠99中文字幕| 99热这里只有是精品50| 久久国产乱子免费精品| 国产精品一区www在线观看| 人妻制服诱惑在线中文字幕| 欧美性猛交黑人性爽| 亚洲第一电影网av| 国产精品无大码| 日韩亚洲欧美综合| 日本成人三级电影网站| 舔av片在线| 老女人水多毛片| 日本与韩国留学比较| 男插女下体视频免费在线播放| 中文资源天堂在线| 国产成人福利小说| 免费黄网站久久成人精品| 国产精品综合久久久久久久免费| 免费搜索国产男女视频| 成人精品一区二区免费| 国产精品av视频在线免费观看| 最近2019中文字幕mv第一页| 国内精品美女久久久久久| 国产高清有码在线观看视频| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 国内久久婷婷六月综合欲色啪| 人人妻,人人澡人人爽秒播| 男人的好看免费观看在线视频| 熟妇人妻久久中文字幕3abv| 亚洲最大成人av| 中文在线观看免费www的网站| 最好的美女福利视频网| 国产成人aa在线观看| 三级男女做爰猛烈吃奶摸视频| 九九热线精品视视频播放| 中文在线观看免费www的网站| 国产精品无大码| 简卡轻食公司| 九九在线视频观看精品| 卡戴珊不雅视频在线播放| 精品久久久久久久人妻蜜臀av| 一进一出好大好爽视频| 一卡2卡三卡四卡精品乱码亚洲| 日韩人妻高清精品专区| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 国产一区二区三区av在线 | 国产精品电影一区二区三区| 日韩三级伦理在线观看| 一本精品99久久精品77| 久久精品夜夜夜夜夜久久蜜豆| 老司机午夜福利在线观看视频| 国产高潮美女av| 夜夜爽天天搞| 国产精品亚洲美女久久久| 成人三级黄色视频| 51国产日韩欧美| 女同久久另类99精品国产91| 天天躁日日操中文字幕| 少妇高潮的动态图| 日韩欧美免费精品| 久久久久免费精品人妻一区二区| 97在线视频观看| 国产aⅴ精品一区二区三区波| 国产精品无大码| 国产成人aa在线观看| 日本黄色视频三级网站网址| 久久午夜福利片| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 真实男女啪啪啪动态图| 高清日韩中文字幕在线| 国产精品久久久久久久久免| 国产精品福利在线免费观看| 桃色一区二区三区在线观看| 国产免费一级a男人的天堂| 精品久久久久久久末码| 欧美不卡视频在线免费观看| 亚洲无线在线观看| 可以在线观看毛片的网站| 久久中文看片网| 蜜桃久久精品国产亚洲av| 91午夜精品亚洲一区二区三区| 亚洲最大成人手机在线| 亚洲中文字幕日韩| 一本久久中文字幕| 中文亚洲av片在线观看爽| 两个人视频免费观看高清| 亚洲成av人片在线播放无| 床上黄色一级片| 一本精品99久久精品77| 国产精品一及| 久久久久精品国产欧美久久久| 精品久久久久久久久亚洲| 国产精品一二三区在线看| 12—13女人毛片做爰片一| 美女cb高潮喷水在线观看| 99久久九九国产精品国产免费| 免费观看人在逋| 午夜视频国产福利| 亚洲精品色激情综合| 在线播放国产精品三级| 草草在线视频免费看| 久久草成人影院| 欧美日本亚洲视频在线播放| 国产69精品久久久久777片| 大型黄色视频在线免费观看| 最近的中文字幕免费完整| 12—13女人毛片做爰片一| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 69av精品久久久久久| 欧美+日韩+精品| 国产一区二区三区在线臀色熟女| 亚洲国产日韩欧美精品在线观看| 欧美性猛交╳xxx乱大交人| 国产欧美日韩精品一区二区| 变态另类丝袜制服| 国产伦精品一区二区三区四那| 久久久久久久久久黄片| 国产高清三级在线| 天堂动漫精品| 国产成人a区在线观看| 国产成人91sexporn| 亚洲不卡免费看| 少妇丰满av| 一级av片app| 无遮挡黄片免费观看| 国产亚洲欧美98| 蜜臀久久99精品久久宅男| 中文字幕精品亚洲无线码一区| 