• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Dwindling Filter Algorithm with a Modified Subproblem for Nonlinear Inequality Constrained Optimization?

    2014-06-04 12:37:24ChaoGUDetongZHU

    Chao GU Detong ZHU

    1 Introduction

    Consider the following nonlinear inequality constrained optimization:

    wherex∈→R(j=1,···,m)are continuously differentiable.The problem has become highly important in recent years(see[6,9–10,12,14–15,20–21]).

    It is well-known that the sequential quadratic programming(or SQP for short)method is one of the most effective methods to solve(1.1).Because of its superlinear convergence rate,it is a topic of much active research.However,the SQP algorithms have two serious shortcomings.First,in order to obtain a search direction,one must solve one or more quadratic programming subproblems per iteration,and the computation amount of this type is very large.Second,the SQP algorithms require the related quadratic programming subproblems to be solvable per iteration,but it is difficult to be satisfied.Moreover,the solutions of the sequential quadratic subproblem may be unbounded,which leads to that the sequence generated by the method is divergent.Based on the above reasons,Zhou[19]modified the quadratic subproblem to make it feasible and bounded.

    The filter idea was first presented by Fletcher and Leyffer[3]for nonlinear programming(or NLP for short),offering an alternative to penalty functions,as a tool to guarantee global convergence of algorithms for nonlinear programming.Filter methods were successfully applied to solving various optimization problems,including complementarity and variational inequality problems(see[3–4,7–8,11,13–14,16–17]).Recently,Chen and Sun[1]proposed a dwindling multidimensional filter line search method for unconstrained optimization.The envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero,which leads to more flexibility for the acceptance of the trial step.

    In this paper,we propose a dwindling filter algorithm with Zhou’s modified quadratic subproblem for nonlinear inequality constrained optimization.The algorithm has the following merits:It requires to solve only one QP subproblem with only a subset of the constraints which are estimated as active;the initial point is arbitrary;the subproblem is feasible at each iterate point;the feasibility restoration phase,which is always used in the traditional filter methods,is not needed.This paper can be outlined as follows.In Section 2,we state the new algorithm.The global convergence of the new algorithm is proved in Section 3.The local Q-superlinear convergence rate is established in Section 4.Some numerical results are given in Section 5.

    2 Description of the Algorithm

    Define functions Φ(x)and Ψ(x)by

    ?x,d∈be the first order approximation to Ψ(x+d),namely

    ?σ>0,functions Ψ(x,σ)and→R are defined as follows:

    (2.4)equals the following linear programming:

    Denote

    Definition 2.1Mangasarian-Fromotz constraint qualification(or MFCQ for short)is said to be satisfied by g(x)such that

    Lemma 2.1?x∈Fc,if MFCQ is satisfied at x,then θ(x,σ)<0,?σ<0.

    Lemma 2.2Ψ(x,σ),Ψ0(x,σ),θ(x,σ)and θ0(x,σ)are all continuous onRn×R+.

    Lemma 2.3?x∈Fc,if θ(x,σ)<0,then θ0(x,σ)<0.

    For the details of Lemmas 2.1–2.3,see[19].Givenx∈Rnandσ>0,D(x,σ)is defined by the following set:

    Ifd?is the solution of LP(x,σ),then∈D(x,σ)and henceD(x,σ)is nonempty.We obtain the directionfrom the following convex programming problem

    whereis the set of approximate active indices of the pointxk.Clearly,by the above statement,the convex programming is feasible.

    Let us measure the inequality constraint violation atxby

    where=max{0,gj(x)},j∈I.The basic idea of the filter method is to interpret the optimization problem as a bi-objective optimization problem with the two goals of minimizing the objective functionf(x)and the constraint violationh(x).In the traditional filter method,a trial pointis called acceptance to the filter if and only if

    for all∈F.Different from the above idea,we call that a trial pointis acceptable to the dwindling filter if and only if

    for all∈F,whereφ(α)is a dwindling function defined by Chen and Sun[1].

    Definition 2.2φ(α):[0,1]→Ris a dwindling function if it is a monotonically increasing and continuous function such that

    For example,φ(α)=satisfies(2.14)–(2.16).A decreasing sequence of step sizes∈(0,1](l=0,1,2,···)is tried until(2.13)is satisfied,in which the envelope of the dwindling filter becomes thinner and thinner as the step size approaches zero.Ifφ(α)=1,the dwindlingfi lter is reduced to the traditional fi lter.Later,ifh(xk)>0,the fi lter is augmented for a new iteration using the update formula

    It is easy to see that

    for allk.

    Algorithm 2.1Given starting pointx0,Σ is a compact set which consists of symmetric positive definite matrices,

    Step 1Compute

    Step 2Compute an active constraint setLk.

    (1)Leti=0 and

    (2)Set

    If det(≥and go to Step 3.

    (3)Set=and go to Step 2(2)(inner loop A).

    Step 3Computedkfrom the convex programming problem and setIf≤,stop.

    Case 1??holds:If

    holds,setand go to Step 5.

    Case 2?is not satisfied:If

    or

    holds,setand go to Step 5.

