• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    f-Harmonic Morphisms Between Riemannian Manifolds?

    2014-06-04 12:37:44YelinOU

    Yelin OU

    1 f-Harmonic Maps vs.F-Harmonic Maps

    1.1 f-Harmonic maps

    Letf:(M,g)→(0,∞)be a smooth function.Anf-harmonic map is a mapφ:(Mm,g)→(Nn,h)between Riemannian manifolds such thatφ|Ωis a critical point of thef-energy(see[10,18]),

    for every compact domain Ω?M.The Euler-Lagrange equation gives thef-harmonic map equation(see[7,23])

    whereτ(φ)=Trg?dφis the tension field ofφvanishing of which meansφis a harmonic map.

    Example 1.1Let?,ψ,φ:R3→R2be defined as

    Then,one can easily check that both?andψaref-harmonic map withf=?is a horizontally conformal submersion whilstψis not.Also,φis anf-harmonic map withf=,which is a submersion but not horizontally weakly conformal.

    1.2 F-Harmonic map

    LetF:[0,+∞)→[0,+∞)be aC2-function,strictly increasing on(0,+∞),and let?:(M,g)→(N,h)be a smooth map between Riemannian manifolds.Then?is said to be anF-harmonic map if?|Ωis a critical point of theF-energy functional

    for every compact domain Ω?M.The equation ofF-harmonic maps is given by(see[2])

    whereτ(?)denotes the tension field of?.

    Harmonic maps,p-harmonic maps and exponential harmonic maps are examples ofF-harmonic maps withF(t)=t,F(t)=(p>4),andF(t)=et,respectively(see[2]).

    In particular,p-harmonic map equation can be written as

    1.3 Relationship between f-harmonic and F-harmonic maps

    We can see from(1.1)that anf-harmonic map withf=const>0 is nothing but a harmonic map,so bothf-harmonic maps andF-harmonic maps are generalizations of harmonic maps.Though we were warned in[7]thatf-harmonic maps should not be confused withF-harmonic maps andp-harmonic maps,we observe that,apart from critical points,anyF-harmonic map is a specialf-harmonic map.More precisely we have the following corollary.

    Corollary 1.1Any F-harmonic map ?:(M,g)→(N,h)without critical points,i.e.,|d?0for all x∈M,is an f-harmonic map with f=In particular,a pharmonic map without critical points is an f-harmonic map with f=

    ProofSinceFis aC2-function and strictly increasing on(0,+∞)we have(t)>0 on(0,+∞).If theF-harmonic map?:(M,g)→(N,h)has no critical points,i.e.,for allx∈M,then the functionf:(M,g)→(0,+∞)withf=is smooth and we see from(1.1)–(1.2)that theF-harmonic map?is anf-harmonic map withf=The second statement follows from the fact that for ap-harmonic map,F(t)=and hence

    Another relationship betweenf-harmonic maps and harmonic maps can be characterized as follows.

    Corollary 1.2(see[18])A map φ:(Mm,g)→(Nn,h)with2is f-harmonic if and only if φ:→(Nn,h)is a harmonic map.

    1.4 A physical motivation for the study of f-harmonic maps

    In physics,the equation of motion of a continuous system of spins with inhomogeneous neighbor Heisenberg interaction(such a model is called the inhomogeneous Heisenberg ferromagnet)is given by

    where Ω?Rmis a smooth domain in the Euclidean space,fis a real-valued function defined on Ω,u(x,t)∈S2,×denotes the cross products in R3and Δ is the Laplace operator on Rm.Physically,the functionfis called the coupling function,and is the continuum limit of the coupling constants between the neighboring spins.Sinceuis a map intoS2it is well-known that the tension field ofucan be written asτ(u)= Δu+|?u|2u,and one can easily check that the right-hand side of the inhomogeneous Heisenberg spin system(1.4)can be written asu×(fτ(u)+?f·?u).It follows thatuis a smooth stationary solution of(1.4)if and only iffτ(u)+?f·?u=0,i.e.,uis anf-harmonic map.So there exists a 1-1 correspondence between the set of the stationary solutions of the inhomogeneous Heisenberg spin system(1.4)on the domain Ω and the set off-harmonic maps from Ω into 2-sphere.The above inhomogeneous Heisenberg spin system(1.4)is also called inhomogeneous Landau-Lifshitz system(see[5–6,9,14,16–17]).

    Using Corollary 1.2 we have the following example which provides many stationary solutions of the inhomogeneous Heisenberg spin system defined on R3.

    Example 1.2u:→(Nn,h)is anf-harmonic map if and only if

    is a harmonic map.In particular,there is a 1-1 correspondence between harmonic maps from 3-sphere

    andf-harmonic maps withf=from Euclidean 3-space R3→(Nn,h).When(Nn,h)=S2,we have a 1-1 correspondence between the set of harmonic mapsS3→S2and the set of stationary solutions of the inhomogeneous Heisenberg spin system on R3.Similarly,there exists a 1-1 correspondence between harmonic maps from hyperbolic 3-space

    andf-harmonic mapsfrom the unit disk in Euclidean 3-space.

    1.5 A little more about f-harmonic maps

    Corollary 1.3If φ:(Mm,g)→(Nn,h)is an f1-harmonic map and also an f2-harmonic map,thengrad()∈kerdφ.