12—13女人毛片做爰片一| 久久久色成人| 日韩欧美 国产精品| 午夜老司机福利剧场| 免费av不卡在线播放| 欧美成人a在线观看| 看十八女毛片水多多多| 成人无遮挡网站| 波野结衣二区三区在线| 18禁裸乳无遮挡免费网站照片| 一个人看的www免费观看视频| 色播亚洲综合网| 色综合色国产| 在线观看午夜福利视频| 欧美三级亚洲精品| 99在线视频只有这里精品首页| 身体一侧抽搐| 国产成人aa在线观看| 精品人妻偷拍中文字幕| 麻豆乱淫一区二区| 美女大奶头视频| 欧美丝袜亚洲另类| 人人妻人人澡欧美一区二区| 久久久国产成人精品二区| av在线观看视频网站免费| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 国产日本99.免费观看| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 国产精品福利在线免费观看| 晚上一个人看的免费电影| 久久国产乱子免费精品| 亚洲美女搞黄在线观看 | 又黄又爽又刺激的免费视频.| 久久精品国产清高在天天线| 黄色欧美视频在线观看| 成年女人永久免费观看视频| 在线播放无遮挡| 亚洲性夜色夜夜综合| 亚洲性久久影院| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放 | 激情 狠狠 欧美| 91在线观看av| 91在线精品国自产拍蜜月| 日韩精品中文字幕看吧| 六月丁香七月| 国产一级毛片七仙女欲春2| 亚洲av免费高清在线观看| 99久久久亚洲精品蜜臀av| av女优亚洲男人天堂| 悠悠久久av| 51国产日韩欧美| av在线观看视频网站免费| 免费看av在线观看网站| 成人三级黄色视频| 日本在线视频免费播放| 五月玫瑰六月丁香| 久久久欧美国产精品| 舔av片在线| 熟妇人妻久久中文字幕3abv| 国产精品久久久久久av不卡| 免费观看在线日韩| 国产精品美女特级片免费视频播放器| 亚洲乱码一区二区免费版| 久久草成人影院| 国内揄拍国产精品人妻在线| 男女那种视频在线观看| 97在线视频观看| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩卡通动漫| 国产亚洲精品久久久久久毛片| 毛片女人毛片| 久久久午夜欧美精品| 桃色一区二区三区在线观看| avwww免费| 乱码一卡2卡4卡精品| 十八禁网站免费在线| 小蜜桃在线观看免费完整版高清| 欧美日韩乱码在线| 在线观看66精品国产| 久久九九热精品免费| 精品熟女少妇av免费看| 中文字幕精品亚洲无线码一区| 色在线成人网| 色尼玛亚洲综合影院| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 国产一区二区三区在线臀色熟女| 国产精品国产高清国产av| 久久久久国内视频| 亚洲欧美清纯卡通| av在线蜜桃| 精品欧美国产一区二区三| 亚洲精品亚洲一区二区| 老司机福利观看| 国产成人91sexporn| 中文字幕久久专区| 久久综合国产亚洲精品| 亚洲av二区三区四区| 久久国内精品自在自线图片| 亚洲精品日韩在线中文字幕 | 伦理电影大哥的女人| 一级毛片我不卡| 一进一出抽搐gif免费好疼| 亚洲成a人片在线一区二区| 亚洲成人中文字幕在线播放| 老女人水多毛片| 久久精品综合一区二区三区| 成人高潮视频无遮挡免费网站| 成人av在线播放网站| 国产av在哪里看| 国产精品久久久久久久久免| 久久中文看片网| 亚洲av中文字字幕乱码综合| 一区二区三区四区激情视频 | 国产私拍福利视频在线观看| 麻豆一二三区av精品| 我要搜黄色片| 亚洲人成网站在线播放欧美日韩| 少妇人妻精品综合一区二区 | 国产精品国产三级国产av玫瑰| 国产欧美日韩精品一区二区| 免费看美女性在线毛片视频| 色综合色国产| 国产片特级美女逼逼视频| 日日啪夜夜撸| 日本三级黄在线观看| 天堂动漫精品| 欧美激情国产日韩精品一区| 一本久久中文字幕| 蜜臀久久99精品久久宅男| 