• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Banach Algebra Dynamical Systems?

    2014-06-04 12:38:58DongLIShengzhiXU

    Dong LI Shengzhi XU

    1 Introduction

    In quantum physics,time evolution or spacial translation of the observables is described by a(non-commutative)-dynamical system.A-dynamical system is a locally compact groupGacting by automorphisms on a-algebraA.It is a triple(A,G,α),whereAis aC?-algebra,Gis a locally compact group,andαis a strongly continuous action ofGonAas involutive automorphisms.A crossed product is a-algebra built out of a-dynamical system.The theory of crossed products of-algebras started with the papers by Turumaru[1]and Zeller-Meier[2].Given a-dynamical system(A,G,α),the corresponding crossed productAGis a-algebra.The crossed product construction provides a means to construct new examples of-algebras.One of the basic facts for a crossed product-algebraAGis that the nondegenerate representations of this algebra on Hilbert spaces are one-to-one correspondences with the non-degenerate involutive covariant representation of(A,G,α),i.e.,with the pair(π,U),whereπis a non-degenerate involutive representation ofAon a Hilbert space,andUis a unitary strongly continuous representation ofGon the same space,such that the covariance conditionπ((a))=is satisfied fora∈Aands∈G.

    For a given-dynamical system(A,G,α),besides the “full” crossed product-algebraAG,there is another important crossed product-algebra,the reduced crossed productAG,which was defined by Zeller-Meyer for discrete groups in[2]and generalized by Takai in[3].They correspond to different completions of(G,A).The former corresponds to the universal representation,and the latter corresponds to the so-called regular representation which can be regarded as a subrepresentation of the universal one.In general,the two crossed productC?-algebras are different,but Landstad[4]proved that if(A,G,α)is a-dynamical system withGamenable,thenAGis equal toAG.This is an important theorem inthe-dynamical systems theory,since the reduced crossed product is more concrete and many familiar groups are amenable,such as the abelian group.It serves as a major step towards the duality theorem for the crossed product,and it is also a key point in Connes’Thom isomorphism forAαR(see[5])and Pimsner and Voiculescu’s results(see[6]).

    This paper generalizes-dynamical systems to the general Banach algebra setting.We define a Banach algebra dynamical system(A,G,α),whereAis a Banach algebra,Gis a locally compact group,andαis a strongly continuous action ofGonAas isometric automorphisms.We construct the Banach algebra of the crossed productAGfrom these data.We also study that the representations ofAGare all the representations of the integrated form.There are some differences,since the representations of Banach algebras may not be contractive,unlike the case of-algebras.But in some sense,roughly speaking,we can still prove that the non-degenerate covariant representations of(A,G,α)are in bijection with the non-degenerate representation of this crossed product Banach algebraAG.To do it,we generalize the methods in[7].We notice that,Sjoerd Dirksen,Marcel De Jeu and Marten Wortel also constructed a kind of crossed product Banach algebra theory(see[8]).They started from a semi-norm on the algebraCc(G,A),and it is difficult to supply a non-trivial example under their definition.But in our construction,there are many interesting examples and we can prove that the semi-norm which we define onCc(G,A)is in fact a norm,and this will bring us much convenience for further discussion.

    We also construct the reduced crossed product Banach algebraAG.Different from the-algebra case,the completion of(G,A)depends on the faithful regular representation.To avoid this trouble,we use the supreme form to define the reduced norm.Then a natural question will be asked:When doesAGcoincide withAGfor a Banach algebra dynamical(A,G,α)It is natural to think that a more strict condition may be required for the groupG,sinceAis weakened to be a Banach algebra.We find a sufficient condition,and thus whenGis a compact group,AGcoincides withAGfor a Banach algebra dynamical system(A,G,α).