    ProofThis follows from

    and hence

    Proposition 1.1A conformal immersion φ:(Mm,g)→(Nn,h)withis f-harmonic if and only if it is m-harmonic and f=In particular,an isometric immersion is f-harmonic if and only if f=const and hence it is harmonic.

    ProofIt is not difficult to check(see[24])that for a conformal immersionφ:(Mm,g)→(Nn,h)withthe tension field is given by

    so we can compute thef-tension field to have

    whereηis the mean curvature vector of the submanifoldφ(M)?N.Noting thatηis normal part whilst dφ(grad lnf)is the tangential part ofτf(φ),we conclude thatτf(φ)=0 if and only if

    It follows thatη=0 and grad=0 sinceφis an immersion.From these we see thatφis a minimal conformal immersion which means it is anm-harmonic map(see[24])and thatf=Thus,we obtain the first statement.The second statement follows from the first one withλ=1.

    2 f-Harmonic Morphisms

    A horizontally weakly conformal map is a map?:(M,g)→(N,h)between Riemannian manifolds such that for eachx∈Mat whichthe restrictionis conformal and surjective,where the horizontal subspaceis the orthogonal complement ofVx=kerd?xinTxM.It is not difficult to see that there exists a numberλ(x)∈(0,∞)such thath(d?(X),d?(Y))=(x)g(X,Y)for anyX,Y∈Hx.At the pointx∈Mwhere d?x=0 one can letλ(x)=0 and obtain a continuous functionλ:M→R which is called the dilation ofa horizontally weakly conformal map?.A non-constant horizontally weakly conformal map?is called horizontally homothetic if the gradient of(x)is vertical meaning thatX()≡0 for any horizontal vector fieldXonM.Recall that aC2map?:(M,g)→(N,h)is ap-harmonic morphism(p>1)if it preserves the solutions ofp-Laplace equation in the sense that for anyp-harmonic functionf:U→R,defined on an open subsetUofNwith(U)non-empty,f??:(U)→R is ap-harmonic function.Ap-harmonic morphism can be characterized as a horizontally weakly conformalp-harmonic map(see[3,11,15,19,21]).

    Definition 2.1Let f:(M,g)→(0,∞)be a smooth function.A-function u:U→Rdefined on an open subset U of M is called f-harmonic if

    A continuous map φ:(,g)→(,h)is called an f-harmonic morphism if for every harmonic function u defined on an open subset V of N such that(V)is non-empty,the composition u?φ is f-harmonic onV).

    Theorem 2.1Let φ:(,g)→(,h)be a smooth map.Then,the following are equivalent:

    (1)φ is an f-harmonic morphism;

    (2)φ is a horizontally weakly conformal f-harmonic map;

    (3)There exists a smooth function on M such that

    for any -function u defined on(an open subset of)N.

    ProofWe will need the following lemma to prove the theorem.

    Lemma 2.1(see[15])For any point q∈(,h)and any constants==0,there exists a harmonic function u on a neighborhood of q such that

    Letφ:(,g)→(,h)be a map and letp∈M.Suppose that

    is the local expression ofφwith respect to the local coordinates{}in the neighborhood(V)ofpand{}in a neighborhoodVofq=φ(p)∈N.Letu:V→R be defined on an open subsetVofN.Then,a straightforward computation gives

    By Lemma 2.1,we can choose a local harmonic functionuonV?Nsuch that(q)==0,=1,2,···,n,=1(αβ),and all other=0,and substitute it into

    (2.2)to have

    Note that the choice of such functions implies

    Another choice of harmonic functionuwith=1,=?1(α1)and all other,=0 for(2.2)gives

    Note also that for these choices of harmonic functionsuwe have

    It follows from(2.3)–(2.6)that thef-harmonic morphismφis a horizontally weakly conformal map

    Substituting horizontal conformality equation(2.7)into(2.2),we have

    for any functionudefined(locally)onN.By special choice of harmonic functionuwe conclude that thef-harmonic morphism is anf-harmonic map.Thus,we obtain the implication “(1)?(2)”.Note that the only assumption we used to obtain(2.8)is the horizontal conformality(2.7).Therefore,it follows from(2.8)that“(2)?(3)”.Finally,“(3)?(1)” is clearly true.Thus,we complete the proof of Theorem 2.1.

    Similar to harmonic morphisms we have the following regularity result.

    Corollary 2.1For m≥3,an f-harmonic morphism φ:is smooth.

    ProofIn fact,by Corollary 1.1,ifm2 andφ:→(Nn,h)is anf-harmonic morphism,thenφ:→is a harmonic map and hence a harmonic morphism,which is known to be smooth(see[4]).

    It is well-known that the composition of harmonic morphisms is again a harmonic morphism.The composition law forf-harmonic morphisms,however,will need to be modified accordingly.In fact,by the definitions of harmonic morphisms andf-harmonic morphisms we have the following result.

    Corollary 2.2Let φ:be an f-harmonic morphism with dilation λ1and ψ:a harmonic morphism with dilation λ2.Then the composition ψ? φ:is an f-harmonic morphism with dilation

    More generally,we can prove thatf-harmonic morphisms pull back harmonic maps tofharmonic maps.

    Proposition 2.1Let φ:be an f-harmonic morphism with dilation λ and ψ:a harmonic map.Then the composition ψ? φ:is an f-harmonic map.