    Step 4Computation of directionqk.

    Letbe the matrix whose rows arelinearly independent rows ofbe the matrix whose rows are the remainingn?rows of.We might denote=Likewe might as well let?f()=Compute

    wheree=(1,1,···,

    (1)Set=1 andl←0.

    (2)ComputeIf∈Fk,go to Step 4(3).

    Case 1holds:If

    holds,setand go to Step 5.

    Case 2is not satisfied:If

    or

    holds,setand go to Step 5.

    (3)Choosesetl←l+1,and go back to Step 4(2)(inner loop B).

    Step 5If either?oris not satisfied,augment the filter.Choosek←k+1,and go back to Step 1.

    3 Global Convergence

    Assumption 3.1(1)The functions(j∈{0,1,2,···,m})are twice continuously differentiable and bounded on Rn.

    (2)The iterate{xk}remains in a compacted subset S?Rn.

    (3)There exist two constantsaandbsuch thatfor allk,wherep∈Rn,0

    (4)The Mangasarian-Fromovitz constraint qualification(MFCQ)holds.

    Lemma 3.1(see[19])Suppose thatis a symmetric positive definite matrix.If MFCQ is satisfied at xk,then the convex programming problemhas a unique solution dkwhich satisfies KKT conditions,i.e.,there exist vectorssuch that

    Lemma 3.2(see[15])For any iterate k,the index i defined in Step2in Algorithm2.1is fi nite,which means that the inner loop A terminates in a finite number of times.

    Lemma 3.3(see[15])Ifthen it holds that

    Lemma 3.4Suppose that Assumption3.1holds.Then trial pointcould not be rejected by ifis sufficiently small.

    ProofSuppose thatis rejected by.From Lemma 3.3,we get0.The second-order Taylor expansion off(x)implies that

    Sinceasl→∞,≤holds for sufficiently small.

    Remark 3.1Without any assumption,we prove that the trial point could not be rejected by the current iterate.

    Lemma 3.5The mechanisms of the filter ensure that for all k,

    ProofThe proof is done by induction.Note that

    where>h(x0).Sinceφ(α)=o(α)asl→∞,holds for sufficiently smallα.The claim is valid fork=0.

    Suppose that the claim is true fork.Ifwithholds,the claim is true.Otherwise,we consider the trial pointIt is evident thatIn the following we need to prove thatThere are two cases.

    Case 1h(xk)=0.

    We have<0 from Lemma 3.3 andSo(2.21)must be satisfied,i.e.,and

    Case 2h(xk)>0.

    Ifholds,the proof is similar to Case 1.Otherwise,consider that the filter is augmented in iterationk,i.e.,

    Byand(by the proof of Lemma 3.4),we obtain

    Lemma 3.6Suppose that Assumption3.1holds.Then the inner loop B terminates in a fi nite number of iterations.

    ProofThe proof is done by contradiction.Suppose that the inner loop does not terminate in a finite number of iterations.In this case,the algorithm will always reject the trial pointsandx(),which leads to→0.Therefore,we may consider two cases.

    If?holds,the trial point is required to satisfy(2.21).Sinceqkis a descent direction,there exists a constantc1>0 such that,for(2.21)must be satisfied.If,on the other hand,does not hold,the trial point is required to satisfy(2.22).From Lemma 3.4,there exists a constant0 such that,for(2.22)must be satisfied.

    From Lemma 3.5,we haveFk,i.e.,

    or

    for all(,)∈F.Ifholds,from Lemma 3.3 and→0,we obtain that there exists a constantc3>0,for

    which contradicts(3.2a).Ifholds,from Lemma 3.3 and→0,we get that there exists a constantc4>0,such that

    which contradicts(3.2b).Chooseand the inner loop B terminates in a finite number of iterations.

    Lemma 3.7Suppose that infinite points are added to the filter.Then there exists a subsequence G in which the filter has been augmented such that

    ProofThe proof is done by contradiction.Suppose that there exists an infinite subsequence{}ofGfor which

    for some>0.At each iteration,(h(),f())is added to the filter,which means that no other(h,f)can be added to the filter at a later stage within the square

    Now observe that the area of the each of these squares is at leastAs a consequence,if there exists an infinite subsequencesuch that≥asj→∞,the set[0,∞]∩{(h,f)|f≤κf}is completely covered by at most a finite number of such squares.This is in contradiction to the infinite subsequence→0 asi→∞,we get

    Since=0,we have=0.Lemma 3.6 implies that there exists a constantc5such that foris accepted by Algorithm 2.1,which contradicts(3.4).

    Lemma 3.8Suppose that finite points are added to the filter.Then

    ProofFrom Assumption 3.1,there exists aK∈N so that for all iterationsk≥K,there is no point adding to the filter.Ifis accepted by Algorithm 2.1,we then have that for allk≥K,

    Suppose thatis rejected by Algorithm 2.1.In this case,the trial point=is accepted.Sinceh()<(??fwe have

    which is the same as(3.5).We conclude that

    Sinceis bounded below asi→∞,we have=0.

    Lemma 3.9Suppose that Assumptions3.1holds.Then

    ProofThe proof is similar to that of Theorem 1 in[16].