    2 Preliminaries

    In this section,we introduce the basic definitions and notations,and establish some preliminary results.IfXis a normed space,we denote byB(X)the normed algebra of bounded linear operators onX.We letB(X)×denote the group of the invertible operators inB(X).IfAis a normed algebra,we write Aut(A)for the group of bounded automorphisms.A representationUof a groupGon a normed spaceXis a group homomorphismU:G→B(X)×.A representationπof a normed algebraAon a normed spaceXis an algebra homomorphismπ:A→B(X).The representationπis non-degenerate ifπ(A)X:=span{π(a)x:a∈A,x∈X}is dense inX.

    In order to make sense of the integrals,where the integrand is a function taking values in a Banach algebra or a Banach space,we need a workable theory of what is referred to in the literature as vector-valued integration.Fortunately,the theory simplifies significantly when it is possible to restrict to the Haar measure on a locally compact groupG,and to integrands which are continuous with compact support onGtaking values in a Banach space.We base ourselves on an integral defined by duality.The definition,as well as the existence is contained in the next result,for the proof,we refer to[7,Lemma 1.91].

    Lemma 2.1Suppose that X is a Banach space and G is a locally compact group with the left Haar measure.Then there exists a linear mapto X,whichis characterized by

    The integral from Lemma 2.1 enables us to integrate compactly supported and strongly continuous operator-valued functions.We summarize the results in the next proposition without any proofs.

    Proposition 2.1Let X be a Banach space,G be a locally compact group,and ψ:G→B(X)be compactly supported and strongly continuous.Define

    where the integral on the right-hand side is the integral from Lemma2.1.ThenB(X),and

    If T,R∈B(X),then

    Definition 2.1(Banach Algebra Dynamical System)A Banach algebra dynamical system is a triple(A,G,α),where A is a Banach algebra,G is a locally compact group,and α:G→Aut(A)is a strongly continuous representation of G on A with each αtbeing an isometric automorphism on A.

    Example 2.1LetAbe a Banach algebra,σ:A→Abe an isometric automorphism andα:Z→Aut(A)be defined byThen(A,Z,α)is a Banach algebra dynamical system.

    Example 2.2LetA=Kbe the compact operator algebra on(1

    andα:G→Aut(A)be defined by

    Then(A,G,α)becomes a Banach algebra dynamical system.

    In fact,fixf∈Cc(G)and letK:=suppf.If>0,there exists a neighbourhoodBofeinGsuch thatBand|f(s)?f(t)|<∈B.Then for fixed∈B,

    Therefore,Uis strongly continuous.

    To shows→(a)is norm continuous,we can assume thata∈K((G))is a finite-rank operator,since(G)has an approximate property.Now we assumea=|k)(θ|,and thus

    forl,k∈Lp(G);θ∈=1.Sincewe have

    ifs→s0by the strong continuity ofU.Then we are done.

    Definition 2.2(Covariant Representation)Let(A,G,α)be a Banach algebra dynamical system,and let X be a Banach space.Then a covariant representation of(A,G,α)on X is a pair(π,U),where πis a representation of A on X and U is a representation of G on X,such that for all a∈A and s∈G,

    The covariant representation(π,U)is called non-degenerate if(π,X)is a non-degenerate representation of A.

    Example 2.3Give a Banach algebra dynamical system(A,G,α),whereAis a Banach algebra,unital or nonunital.LetbeA+,the unitalization,ifAis nonunital;and letbeAitself ifAis unital.Letπ:A→B()be the natural representation defined by

    ifAis nonunital;and

    ifAis unital,wherea,b∈A,t∈C.

    Define:A→B(Lp(G,)(p≥1)by

    andλ:G→B(Lp(G,))by

    Then(,λ,Lp(G,))is a covariant representation of the Banach algebra dynamical system(A,G,α).

    In fact,it is easy to check thatis a homomorphism.To see the contraction proposition,we have

    by the isometry ofαt,so(x)≤x.Therefore,is a contractive representation,and similarly we can check thatλis also a representation.For the covariant proposition,

    and

    Therefore,

    3 Crossed Product Banach Algebras

    Suppose that(A,G,α)is a Banach algebra dynamical system.We define convolution on the linear spaceCc(G,A)of a continuous function fromGtoAwith compact supports by

    for allf,g∈(G,A).It is well-defined,as shown in[7 Lemma 1.102].Straightforward computations show thatG,A)becomes an algebra with convolution as a product.For eachf∈Cc(G,A),define

    ThenCc(G,A)is a normed algebra,and we denote byL1(G,A)its completion.