    ProofIt is well-known(see[4,Proposition 3.3.12])that the tension field of the composition map is given by

    from which we have thef-tension of the compositionψ?φgiven by

    Sinceφis anf-harmonic morphism and hence a horizontally weakly conformalf-harmonic map with dilationλ,we can choose local orthonormal frames{e1,···,en,en+1,···,em}aroundp∈Mandaroundφ(p)∈Nso that

    Using these local frames we compute

    Substituting this into(2.9)we have

    from which the proposition follows.

    Theorem 2.2Let φ:→be a horizontally weakly conformal map withThen,any two of the following conditions imply the other one:

    (1)φ is an f-harmonic map and hence an f-harmonic morphism.

    (2)grad(is vertical.

    (3)φ has minimal fibers.

    ProofIt can be check(see[4])that the tension field of a horizontally weakly conformal mapφ:→is given by

    whereλis the dilation of the horizontally weakly conformal mapφandμis the mean curvature vector field of the fibers.It follows that thef-tension field ofφcan be written as

    or,equivalently,

    From this we obtain the theorem.

    An immediate consequence is the following result.

    Corollary 2.3(a)A horizontally homothetic map(in particular,a Riemannian submersion)φ:(Mm,g)→(Nn,h)is an f-harmonic morphism if and only if?(m?n)μ+gradlnf is vertical.

    (b)A weakly conformal map φ:(Mm,g)→(Nm,h)with conformal factor λof same dimension spaces is f-harmonic and hence an f-harmonic morphism if and only if f=for some constant C>0.

    (c)A horizontally weakly conformal map φ:(Mm,g)→(N2,h)is an f-harmonic map and hence an f-harmonic morphism if and only if?(m?2)μ+gradlnf is vertical.

    Using the characterizations off-harmonic morphisms andp-harmonic morphisms and Corollary 1.1 we have the following corollary which provides many examples off-harmonic morphisms.

    Corollary 2.4A map φ:(Mm,g)→(Nn,h)between Riemannian manifolds is a pharmonic morphism without critical points if and only if it is an f-harmonic morphism with f=|dφ|p?2.

    Example 2.1The Mbius transformationφ:Rm{0}→Rm{0}defined by

    is anf-harmonic morphism withf(x)=In fact,it is well-known that the Mbius transformation is a conformal map between the same dimensional spaces with the dilationλ=It follows from[20]thatφis anm-harmonic morphism,and hence by Corollary 2.4,the inversion is anf-harmonic morphism with

    The next example is anf-harmonic morphism that does not come from ap-harmonic morphism.

    Example 2.2The map from Euclidean 3-space into the hyperbolic planeφ:R×R×≡R×{0}×withφ(x,y,z)=(x,0,is anf-harmonic morphism withSimilarly,we know from[12]that the mapφ:H3≡R×R×R+,→H2≡R×{0}×withφ(x,y,z)=is a harmonic morphism.It follows from Example 1.2 that the map from Euclidean space into the hyperbolic planeφ:(R×R×→H2≡withφ(x,y,z)=is anf-harmonic map withf=.Since this map is also horizontally weakly conformal it is anf-harmonic morphism by Theorem 2.1.

    Example 2.3Any harmonic morphismφ:(Mm,g)→(Nn,h)is anf-harmonic morphism for a positive functionfonMwith vertical gradient,i.e.,dφ(gradf)=0.In particular,the radial projectionφ:{0}→Sm,φ(x)=is anf-harmonic morphism forf=α(|x|),whereα:(0,∞)→(0,∞)is any smooth function.In fact,we know from[4]that the radial projection is a harmonic morphisms and on the other hand,one can check that the functionf=α(|x|)is positive and has vertical gradient.

    Using the property off-harmonic morphisms and Sacks-Uhlenbeck’s well-known result on the existence of harmonic 2-spheres we have the following proposition which gives many examples off-harmonic maps from Euclidean 3-space into a manifold whose universal covering space is not contractible.

    Proposition 2.2For any Riemannian manifold whose universal covering space is not contractible,there exists an f-harmonic map φ:→(Nn,h)from Euclidean3-space with f(x)=

    ProofLet ddenote the Euclidean metric on R3.It is well-known that we can use the inverse of the stereographic projection to identifywith

    the Euclidean 3-sphere minus the north pole.In fact,the identification is given by the isometry

    with

    One can check that under this identification,the Hopf fiberation

    can be written as

    where

    It is well-known(see[4])that the Hopf fiberationφis a harmonic morphism with dilationλ=2.So,by Corollary 1.1,φ:is anf-harmonic map withIt is easy to see that this map is also horizontally conformal submersion and hence,by Theorem 2.1,it is anf-harmonic morphism.On the other hand,by a well-known result of Sacks-Uhlenbeck’s,we know that there exists a harmonic mapρ:S2→(Nn,h)from 2-sphere into a manifold whose covering space is not contractible.It follows from Proposition 2.1 that the compositionρ?φ:→(Nn,h)is anf-harmonic map withf=

    Remark 2.1We notice that the authors in[8]and[14]used the heat flow method to study the existence off-harmonic maps from closed unit diskD2→S2sending boundary to a single point.Thef-harmonic morphismφ:→S2in Proposition 2.2 clearly restrict to anf-harmonic mapφ:→S2from 3-dimensional open disk intoS2.It would be interesting to know if there exists anyf-harmonic map from higher dimensional closed disk into two-sphere.Though we know thatφ:(Mm,g)→(Nn,h)beingf-harmonic implies

    being harmonic we need to be careful trying to use results from harmonic maps theory since a conformal change of metric may change the curvature and the completeness of the original manifold(Mm,g).