    Theorem 3.1Suppose that Assumptions3.1holds.Then

    ProofSuppose that the claim is not true,i.e.,there exists a subsequence infinite index setKand a constant>0 so thatIt follows from Lemmas 3.1 and 3.3 that

    If 1

    Whenh(xk)

    ChooseK1such that for allk≥≤ζ,and then the trail point must be accepted by(2.19)or(2.21).We denote the two sets of indices of those iterations in which(2.19)holds byK1?Kand in which(2.21)holds?K.There are three cases.

    Case 1IfK1is infinite andis finite,there exists aK2,such that for all iterationsk≥K2andk∈K1,(2.19)holds,i.e.,

    From the proof of Lemma 3.8,one can conclude that

    =0 implies that=0,which is a contradiction.

    Case 2Ifis infinite andK1is finite,there exists aK3,such that for all iterationsk≥K3andk∈K2,

    From the proof of Lemma 3.8 and=0,we have=0,which contradicts the proof of Lemma 3.6.

    Case 3 IfK1is infinite andK2is infinite,we have

    which is a contradiction.

    Remark 3.2The result of Theorem 3.1 is stronger than that in[16].The reason is that the feasibility restoration phase,which is always used in the traditional filter method,is not needed.

    4 Local Convergence

    In order to analyze the local convergence rate of the proposed algorithm more assumptions are needed.

    Assumption 4.1(1)x?is a KKT point of(1.1).Strict complementarity slackness and linear independence of the gradients of the active constraints hold.

    (2)The second-order sufficient condition holds atx?,i.e.,there exists a constant>0 such that

    whereI?={j=0,j∈I}.

    (3)xk→x?.

    (4)

    Algorithm 4.1Given starting pointx0,Σ is a compact set which consists of symmetric positive definite matrices,H0∈Σ,F0={(h,f)∈R2:h≥>h(x0),γf,γh∈(0,1),τ∈(2,3),

    Step 1Compute

    Step 2Compute an active constraint setLk.

    (1)Leti=0 and

    (2)Set

    If det()≥and go to Step 3.

    (3)Seti=i+1,=and go to Step 2(2)(inner loop A).

    Step 3Computedkfrom the convex programming problem and set=If≤,stop.

    Step 4Let=wherePkis a permutation matrix andis invertible.Solve linear equations:()=?whereF(xk+dk)=(gj(xk+dk),j∈Lk).Set

    Case 1?holds.If

    holds,setxk+1=and go to Step 5.

    Case 2?is not satisfied.If

    or

    holds,setand go to Step 5.

    Step 5Computation of directionqk.

    LetA1kbe the matrix whose rows are|Lk|linearly independent rows ofAk,andbe the matrix whose rows are the remainingn?|Lk|rows ofAk.We might denoteAk=LikeAk,we might as well let?f(xk)=Compute

    where=e=(1,1,···,1)

    (1)Setαk,0=1 andl←0.

    (2)Compute=xk+.If∈Fk,go to Step 5(3).

    Case 1?>h(xk)holds.If

    holds,setand go to Step 6.

    Case 2>h(xk)is not satisfied.If

    or

    holds,set=xk(and go to Step 6.

    (3)Choosesetl←l+1,and go back to Step 5(2)(inner loop B).

    Step 6If either?or?is not satisfied,augment the filter.Choose∈Σ,∈[],k←k+1,and go back to Step 1.

    Theorem 3.1 shows that0 ask→∞.So,it is natural thatsatisfiesfor sufficiently largek.(2.3)–(2.5)imply that=0 whenkis large enough.So the sequenceQ(xk,Hk,σk)is equivalent to the following quadratic programming subproblem whenkis sufficiently large

    Lemma 4.1(see[15])It holds,for k→∞,that

    where(dk,λk)is the KKT pair of the above quadratic programming subproblem.

    Lemma 4.2Suppose that Assumption4.1holds.Then the full steporis acceptable to the current filter Fkfor sufficiently large k.

    ProofSuppose that the full stepis rejected by the dwindling filter.According to(4.6)and the invertibility of

    Forjand sufficiently largek,there exists a constantc7>0 such thatUsing Taylor’s theorem,we can write

    where?kis betweenxkandxk+dk+Since→0 ask→∞,the right-hand side term is negative.As forj∈I?,using Taylor’s theorem and the definition of

    whereτ∈(2,3),is betweenxkandxk+dkandξkis betweenxk+dkandFrom the two cases,we obtain that==max{0,gj(xk+}=0.From the update formula of the dwindling filter,we have

    for allk.Therefore,is acceptable to the current filterFkfor sufficiently largek.

    Theorem 4.1Suppose that Assumption4.1holds.Then the full steporis taken by the algorithm for sufficiently large k.Further,the sequence{xk}converges to x?Q-superlinearly.

    ProofSuppose that the pointis not accepted by the filterFk.In that case,considerFrom Lemma 4.2,we have thatis acceptable to the current filterFkfor sufficiently largek.It is similar to the proof of Theorem 3.1 that?holds for sufficiently largek.Then we have

    Combining with Lemma 3.1 andwe obtain that

    By(4.8)and Taylor’s expansion,we have

    Since→0 ask→∞,anda>0,we get

    for sufficient largek.By Assumption 4.1(4),the sequence{xk}converges tox?Q-superlinearly.