    If(π,U,X)is a covariant representation of a given Banach algebra dynamical system(A,G,α),forf∈Cc(G,A),the functionsπ(f(s))is strongly continuous fromGtoB(X)by continuity of multiplication in the strong operator topology on uniformly bounded subsets.Therefore we can define

    where the integral on the right-hand side is as in Proposition 2.1.We callπUthe integrated form of(π,U).

    Differently from the case of-algebra,the norms ofπandUtmay be bigger than 1,which will pose difficulties for our definition of crossed products.To solve this problem,we may restrict the covariant representation in a proper way.

    Definition 3.1Given a Banach algebra dynamical system(A,G,α),letdenote the set of covariant representation(π,U,X)of(A,G,α),such thatπ≤1and≤1for each t∈G.

    Remark 3.1is non-empty since the covariant representationgiven by Example 2.3 is inFor the homomorphismU:G→B(x)×,since≤1 for eacht∈G,thenx=≤≤and henceUtis an isometric automorphism for eacht∈G.

    Proposition 3.1Let(A,G,α)be a Banach algebra dynamical system and(π,U,X)∈Then the integrated form πU is a contractive representation of(G,A)on X.

    ProofForf,g∈(G,A),we have

    and

    Therefore,πUis a contractive representation ofCc(G,A)onX.

    By virtue of Proposition 3.1,we get a bounded set of non-negative numbers

    Then we can define a semi-norm onCc(G,A)by

    In fact,it is a norm on(G,A),and to prove that,it is necessary to find a faithful integrated representation.Example 2.3 will give a perfect one.Letbe the covariant representation of(A,G,α)given by Example 2.3.Forf∈Cc(G,A),if(f)==0,then for any

    Hence,=0.Then for any?∈A?,we have

    LetThenη∈(G),sincefis compactly supported.Then by(3.2),we haveis an approximate unit of(G),then 0=η ?→η,and henceη0.Thenη=0 by the continuity ofη.Therefore,f=0 sinceseparates the points ofA.It follows thatis a faithful representation of(G,A),and hence(3.1)defines a norm ofCc(G,A).

    Definition 3.2(Crossed Product Banach Algebra)Given a Banach algebra dynamical system(A,G,α),the crossed product Banach algebra of this dynamical system is the completion of Cc(G,A)with respect to the norm defined by(3.1),and denoted by AG.

    4 Representations of the Crossed Product Banach Algebras

    In this section,by extending the representation of a given Banach algebra to its left multiplier algebra,we generalize the method in[7].Hence we show that,roughly speaking,all boundedrepresentationsof the crossed product are integrated forms of the given covariant representations of the original dynamical system.Thus we totally describe the representations of the crossed productAG.

    Proposition 4.1Given a Banach algebra dynamical system(A,G,α),suppose that A has an m-bounded left approximate identity(ui).LetΛbe a neighbourhood basis of e,of which all elements are contained in a fixed compact set K.For each V∈Λ,take a positivewith support contained in V and an integral equal to one.Then the setwhere

    directed by(V,i)≤(W,j)if and only if W?V and i≤j,is a left approximate identity of AG.

    ProofWe first showfor eachf∈Aands∈G,whereCc(G)?Ais an algebraic tensor product.

    For this,it is sufficient to consider elementary tensors,so letf=z?awith∈Cc(G)anda∈A.

    Givenε>0,by the uniform continuity ofz,there exists a neighbourhoodU1ofe,such thatfor allr∈U1ands∈G.By the strong continuity ofα,there exists a neighbourhoode,such that(a)?a<ε(3mz∞)for allr∈U2.There exists an indexi0such that?a

    Since(G)?Ais dense inCc(G,A)in the inductive limit topology(see[7]),we havef(s)→f(s)for eachf∈Cc(G,A),s∈G.It follows that→fin the norm defined by(3.1).To show it,let(π,U)be any covariant representation inandI=Ksupp(f),so then

    Since→funiformly onI,we have thatin the norm defined by(3.1).