    As we remark in Example 2.3 that any harmonic morphism is anf-harmonic morphism providedfis positive with vertical gradient,however,such a function need not always exist as the following proposition shows.

    Proposition 2.3A Riemannian submersion φ:(Mm,g)→(Nn,h)from non-negatively curved compact manifold with minimal fibers is an f-harmonic morphism if and only if f=C>0.In particular,there exists no nonconstant positive function onso that the Hopf fi beration φ:(Nn,h)is an f-harmonic morphism.

    ProofBy Corollary 2.3,a Riemannian submersionφ:(,g)→(,h)with minimal fibers is anf-harmonic morphism if and only if gradlnfis vertical,i.e.,dφ(gradlnf)=0.This,together with the following lemma will complete the proof of the proposition.

    Lemma 2.1Let φ:(Mm,g)→(Nn,h)be any Riemannian submersion of a compact positively curved manifold M.Then,there exists no(nonconstant)function f:M→Rsuch thatdφ(gradlnf)=0.

    ProofSuppose thatf:(Mm,g)→R has vertical gradient.Consider

    whereε>0 is a sufficiently small constant.

    Ifεis small enough,thenis positively curved.One can check that

    is a horizontally homothetic submersion with dilationsincefhas vertical gradient.By the main theorem in[22]we conclude that the mapφdefined in(2.10)is a Riemannian submersion,which implies that the dilation and hence the functionfhas to be a constant.

    Remark 2.2It would be very interesting to know if there exists anyf-harmonic morphism(orf-harmonic map)φ:with non-constantf.Note that for the case ofn=2,the problem of classifying allf-harmonic morphismsφ:(whereg0denotes the standard Euclidean metric on the 3-sphere)amounts to classifying all harmonic morphismsφ:→(N2,h)from conformally flat 3-spheres.A partial result on the latter problem was given in[13]in which the author proved that a submersive harmonic morphismφ:→with non-vanishing horizontal curvature is the Hopf fiberation up to an isometry ofThis implies that there exists no submersivef-harmonic morphismφ:with non-constantfand the horizontal curvature

    Proposition 2.4For m>n≥2,a polynomial map(i.e.,a map whose component functions are polynomials)φ:Rm→Rnis an f-harmonic morphism if and only if φ is a harmonic morphism and f has vertical gradient.

    ProofLetφ:Rm→Rnbe a polynomial map(i.e.,a map whose component functions are polynomials).Ifφis anf-harmonic morphism,then,by Theorem 2.1,it is a horizontally weakly conformalf-harmonic map.It was proved in[1]that any horizontally weakly conformal polynomial map between Euclidean spaces has to be harmonic.This implies thatφis also a harmonic morphism,and in this case we have dφ(gradf)=0 from(1.1).

    Example 2.4φ:R3R×C→C withφ(t,z)=p(z),wherep(z)is any polynomial function inz,is anf-harmonic morphism withf(t,z)=α(t)for any positive smooth functionα.

    AcknowledgementThe author is very grateful to Fred Wilhelm for some useful conversations during the preparation of the paper,especially,the author would like to thank him for offering the proof of the lemma in the proof of Proposition 2.3.

    [1]Ababou,R.,Baird,P.and Brossard,J.,Polynmes semi-conformes et morphismes harmoniques,Math.Z.,231(3),1999,589–604.

    [2]Ara,M.,Geometry ofF-harmonic maps,Kodai Math.J.,22(2),1999,243–263.

    [3]Baird,P.and Gudmundsson,S.,p-harmonic maps and minimal submanifolds,Math.Ann.,294,1992,611–624.

    [4]Baird,P.and Wood,J.C.,Harmonic morphisms between Riemannian manifolds,London Math.Soc.Monogr.New Series,29,Oxford Univ.Press,Oxford,2003.

    [5]Cieliski,J.,Goldstein,P.and Sym,A.,On integrability of the inhomogeneous Heisenberg ferromagnet model:Examination of a new test,J.Phys.A:Math.Gen.,27,1994,1645–1664.

    [6]Cieliski,J.,Sym,A.and Wesselius,W.,On the geometry of the inhomogeneous Heisenberg ferromagnet:Non-integrable case,J.Phys.A:Math.Gen.,26,1993,1353–1364.

    [7]Course,N.,f-harmonic maps,Thesis,University of Warwick,Coventry,CV47AL,UK,2004.

    [8]Course,N.,f-Harmonic maps which map the boundary of the domain to one point in the target,New York J.Math,13,2007,423–435.

    [9]Daniel,M.,Porsezian,K.and Lakshmanan,M.,On the integrability of the inhomogeneous spherically symmetric Heisenberg ferromagnet in arbitrary dimension,J.Math.Phys.,35(10),1994,6498–6510.

    [10]Eells,J.and Lemaire,L.,A report on harmonic maps,Bull.London Math.Soc.,10,1978,1–68.

    [11]Fuglede,B.,Harmonic morphisms between Riemannian manifolds,Ann.Inst.Fourier(Grenoble),28,1978,107–144.