    5 Numerical Experiments

    In this section,we present the numerical results of Algorithm 2.1 on an HP i5 personal computer with 2G memory.The selected parameter values are:=0.5,τ=2.5,ηf=0.5,====1.5.The computation terminates when the stopping criterionis satisfied.

    Table 1 Numerical results.

    All the forty nonlinear inequality constrained problems are numbered in the same way as in[5].NtandNfstand for the numbers of iterations and function evaluations,respectively.IPOPT is an interior-point filter line-search algorithm for nonlinear optimization(see[18]).To compare the performance of Algorithm 2.1 and IPOPT,we use the performance profiles as described in[2].Our profiles are based on function evaluations and the numbers of iterations.The benchmark results are generated by running a solver on a setPof problems and recording information of interest such as the number of function evaluations.LetSbe the set of solversin comparison.For each problempand solvers,we define

    =the number of function evaluations required to solve problempby solvers.

    Accordingly,setto be the number of gradient evaluations or iterations.The comparison is based on the performance ratio defined by

    If we define

    thenρs(τ)is the probability for the solvers∈S.The value ofρs(1)is the probability that the solver will win over the rest of the solvers.From Figures 1–2,it is clear that Algorithm 2.1 wins over IPOPT on the given problems.

    Figure 1 Performance profile on the numbers of iterations.

    Figure 2 Performance profile on function evaluations.

    6 Conclusion

    In this paper,we propose a dwindling filter algorithm with Zhou’s modified subproblem for nonlinear inequality constrained optimization,which requires less computational costs compared with the traditional filter algorithm(see[18])on the given problems.The feasibility restoration phase is not used in the algorithm.Under mild conditions,global convergence andlocal superlinear convergence rates are obtained.Moreover,the global convergence result of Theorem 3.1 is stronger than that in[16].How to choose the dwindling parametersφ(α)to get better numerical experience deserves further research.

    AcknowledgementThe authors would like to thank the two anonymous referees for their comments and suggestions that helped to improve the presentation of this paper.

    [1]Chen,Y.and Sun,W.,A dwindling filter line search method for unconstrained optimization,Technical Report of Optimization No.2010-09-01,School of Mathematical Science,Nanjing Normal University,Nanjing.

    [2]Dolan,E.D.and Mor,J.J.,Benchmarking optimization software with performance profiles,Math.Program.,91,2002,201–213.

    [3]Fletcher,R.and Leyffer,S.,Nonlinear programming without a penalty function,Math.Program.,91,2002,239–269.

    [4]Gu,C.and Zhu,D.,A secant algorithm with line search filter method for nonlinear optimization,Appl.Math.Modell.,35,2011,879–894.

    [5]Hock,W.and Schittkowski,K.,Test examples for nonlinear programming codes,Lecture Notes in Economics and Mathematics System,Vol.187,Springer-Verlag,New York,1981.

    [6]Jian,J.B.and Liu,Y.,A superlinearly convergent method of quasi-strongly sub-feasible directions with active set identifying for constrained optimization,Nonlinear Anal.Real World Appl.,12,2011,2717–2729.

    [7]Long,J.,Ma,C.F.and Nie,P.Y.,A new filter method for solving nonlinear complementarity problems,Appl.Math.Comput.,185,2007,705–718.

    [8]Li,C.and Sun,W.,On filter-successive linearization methods for nonlinear semidefinite programming,Sci.China Ser.A,52,2009,2341–2361.

    [9]Nie,P.Y.,Sequential penalty quadratic programming filter methods for nonlinear programming,Nonlinear Anal.Real World Appl.8,2007,118–129.

    [10]Nie,P.Y.,A derivative-free method for the system of nonlinear equations,Nonlinear Anal.Real World Appl.,7,2006,378–384.

    [11]Nie,P.Y.and Ma,C.F.,A trust region filter mehtod for general nonlinear programming,Appl.Math.Comput.,172,2006,1000-1017.

    [12]Nocedal,J.and Wright,S.,Numerical Optimization,Springer-Verlag,New York,1999.

    [13]Shen,C.G.,Xue,W.J.and Pu,D.G.,A filter SQP algorithm without a feasibility restoration phase,Comp.Appl.Math.,28,2009,167–194.

    [14]Su,K.and Yu,Z.,A modified SQP method with nonmonotone technique and its global convergence,Comput.Math.Appl.,57,2009,240–247.

    [15]Su,K.,A globally and superlinearly convergent modified SQP-filter method,J.Global Optim.,41,2008,203–217.

    [16]Wchter,A.and Biegler,L.T.,Line search filter methods for nonlinear programming:Motivation and global convergence,SIAM J.Optim.,6,2005,1–31.

    [17]Wchter,A.and Biegler,L.T.,Line search filter methods for nonlinear programming:Local convergence,SIAM J.Optim.,6,2005,32–48.