亚洲久久久久久中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 在线观看一区二区三区| 老师上课跳d突然被开到最大视频| 国产一区二区激情短视频| 国产探花极品一区二区| 男人的好看免费观看在线视频| 国产熟女欧美一区二区| 日本撒尿小便嘘嘘汇集6| 久久亚洲精品不卡| 成年av动漫网址| 国产欧美日韩精品亚洲av| 91在线观看av| 丝袜美腿在线中文| 亚洲国产高清在线一区二区三| 精品无人区乱码1区二区| 精品久久久久久久久亚洲| 久久久久久久亚洲中文字幕| 中文字幕熟女人妻在线| 成人亚洲欧美一区二区av| 亚洲人与动物交配视频| 日本 av在线| 黄色欧美视频在线观看| 偷拍熟女少妇极品色| 日本成人三级电影网站| 国产成人aa在线观看| 亚洲成人中文字幕在线播放| 久久人妻av系列| 久久久久久大精品| 亚洲精品一卡2卡三卡4卡5卡| 好男人在线观看高清免费视频| 国产男靠女视频免费网站| 成年av动漫网址| 亚洲熟妇中文字幕五十中出| 伦精品一区二区三区| 最后的刺客免费高清国语| 神马国产精品三级电影在线观看| 日本三级黄在线观看| 国产精品日韩av在线免费观看| 久久久久国产网址| 插阴视频在线观看视频| 午夜福利在线在线| 男人狂女人下面高潮的视频| 在线免费观看的www视频| 亚洲精华国产精华液的使用体验 | 久久久久久久久久久丰满| 国产精品日韩av在线免费观看| 久久久久国产网址| 亚洲欧美中文字幕日韩二区| 午夜a级毛片| 国产伦精品一区二区三区四那| 免费人成视频x8x8入口观看| 国产精品一区二区性色av| 免费看av在线观看网站| 国产高清视频在线观看网站| 人人妻人人看人人澡| 久久韩国三级中文字幕| 我的老师免费观看完整版| 欧美成人精品欧美一级黄| 长腿黑丝高跟| 日韩,欧美,国产一区二区三区 | 最新中文字幕久久久久| 啦啦啦观看免费观看视频高清| 黄色视频,在线免费观看| 99视频精品全部免费 在线| 欧美xxxx性猛交bbbb| 美女大奶头视频| 欧美成人免费av一区二区三区| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 亚洲欧美日韩卡通动漫| 欧美日韩综合久久久久久| 禁无遮挡网站| 国产av在哪里看| 国产色爽女视频免费观看| 最近视频中文字幕2019在线8| 老熟妇乱子伦视频在线观看| 久久精品夜色国产| 男女下面进入的视频免费午夜| 国产精品野战在线观看| 美女内射精品一级片tv| 男人舔奶头视频| 99久久成人亚洲精品观看| 黄色视频,在线免费观看| 在线观看免费视频日本深夜| 久久久色成人| 精品久久久久久久久亚洲| 看片在线看免费视频| 欧美成人一区二区免费高清观看| 自拍偷自拍亚洲精品老妇| 亚洲在线自拍视频| 亚洲aⅴ乱码一区二区在线播放| 国产乱人视频| 日韩欧美国产在线观看| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 成人亚洲精品av一区二区| 亚洲精品粉嫩美女一区| 波野结衣二区三区在线| 成年免费大片在线观看| 国产成年人精品一区二区| 欧美激情久久久久久爽电影| 乱系列少妇在线播放| 国产成人91sexporn| 久久久久久久久久成人| 别揉我奶头~嗯~啊~动态视频| 婷婷六月久久综合丁香| 色5月婷婷丁香| 国产淫片久久久久久久久| 搡女人真爽免费视频火全软件 | 国产高清视频在线观看网站| 少妇高潮的动态图| 禁无遮挡网站| 欧美+亚洲+日韩+国产| 丝袜喷水一区| 久久综合国产亚洲精品| 人妻制服诱惑在线中文字幕| 少妇人妻精品综合一区二区 | 成人漫画全彩无遮挡| 麻豆久久精品国产亚洲av| 亚洲国产精品久久男人天堂| 偷拍熟女少妇极品色| 国产高潮美女av| 国产乱人偷精品视频| 日韩成人av中文字幕在线观看 | 晚上一个人看的免费电影| a级毛片免费高清观看在线播放| 亚洲中文字幕日韩| 亚洲av电影不卡..在线观看| 丰满乱子伦码专区| 精品一区二区三区视频在线观看免费| 欧美极品一区二区三区四区| 九九热线精品视视频播放|