    [12]Gudmundsson,S.,The geometry of harmonic morphisms,Ph.D.Thesis,University of Leeds,UK,1992.

    [13]Heller,S.,Harmonic morphisms on conformally flat 3-spheres,Bull.London Math.Soc.,43(1),2011,137–150.

    [14]Huang,P.and Tang,H.,On the heat flow off-harmonic maps fromD2intoS2,Nonlinear Anal.,67(7),2007,2149–2156.

    [15]Ishihara,T.,A mapping of Riemannian manifolds which preserves harmonic functions,J.Math.Kyoto Univ.,19(2),1979,215–229.

    [16]Lakshmanan,M.and Bullough,R.K.,Geometry of generalised nonlinear Schrdinger and Heisenberg ferromagnetic spin equations withx-dependent coefficients,Phys.Lett.A,80(4),1980,287–292.

    [17]Li,Y.X.and Wang,Y.D,Bubbling location forf-harmonic maps and inhomogeneous Landau-Lifshitz equations,Comment.Math.Helv.,81(2),2006,433–448.

    [18]Lichnerowicz,A.,Applications harmoniques et vari′et′es kahleriennes,Symposia Mathematica III,Academic Press,London,1970,341–402.

    [19]Loubeau,E.,Onp-harmonic morphisms,Dif f.Geom.and Its Appl.,12,2000,219–229.

    [20]Manfredi,J.and Vespri,V.,n-harmonic morphisms in space are M?bius transformations,Michigan Math.J.,41,1994,135–142.

    [21]Ou,Y.-L.,p-harmonic morphisms,minimal foliations,and rigidity of metrics,J.Geom.Phys.,52(4),2004,365–381.

    [22]Ou,Y.-L.and Wilhelm,F.,Horizontally homothetic submersions and nonnegative curvature,Indiana Univ.Math.J.,56(1),2007,243–261.

    [23]Ouakkas,S.,Nasri,R.and Djaa,M.,On thef-harmonic andf-biharmonic maps,JP J.Geom.Topol.,10(1),2010,11–27.

    [24]Takeuchi,H.,Some conformal properties ofp-harmonic maps and regularity for sphere-valuedp-harmonic maps,J.Math.Soc.Japan,46,1994,217–234.