    [18]Wchter,A.and Biegler,L.T.,On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,Math.Program.,106,2006,25–57.

    [19]Zhou,G.L.,A modified SQP method and its global convergence,J.Global Optim.,11,1997,193–205.

    [20]Zhu,Z.B.and Wang,S.,A superlinearly convergent numerical algorithm for nonlinear programming,Nonlinear Anal.Real World Appl.,13,2012,2391–2402.

    [21]Zhu,Z.B.and Jian,J.B.,An efficient feasible SQP algorithm for inequality constrained optimization,Nonlinear Anal.Real World Appl.,10,2009,1220–1228.

    欧美激情久久久久久爽电影| 国产亚洲av高清不卡| 久久久国产成人精品二区| www.www免费av| 男女之事视频高清在线观看| 国产精品,欧美在线| 亚洲精品在线观看二区| 成人特级黄色片久久久久久久| 看片在线看免费视频| 中文字幕最新亚洲高清| 成年免费大片在线观看| 热99re8久久精品国产| 国产精华一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲av美国av| 欧美av亚洲av综合av国产av| 国产精品久久久久久久电影 | 国产成人aa在线观看| 夜夜夜夜夜久久久久| 91av网站免费观看| a级毛片a级免费在线| 成人特级av手机在线观看| 97超视频在线观看视频| 色综合亚洲欧美另类图片| 国产不卡一卡二| 午夜福利欧美成人| 身体一侧抽搐| 欧美日韩综合久久久久久 | 午夜福利18| 国产精品久久久久久精品电影| 久久久久亚洲av毛片大全| 亚洲午夜精品一区,二区,三区| 国产一区二区激情短视频| 人人妻,人人澡人人爽秒播| 悠悠久久av| 1000部很黄的大片| 久久久久久人人人人人| 人妻夜夜爽99麻豆av| 国产99白浆流出| 成人特级黄色片久久久久久久| 一进一出抽搐gif免费好疼| 久久久久亚洲av毛片大全| 午夜福利欧美成人| 18禁国产床啪视频网站| 黄色女人牲交| 久久久久久久久久黄片| 久久久久久久午夜电影| 国内毛片毛片毛片毛片毛片| 国产伦人伦偷精品视频| 亚洲五月天丁香| 好男人在线观看高清免费视频| 国产成人aa在线观看| 免费在线观看亚洲国产| xxxwww97欧美| 亚洲欧美激情综合另类| 欧美一级毛片孕妇| 午夜成年电影在线免费观看| 丰满人妻熟妇乱又伦精品不卡| 法律面前人人平等表现在哪些方面| 精品久久蜜臀av无| 校园春色视频在线观看| 天堂影院成人在线观看| 国产精品永久免费网站| av黄色大香蕉| 中文在线观看免费www的网站| 久久久久久久久免费视频了| 国产高清三级在线| 黑人操中国人逼视频| 99热这里只有是精品50| 亚洲在线观看片| 在线国产一区二区在线| 天天一区二区日本电影三级| 特级一级黄色大片| 亚洲av片天天在线观看| netflix在线观看网站| 91在线观看av| 亚洲成av人片在线播放无| 欧美日韩国产亚洲二区| 午夜日韩欧美国产| 国产1区2区3区精品| 国产欧美日韩精品一区二区| 一级毛片精品| 日日摸夜夜添夜夜添小说| 看免费av毛片| 搞女人的毛片| 国产探花在线观看一区二区| 国产1区2区3区精品| 久久精品亚洲精品国产色婷小说| 欧美不卡视频在线免费观看| 网址你懂的国产日韩在线| 黄色成人免费大全| 日本黄色视频三级网站网址| 欧美日韩综合久久久久久 | 亚洲天堂国产精品一区在线| 亚洲人成网站高清观看| 日日夜夜操网爽| 欧美国产日韩亚洲一区| 精品日产1卡2卡| www.精华液| 级片在线观看| 欧美一级a爱片免费观看看| 两个人看的免费小视频| 亚洲 欧美一区二区三区| 国产探花在线观看一区二区| 亚洲国产日韩欧美精品在线观看 | 可以在线观看的亚洲视频| 一进一出抽搐动态| 女警被强在线播放| 亚洲男人的天堂狠狠| 成人鲁丝片一二三区免费| 亚洲aⅴ乱码一区二区在线播放| 欧美成人性av电影在线观看| a在线观看视频网站| bbb黄色大片| av片东京热男人的天堂| 国产激情久久老熟女| 亚洲人成网站高清观看| 精品久久久久久久人妻蜜臀av| 欧美乱色亚洲激情| 又紧又爽又黄一区二区| 精品一区二区三区视频在线观看免费| 神马国产精品三级电影在线观看| av天堂在线播放| 亚洲国产看品久久| АⅤ资源中文在线天堂| 99国产综合亚洲精品| 一个人观看的视频www高清免费观看 | 