    国产v大片淫在线免费观看| 免费人成视频x8x8入口观看| 可以在线观看毛片的网站| 国产一区二区激情短视频| av天堂在线播放| 亚洲avbb在线观看| 人人妻人人澡欧美一区二区| 干丝袜人妻中文字幕| 亚洲精品成人久久久久久| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 毛片女人毛片| 久久欧美精品欧美久久欧美| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区四那| 国产成人福利小说| 亚洲精华国产精华液的使用体验 | 麻豆国产av国片精品| 18+在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 老师上课跳d突然被开到最大视频| 99国产精品一区二区蜜桃av| 国产高清视频在线播放一区| 亚洲美女搞黄在线观看 | 久久久久久久久大av| 日韩国内少妇激情av| 91精品国产九色| 一夜夜www| av中文乱码字幕在线| 人人妻人人看人人澡| 桃色一区二区三区在线观看| 狂野欧美激情性xxxx在线观看| 中文字幕av成人在线电影| 美女被艹到高潮喷水动态| 国内精品久久久久久久电影| 草草在线视频免费看| 国产老妇女一区| 国产69精品久久久久777片| 超碰av人人做人人爽久久| 久久久久久九九精品二区国产| 精品一区二区三区av网在线观看| 亚洲精华国产精华精| 久久精品久久久久久噜噜老黄 | 午夜精品久久久久久毛片777| 黄片wwwwww| 特级一级黄色大片| 国产精品一区www在线观看 | 成年女人永久免费观看视频| 国产毛片a区久久久久| 久久99热6这里只有精品| 琪琪午夜伦伦电影理论片6080| 国产爱豆传媒在线观看| 亚洲中文日韩欧美视频| 日韩欧美精品免费久久| www.色视频.com| 欧美不卡视频在线免费观看| 天美传媒精品一区二区| 欧美xxxx性猛交bbbb| www日本黄色视频网| 国产精品野战在线观看| 毛片女人毛片| 丰满乱子伦码专区| 欧美+亚洲+日韩+国产| 精品无人区乱码1区二区| 深夜精品福利| 欧美激情久久久久久爽电影| 欧美成人免费av一区二区三区| 我要看日韩黄色一级片| 久久精品人妻少妇| 国产激情偷乱视频一区二区| 在线观看美女被高潮喷水网站| 不卡一级毛片| 亚洲三级黄色毛片| 中亚洲国语对白在线视频| 又粗又爽又猛毛片免费看| 99热精品在线国产| 久9热在线精品视频| 国产91精品成人一区二区三区| 一区二区三区高清视频在线| 中文亚洲av片在线观看爽| 黄色日韩在线| 91在线观看av| 久久国产精品人妻蜜桃| 亚洲一区高清亚洲精品| 成人二区视频| 无人区码免费观看不卡| 久久天躁狠狠躁夜夜2o2o| 偷拍熟女少妇极品色| 免费高清视频大片| 国产私拍福利视频在线观看| 黄片wwwwww| 亚洲自拍偷在线| 国内精品美女久久久久久| 国产免费男女视频| 欧美潮喷喷水| 日韩欧美国产在线观看| 精品无人区乱码1区二区| 韩国av在线不卡| 午夜精品在线福利| 亚洲精品久久国产高清桃花| 欧美激情在线99| 国产黄a三级三级三级人| 国产91精品成人一区二区三区| 午夜福利18| 午夜免费成人在线视频| 午夜福利在线观看免费完整高清在 | 一a级毛片在线观看| 久久热精品热| 国内精品美女久久久久久| 九九在线视频观看精品| 天天一区二区日本电影三级| 国产精品一区二区三区四区免费观看 | 欧美一区二区亚洲| 男女下面进入的视频免费午夜| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 少妇熟女aⅴ在线视频| 婷婷亚洲欧美| 91狼人影院| 一本精品99久久精品77| 欧美丝袜亚洲另类 | 欧美3d第一页| 人妻久久中文字幕网| 国产视频内射| 好男人在线观看高清免费视频| 毛片女人毛片| 午夜福利视频1000在线观看| 别揉我奶头~嗯~啊~动态视频| 久99久视频精品免费| 夜夜夜夜夜久久久久| 欧美丝袜亚洲另类 | 久久精品91蜜桃| 两个人的视频大全免费| 日本免费一区二区三区高清不卡| 日日啪夜夜撸| 午夜影院日韩av| 久久精品久久久久久噜噜老黄 | h日本视频在线播放| 特级一级黄色大片| 麻豆成人av在线观看| 动漫黄色视频在线观看| 亚洲精品在线观看二区| 丰满的人妻完整版| 欧美性感艳星| 搡老妇女老女人老熟妇| 国国产精品蜜臀av免费| 舔av片在线| а√天堂www在线а√下载| 18禁裸乳无遮挡免费网站照片| 桃红色精品国产亚洲av| 热99re8久久精品国产| 久久午夜福利片| 国产高清有码在线观看视频| 国产精品久久久久久av不卡| 亚洲黑人精品在线| 国产人妻一区二区三区在| 久久久国产成人精品二区| 日本在线视频免费播放| 成人亚洲精品av一区二区| 欧美成人免费av一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 男插女下体视频免费在线播放| 1024手机看黄色片| 在线免费十八禁| 国产精华一区二区三区| 真人一进一出gif抽搐免费| 精品一区二区三区视频在线| 免费在线观看成人毛片| 日本撒尿小便嘘嘘汇集6| 日本三级黄在线观看| 尤物成人国产欧美一区二区三区| 九色成人免费人妻av| 精品一区二区三区人妻视频| 在线观看av片永久免费下载| 日本与韩国留学比较| 久久精品人妻少妇| 国产男靠女视频免费网站| 久久久久久九九精品二区国产| 亚洲乱码一区二区免费版| 日韩欧美国产一区二区入口| 精品人妻1区二区| 亚洲 国产 在线| 婷婷精品国产亚洲av在线| 黄片wwwwww| 色吧在线观看| 国产av不卡久久| 久久中文看片网| 精品乱码久久久久久99久播| 亚洲av.av天堂| 国产精品三级大全| 最近中文字幕高清免费大全6 | 亚洲最大成人手机在线| 精品人妻熟女av久视频| 亚洲不卡免费看| 真人做人爱边吃奶动态| 网址你懂的国产日韩在线| 男女啪啪激烈高潮av片| 婷婷六月久久综合丁香| 男女边吃奶边做爰视频| 少妇猛男粗大的猛烈进出视频 | 国产精品爽爽va在线观看网站| 精品免费久久久久久久清纯| 日韩亚洲欧美综合| 欧美色视频一区免费| 97超级碰碰碰精品色视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 观看免费一级毛片| 国产毛片a区久久久久| 日韩人妻高清精品专区| 黄色女人牲交| a级毛片a级免费在线| 夜夜爽天天搞| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片 | 在线免费观看的www视频| 听说在线观看完整版免费高清| 日本爱情动作片www.