三级男女做爰猛烈吃奶摸视频| 欧美日韩黄片免| 无遮挡黄片免费观看| 精品国产三级普通话版| 女生性感内裤真人,穿戴方法视频| 色综合站精品国产| 岛国在线免费视频观看| 又大又爽又粗| av片东京热男人的天堂| 亚洲国产精品久久男人天堂| 免费观看精品视频网站| 两性午夜刺激爽爽歪歪视频在线观看| 成人特级黄色片久久久久久久| 亚洲精品一区av在线观看| 精品国产美女av久久久久小说| 欧美日韩中文字幕国产精品一区二区三区| 国产精品久久久久久人妻精品电影| 欧美乱妇无乱码| 久久久国产成人精品二区| 中文字幕最新亚洲高清| 精品久久久久久久人妻蜜臀av| 色老头精品视频在线观看| av在线蜜桃| 亚洲精品一区av在线观看| 国产精品av视频在线免费观看| АⅤ资源中文在线天堂| 日本a在线网址| 成人性生交大片免费视频hd| 国产激情久久老熟女| 国产精品久久电影中文字幕| 久久午夜综合久久蜜桃| 中文字幕av在线有码专区| 久久国产精品影院| 无遮挡黄片免费观看| АⅤ资源中文在线天堂| 两个人视频免费观看高清| 后天国语完整版免费观看| 欧美成人免费av一区二区三区| 观看免费一级毛片| 国产午夜精品论理片| 成人特级黄色片久久久久久久| 色在线成人网| 国产精品一及| 观看美女的网站| 精品一区二区三区视频在线 | 国产麻豆成人av免费视频| 精品福利观看| 一个人看的www免费观看视频| 午夜福利在线在线| 岛国视频午夜一区免费看| 天天躁日日操中文字幕| 美女 人体艺术 gogo| 午夜福利成人在线免费观看| 小蜜桃在线观看免费完整版高清| 欧美激情久久久久久爽电影| 一区二区三区激情视频| 亚洲美女黄片视频| 久久久久久久久久黄片| 亚洲九九香蕉| 桃红色精品国产亚洲av| 欧美丝袜亚洲另类 | 国产精品久久电影中文字幕| 日日摸夜夜添夜夜添小说| 精品福利观看| 国产av在哪里看| 国产蜜桃级精品一区二区三区| 国产精品日韩av在线免费观看| 这个男人来自地球电影免费观看| 99热6这里只有精品| 色尼玛亚洲综合影院| 久久久精品大字幕| 国产精品99久久久久久久久| 久久精品91蜜桃| 亚洲美女黄片视频| 亚洲熟妇熟女久久| 99久久无色码亚洲精品果冻| 国产美女午夜福利| 高清在线国产一区| 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 亚洲成人精品中文字幕电影| 亚洲18禁久久av| 日日干狠狠操夜夜爽| 久99久视频精品免费| 蜜桃久久精品国产亚洲av| 中文资源天堂在线| 中亚洲国语对白在线视频| 久久中文字幕一级| 国产成人影院久久av| e午夜精品久久久久久久| 最近最新中文字幕大全电影3| 国产伦精品一区二区三区四那| av天堂中文字幕网| 18禁黄网站禁片免费观看直播| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久末码| 成年免费大片在线观看| 国产精品一区二区免费欧美| 日本与韩国留学比较| 久久精品aⅴ一区二区三区四区| 亚洲av日韩精品久久久久久密| 俺也久久电影网| 老司机福利观看| 91九色精品人成在线观看| 亚洲av成人不卡在线观看播放网| 久久精品aⅴ一区二区三区四区| 一夜夜www| 三级毛片av免费| 国产在线精品亚洲第一网站| 搡老熟女国产l中国老女人| 两个人的视频大全免费| 男人舔女人下体高潮全视频| 国产精品av久久久久免费| 精品熟女少妇八av免费久了| 夜夜躁狠狠躁天天躁| 一二三四在线观看免费中文在| www日本黄色视频网| 亚洲熟妇熟女久久| 久久性视频一级片| 99热这里只有精品一区 | 在线a可以看的网站| 美女免费视频网站| 国产一区二区在线av高清观看| 久9热在线精品视频| 黄色丝袜av网址大全| 激情在线观看视频在线高清| 国产野战对白在线观看| 亚洲av电影在线进入| 精品熟女少妇八av免费久了| 免费观看精品视频网站| 国产黄片美女视频| av中文乱码字幕在线| 午夜福利免费观看在线| 亚洲国产色片| 99热这里只有是精品50| 99视频精品全部免费 在线 | 99久久精品国产亚洲精品| 脱女人内裤的视频| 日本黄大片高清| 久久精品国产清高在天天线| 日本 欧美在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲av中文字字幕乱码综合| 身体一侧抽搐| 国产精品,欧美在线| 欧美在线一区亚洲| 午夜成年电影在线免费观看| 国产精品乱码一区二三区的特点| 好男人电影高清在线观看| 亚洲精品美女久久av网站| 男人的好看免费观看在线视频| av黄色大香蕉| 午夜两性在线视频| 美女黄网站色视频| 麻豆av在线久日| 久久久久精品国产欧美久久久| 丁香六月欧美| 不卡一级毛片| 久久精品影院6| 国产真实乱freesex| 国产探花在线观看一区二区| 好男人电影高清在线观看| 俄罗斯特黄特色一大片| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 色噜噜av男人的天堂激情| 日日干狠狠操夜夜爽| 丰满人妻熟妇乱又伦精品不卡| 免费av不卡在线播放| 国产欧美日韩一区二区三| 桃红色精品国产亚洲av| 国产高清三级在线| 中文亚洲av片在线观看爽| 中文字幕人妻丝袜一区二区| 午夜精品在线福利| 国产精品电影一区二区三区| 999久久久国产精品视频| 久久香蕉国产精品| 国产成人影院久久av| 日韩欧美国产在线观看| 国产午夜福利久久久久久| 日本精品一区二区三区蜜桃| 成年人黄色毛片网站| 精品久久久久久久人妻蜜臀av| 2021天堂中文幕一二区在线观| 亚洲欧美一区二区三区黑人| 欧美成人免费av一区二区三区| 欧美日韩国产亚洲二区| 成人国产一区最新在线观看| 成年女人永久免费观看视频| 国产真实乱freesex| 亚洲 欧美一区二区三区| 999久久久国产精品视频| 久久久久久久午夜电影| x7x7x7水蜜桃| 人人妻人人看人人澡| 精品久久久久久,| 91久久精品国产一区二区成人 | 午夜福利欧美成人| 69av精品久久久久久| 黑人欧美特级aaaaaa片| 精品一区二区三区视频在线观看免费| 在线永久观看黄色视频| 午夜福利视频1000在线观看| 母亲3免费完整高清在线观看| 色视频www国产| 成人高潮视频无遮挡免费网站| 免费av毛片视频| 午夜精品在线福利| 香蕉久久夜色| 巨乳人妻的诱惑在线观看| 欧美黑人巨大hd| 亚洲在线观看片| 色哟哟哟哟哟哟| 欧美性猛交黑人性爽| 美女扒开内裤让男人捅视频| h日本视频在线播放| 18禁国产床啪视频网站| 麻豆国产av国片精品| 在线国产一区二区在线| 久久国产乱子伦精品免费另类| av视频在线观看入口| 伦理电影免费视频| 国产亚洲av高清不卡| 久久香蕉国产精品| 久久久国产成人精品二区| 日韩精品中文字幕看吧| 99热只有精品国产| 一边摸一边抽搐一进一小说| 一级毛片女人18水好多| 国产野战对白在线观看| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 91字幕亚洲| or卡值多少钱| 美女高潮的动态| 国产精品99久久99久久久不卡| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 精品福利观看| 免费高清视频大片| 国产成人av教育| 色老头精品视频在线观看| 男女床上黄色一级片免费看| 午夜福利视频1000在线观看| 免费一级毛片在线播放高清视频| 亚洲国产精品sss在线观看| 99久久无色码亚洲精品果冻| 国内精品久久久久精免费| 97碰自拍视频| 日本a在线网址| 日本三级黄在线观看| 欧美日韩黄片免| 香蕉丝袜av| 日韩欧美国产在线观看| 好男人电影高清在线观看| 少妇裸体淫交视频免费看高清| 国产精品永久免费网站| 老汉色∧v一级毛片| 俄罗斯特黄特色一大片| 国产久久久一区二区三区| 日本黄色视频三级网站网址| 长腿黑丝高跟| 国产视频内射| 黄色成人免费大全| 亚洲中文av在线| 人妻久久中文字幕网| 国产极品精品免费视频能看的| 九色成人免费人妻av| 亚洲第一欧美日韩一区二区三区| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 国产视频内射| 在线观看免费视频日本深夜| 国产精品日韩av在线免费观看| 国产真实乱freesex| 国产精品国产高清国产av| 欧美黄色片欧美黄色片| 国产视频内射| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 国产69精品久久久久777片 | 亚洲国产欧洲综合997久久,| 国产视频内射| 久久精品91蜜桃| 精品久久久久久久毛片微露脸| 日本三级黄在线观看| 精品一区二区三区视频在线观看免费| 露出奶头的视频| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 国产久久久一区二区三区| 亚洲成人久久性| 亚洲七黄色美女视频| 天堂网av新在线| 婷婷精品国产亚洲av在线| 一边摸一边抽搐一进一小说| 中文字幕高清在线视频| av国产免费在线观看| 男人的好看免费观看在线视频| 国产成人精品久久二区二区免费| 精华霜和精华液先用哪个| 国产成人影院久久av| 搡老熟女国产l中国老女人| 亚洲精品色激情综合| 欧美一级毛片孕妇| 国产99白浆流出| 听说在线观看完整版免费高清| 最新美女视频免费是黄的| 国产男靠女视频免费网站| 在线观看午夜福利视频| 国产亚洲精品一区二区www| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 人妻夜夜爽99麻豆av| 精品免费久久久久久久清纯| 免费在线观看日本一区| 99re在线观看精品视频| 高清毛片免费观看视频网站| 国产精品亚洲美女久久久| www.999成人在线观看| 美女扒开内裤让男人捅视频| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 欧美乱码精品一区二区三区| 国产av不卡久久| 国产麻豆成人av免费视频| 中文字幕人妻丝袜一区二区| 亚洲avbb在线观看| 国产乱人视频| 亚洲五月婷婷丁香| 国语自产精品视频在线第100页| 国产成年人精品一区二区| 婷婷丁香在线五月| 免费在线观看影片大全网站| 村上凉子中文字幕在线| 最近最新中文字幕大全免费视频| 欧美最黄视频在线播放免费| 久久久成人免费电影| 国产v大片淫在线免费观看| www.