在线观看 | www.www免费av| 韩国av在线不卡| 久久国产精品人妻蜜桃| 国产伦一二天堂av在线观看| 在线观看免费视频日本深夜| 午夜影院日韩av| 色吧在线观看| 欧美日韩乱码在线| av女优亚洲男人天堂| bbb黄色大片| 午夜久久久久精精品| 伦精品一区二区三区| 999久久久精品免费观看国产| 日韩人妻高清精品专区| 九九久久精品国产亚洲av麻豆| 免费不卡的大黄色大毛片视频在线观看 | 搡老妇女老女人老熟妇| 亚洲精品影视一区二区三区av| 国内精品宾馆在线| 如何舔出高潮| 中国美白少妇内射xxxbb| 亚洲 国产 在线| 99久久中文字幕三级久久日本| 欧美xxxx黑人xx丫x性爽| 亚洲人成伊人成综合网2020| 又黄又爽又刺激的免费视频.| 久久久久国产精品人妻aⅴ院| 午夜福利在线观看免费完整高清在 | 国产亚洲91精品色在线| 舔av片在线| 久久午夜亚洲精品久久| 中出人妻视频一区二区| 亚洲在线观看片| 又紧又爽又黄一区二区| 黄片wwwwww| 美女xxoo啪啪120秒动态图| 午夜老司机福利剧场| 欧美成人免费av一区二区三区| 色综合婷婷激情| 日韩国内少妇激情av| 无遮挡黄片免费观看| 色综合亚洲欧美另类图片| 亚洲av一区综合| 在线免费十八禁| 国产高清三级在线| 日韩国内少妇激情av| 国产一区二区三区av在线 | 中文字幕免费在线视频6| av专区在线播放| 午夜福利在线观看免费完整高清在 | 国产不卡一卡二| 淫秽高清视频在线观看| 亚洲欧美清纯卡通| 欧美极品一区二区三区四区| 国产精品人妻久久久久久| 亚洲人成网站在线播放欧美日韩| 色在线成人网| 久久久久久久午夜电影| 一本久久中文字幕| 亚洲国产精品久久男人天堂| 国产精品一区二区三区四区免费观看 | 国产亚洲精品久久久com| 别揉我奶头 嗯啊视频| 亚洲va日本ⅴa欧美va伊人久久| 一进一出抽搐gif免费好疼| 国产主播在线观看一区二区| 男女之事视频高清在线观看| 国内精品久久久久久久电影| 人妻丰满熟妇av一区二区三区| 亚洲色图av天堂| 男人舔奶头视频| 五月玫瑰六月丁香| 亚洲va在线va天堂va国产| 别揉我奶头 嗯啊视频| 天天一区二区日本电影三级| 成人三级黄色视频| 99九九线精品视频在线观看视频| 国产麻豆成人av免费视频| 欧美潮喷喷水| 精品人妻偷拍中文字幕| 色哟哟·www| 午夜爱爱视频在线播放| 成人一区二区视频在线观看| 成年女人看的毛片在线观看| 我的女老师完整版在线观看| 国产精品女同一区二区软件 | av在线蜜桃| 99热只有精品国产| 嫁个100分男人电影在线观看| 欧美高清性xxxxhd video| 国产精品1区2区在线观看.| 97人妻精品一区二区三区麻豆| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 日韩欧美在线乱码| 久久精品人妻少妇| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 亚洲成av人片在线播放无| 色在线成人网| 校园人妻丝袜中文字幕| 成人二区视频| 内射极品少妇av片p| 国产真实伦视频高清在线观看 | 国产亚洲精品av在线| 村上凉子中文字幕在线| 日本爱情动作片www.在线观看 | 国产精品久久久久久久久免| 伦理电影大哥的女人| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 国产69精品久久久久777片| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 亚洲内射少妇av| 国内精品久久久久久久电影| 少妇的逼水好多| av中文乱码字幕在线| 国国产精品蜜臀av免费| 久久精品国产亚洲网站| 看片在线看免费视频| 亚洲精品亚洲一区二区| 舔av片在线| 色视频www国产| 日韩国内少妇激情av| 99久久精品热视频| 嫩草影院入口| 国产大屁股一区二区在线视频| 亚洲成人免费电影在线观看| 亚洲国产欧美人成| 少妇人妻精品综合一区二区 | 日日啪夜夜撸| 一个人免费在线观看电影| 特大巨黑吊av在线直播| 黄色日韩在线| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利欧美成人| 偷拍熟女少妇极品色| 成熟少妇高潮喷水视频| 欧美日韩国产亚洲二区| 男人舔女人下体高潮全视频| 亚洲精华国产精华精| 国产色爽女视频免费观看| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 午夜激情福利司机影院| 特级一级黄色大片| 香蕉av资源在线| 日韩高清综合在线| 男女那种视频在线观看| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 内地一区二区视频在线| 色哟哟哟哟哟哟| 国产精品三级大全| 免费看av在线观看网站| 国产毛片a区久久久久| 国产精品一区二区三区四区久久| 亚洲四区av| 欧美最黄视频在线播放免费| 精品人妻1区二区| 一区二区三区四区激情视频 | 午夜福利18| 欧美成人a在线观看| 免费观看精品视频网站| 国产男靠女视频免费网站| 亚洲欧美日韩卡通动漫| 中出人妻视频一区二区| 亚洲专区国产一区二区| 变态另类丝袜制服| 一级黄色大片毛片| 国产精品人妻久久久影院| 久久久国产成人免费| 成人精品一区二区免费| 精品久久久久久久久亚洲 | 亚洲av成人精品一区久久| 国内少妇人妻偷人精品xxx网站| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| 在线a可以看的网站| 国产国拍精品亚洲av在线观看| 在线看三级毛片| 一个人看的www免费观看视频| 亚州av有码| 97超级碰碰碰精品色视频在线观看| 看免费成人av毛片| 久久中文看片网| 国产淫片久久久久久久久| 亚洲成av人片在线播放无| 亚洲综合色惰| 麻豆成人午夜福利视频| 欧美激情国产日韩精品一区| 日韩欧美一区二区三区在线观看| 