自偷自拍.com| 美女cb高潮喷水在线观看 | 美女大奶头视频| 亚洲av熟女| 男人的好看免费观看在线视频| bbb黄色大片| 亚洲人成网站高清观看| 熟女电影av网| 亚洲自拍偷在线| or卡值多少钱| 国产淫片久久久久久久久 | 丁香六月欧美| 久久婷婷人人爽人人干人人爱| 亚洲欧美激情综合另类| 日本黄色视频三级网站网址| 夜夜爽天天搞| 黑人操中国人逼视频| 亚洲精品粉嫩美女一区| 久久久久久久久免费视频了| 99久久精品热视频| 免费看日本二区| 老熟妇仑乱视频hdxx| 欧美xxxx黑人xx丫x性爽| 亚洲最大成人中文| 听说在线观看完整版免费高清| 国产激情欧美一区二区| 国产精品免费一区二区三区在线| 色av中文字幕| 国产av在哪里看| tocl精华| 99视频精品全部免费 在线 | 在线国产一区二区在线| 美女高潮喷水抽搐中文字幕| 国产人伦9x9x在线观看| 国产不卡一卡二| www国产在线视频色| 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址| 久久亚洲真实| 老司机深夜福利视频在线观看| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 亚洲av免费在线观看| 亚洲第一电影网av| 国产精品香港三级国产av潘金莲| 别揉我奶头~嗯~啊~动态视频| 欧美高清成人免费视频www| 亚洲av免费在线观看| 少妇的丰满在线观看| 免费无遮挡裸体视频| or卡值多少钱| 成人欧美大片| 久久久水蜜桃国产精品网| 国产成人av激情在线播放| 亚洲,欧美精品.| 国产久久久一区二区三区| 中文字幕人成人乱码亚洲影| 成年免费大片在线观看| 国产av在哪里看| 中文字幕精品亚洲无线码一区| 午夜视频精品福利| a在线观看视频网站| 99视频精品全部免费 在线 | 岛国在线观看网站| 日韩欧美免费精品| 亚洲国产欧美网| 久久精品综合一区二区三区| 日韩大尺度精品在线看网址| 男女床上黄色一级片免费看| 91老司机精品| 亚洲精品色激情综合| 精品久久久久久久久久免费视频| 亚洲激情在线av| 黄色丝袜av网址大全| 国产精品久久久久久精品电影| 欧美日韩亚洲国产一区二区在线观看| 午夜影院日韩av| 国产视频内射| 日本五十路高清| 亚洲人成伊人成综合网2020| 日韩精品青青久久久久久| 国产视频内射| 日本五十路高清| 久久久久性生活片| www.自偷自拍.com| x7x7x7水蜜桃| 无遮挡黄片免费观看| 又爽又黄无遮挡网站| 久久久国产欧美日韩av| 欧美中文日本在线观看视频| 久久国产乱子伦精品免费另类| 精品久久蜜臀av无| 国产真人三级小视频在线观看| 亚洲第一欧美日韩一区二区三区| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 国产精品久久久人人做人人爽| 国产又黄又爽又无遮挡在线| 国产私拍福利视频在线观看| 黑人欧美特级aaaaaa片| 97超视频在线观看视频| 人妻丰满熟妇av一区二区三区| 亚洲精品粉嫩美女一区| 一区二区三区国产精品乱码| or卡值多少钱| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 国产熟女xx| 我要搜黄色片| 成人永久免费在线观看视频| а√天堂www在线а√下载| 成年版毛片免费区| 18美女黄网站色大片免费观看| 夜夜看夜夜爽夜夜摸| 禁无遮挡网站| 日韩欧美 国产精品| 男插女下体视频免费在线播放| 全区人妻精品视频| 最近在线观看免费完整版| 午夜福利高清视频| 国产成人一区二区三区免费视频网站| 日本五十路高清| 女人被狂操c到高潮| 国产一区二区在线观看日韩 | 91在线精品国自产拍蜜月 | 欧美日韩精品网址| 午夜免费激情av| 国产高清视频在线播放一区| 可以在线观看的亚洲视频| av中文乱码字幕在线| 成年女人毛片免费观看观看9| 男人舔女人下体高潮全视频| 欧美国产日韩亚洲一区| 天堂动漫精品| 波多野结衣巨乳人妻| a级毛片a级免费在线| 国产午夜精品论理片| 叶爱在线成人免费视频播放| 国产免费男女视频| 色精品久久人妻99蜜桃| 999精品在线视频| 很黄的视频免费| 国产又色又爽无遮挡免费看| 久久热在线av| 欧美黄色片欧美黄色片| 免费一级毛片在线播放高清视频|