久99久视频精品免费| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 嫩草影院入口| 麻豆一二三区av精品| 最新中文字幕久久久久| 午夜免费激情av| 看免费成人av毛片| 日韩欧美三级三区| 国产成人av教育| 麻豆成人av在线观看| 欧美性感艳星| 九九爱精品视频在线观看| 亚洲中文字幕一区二区三区有码在线看| 极品教师在线免费播放| 真实男女啪啪啪动态图| 午夜福利18| 午夜精品在线福利| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 欧美成人免费av一区二区三区| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 十八禁国产超污无遮挡网站| 在线观看av片永久免费下载| 性插视频无遮挡在线免费观看| 久久久久久久亚洲中文字幕| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 成人国产麻豆网| 毛片女人毛片| 免费看光身美女| 国产精品,欧美在线| 欧美色欧美亚洲另类二区| 国产老妇女一区| 久久久久久大精品| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 中国美女看黄片| 成人欧美大片| 午夜a级毛片| 亚洲人成伊人成综合网2020| 精品一区二区三区视频在线观看免费| 69人妻影院| 国产成人a区在线观看| 午夜影院日韩av| 欧美色视频一区免费| videossex国产| 嫩草影院精品99| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 久9热在线精品视频| 99久久九九国产精品国产免费| 91久久精品国产一区二区三区| 高清在线国产一区| 国产午夜精品久久久久久一区二区三区 | 亚洲av二区三区四区| 我要搜黄色片| 啦啦啦韩国在线观看视频| 黄片wwwwww| 日本撒尿小便嘘嘘汇集6| 亚洲一区二区三区色噜噜| 一边摸一边抽搐一进一小说| 国产探花极品一区二区| 亚洲性夜色夜夜综合| 国产探花在线观看一区二区| 一区福利在线观看| 在线看三级毛片| 永久网站在线| 99久久无色码亚洲精品果冻| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 亚洲avbb在线观看| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 九九在线视频观看精品| 亚洲黑人精品在线| 国产精品亚洲美女久久久| 中文字幕熟女人妻在线| 可以在线观看毛片的网站| 亚洲av.av天堂| 别揉我奶头 嗯啊视频| 午夜影院日韩av| 99热6这里只有精品| 国产高清视频在线播放一区| 嫁个100分男人电影在线观看| 亚洲国产精品合色在线| 日韩强制内射视频| 国产在视频线在精品| 97碰自拍视频| 免费观看人在逋| x7x7x7水蜜桃| 十八禁国产超污无遮挡网站| 搞女人的毛片| 欧美三级亚洲精品| 色在线成人网| 色综合亚洲欧美另类图片| 国产精品人妻久久久影院| 很黄的视频免费| 永久网站在线| 一本久久中文字幕| 国产乱人伦免费视频| 欧美在线一区亚洲| 中文字幕高清在线视频| 色哟哟·www| 国产探花在线观看一区二区| 亚州av有码| 观看免费一级毛片| 精品一区二区免费观看| 亚洲美女搞黄在线观看 | 亚洲精华国产精华精| 欧美激情久久久久久爽电影| 听说在线观看完整版免费高清| 日韩一区二区视频免费看| 久久人人爽人人爽人人片va| 最近最新中文字幕大全电影3| 男人舔女人下体高潮全视频| 极品教师在线视频| 搡老岳熟女国产| 女的被弄到高潮叫床怎么办 | 人妻少妇偷人精品九色| 日本-黄色视频高清免费观看| 在线观看午夜福利视频| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 国产午夜福利久久久久久| 亚洲黑人精品在线| 日本熟妇午夜| 69av精品久久久久久| 亚洲国产精品合色在线| 嫩草影院新地址| 91狼人影院| 黄色视频,在线免费观看| 日韩在线高清观看一区二区三区 | 1024手机看黄色片| 一区二区三区激情视频| 男人的好看免费观看在线视频| .国产精品久久| 欧美xxxx黑人xx丫x性爽| 精品不卡国产一区二区三区| 亚洲精华国产精华精| av福利片在线观看| 色精品久久人妻99蜜桃| 国产精品98久久久久久宅男小说| 天天躁日日操中文字幕| 一个人看的www免费观看视频| 精品久久久久久久末码| 婷婷亚洲欧美| 欧美在线一区亚洲| .国产精品久久| 最近最新免费中文字幕在线| 精品不卡国产一区二区三区| 国产精品久久视频播放| 欧美日韩综合久久久久久 | 色av中文字幕| 国内揄拍国产精品人妻在线| 午夜福利成人在线免费观看| eeuss影院久久| 亚洲avbb在线观看| 男女做爰动态图高潮gif福利片| 亚洲国产精品久久男人天堂| 久久精品国产亚洲av香蕉五月| 亚洲图色成人| 国产免费av片在线观看野外av| 欧美高清性xxxxhd video| 黄色女人牲交| 国产高清三级在线| 亚洲熟妇熟女久久| 中文字幕av在线有码专区| 变态另类丝袜制服| 日韩一区二区视频免费看| 亚洲最大成人av| 尾随美女入室| 乱人视频在线观看| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6 | 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 婷婷色综合大香蕉| 亚洲av不卡在线观看| 国产免费av片在线观看野外av| 天堂影院成人在线观看| 美女黄网站色视频| 国产av麻豆久久久久久久| 亚洲狠狠婷婷综合久久图片| 欧美+日韩+精品| 99久久无色码亚洲精品果冻| 九九在线视频观看精品| 欧美色视频一区免费| 国内少妇人妻偷人精品xxx网站| 非洲黑人性xxxx精品又粗又长| 欧美+亚洲+日韩+国产| 又爽又黄无遮挡网站| 欧美日韩精品成人综合77777| 黄色丝袜av网址大全| 国产成年人精品一区二区| 日日摸夜夜添夜夜添小说| 深爱激情五月婷婷| h日本视频在线播放| 日本一二三区视频观看| 精品人妻偷拍中文字幕| 国产69精品久久久久777片| 久久国产乱子免费精品| 欧美国产日韩亚洲一区|