    If(π,U)is any covariant representation inwe have

    It follows thatis uniformly bounded byminSince(G,A)is dense inG,a 3ε-argument shows thatis indeed a bounded left approximate identity ofG.

    Next,we will extend the representation(π,X)of Banach algebraAto the left multiplier algebraMl(A),whereAhas a left approximate identity.It is the key step to construct the one-to-one correspondences between the covariant representations and the integrated representations.Recall that the left multiplier algebra(A)for the Banach algebraAis defined by

    There exists a canonical contractive homomorphismλ:A→(A),defined byλ(a)b=abfora,b∈A.SinceL?λ(a)=λ(L(a)),fora∈AandL∈(A),λ(A)is a left ideal in(A).

    We begin with the general case,and for this we collect some results from[9].It is not hard to prove these results.

    Theorem 4.1(see[9,Theorem 4.1])Let A be a Banach algebra with an m-bounded approximate left identity.If(π,X)is a non-degenerate representation of A,then there exists a unique representation:(A)→B(X)such that

    Besides,is non-degenerate,unital,and≤mπ.Moreover,for a∈A and L∈Ml(A),

    Definition 4.1(Integrable Covariant Representation)Let(π,U,X)be a covariant representation of a given Banach algebra dynamical system(A,G,α),and call(π,U,X)an integrable covariant representation if(U,X)is a bounded representation of(G,A)with respect to the crossed product norm.

    Lemma 4.1Suppose that(A,G,α)is a Banach algebra dynamical system.Then there exists a non-degenerate bounded homomorphism

    and a bounded strongly continuous homomorphism

    such that for f∈Cc(G,A),r,s∈G and a∈A,

    Moreover,is covariant,and thus

    If,in addition,A has a bounded left approximate identity,thenis non-degenerate,and moreover if(π,U)is a non-degenerate integrable covariant representation,then

    ProofFirstly we consider:A→End((G,A))and:G→End((G,A)),defined by(4.1).It is easy to check that the two maps are homomorphisms.If(π,U)is a covariant representation of(A,G,α),then fora∈A,r∈G,f∈(G,A),

    Therefore

    Similarly,

    Then

    Hence(a)≤afora∈A.Similarly,for allr∈G,f∈(G,A),sinceis isometric,we have

    Thus we can extend(a)and(r)to the maps ofAGto itself,and forf,g∈(G,A),we have

    HenceiG(r)is a well-defined element ofand the case of(a)is similar.

    To check thatis covariant,we only have to check the actions on(G,A)as the boundedness of(a)andr).Forf(G,A),r,s∈Ganda∈A,

    To show the last assertion,we claim that if(π,U,X)is a non-degenerate integrable covariant representation,thenUis a non-degenerate representation ofAG.

    In fact,givexXwhich is of the formx(a)y,and≥0.Then there exists a neighbourhoodVofesuch that fors∈V,y?yLet(G)be nonnegative with compact support contained inVand with an integral equal to 1.Then a simple computation shows that

    and it suffices to show the non-degenerateness ofU.

    By Proposition 4.1,we can use Theorem 4.1 to the Banach algebraAG,since

    andUis non-degenerate,so we have

    Similarly,

    To show thatis strongly continuous,fixf∈(G,A),a compact neighbourhoodWofeinG,and letK=suppf.Notice that as long asW,

    If>0,then the uniform continuity offimplies that we can chooseV?W,such thatr∈Vimplies

    Sincefhas compact support,we can shrinkVif needed so thatr∈Valso implies

    Since

    it follows that

    Thereforer→(r)is strongly continuous.

    If,in addition,Ahas a bounded left approximate identity(),thenis non-degenerate asconverges toIstrongly.

    Theorem 4.2Suppose that(A,G,α)is a Banach algebra dynamical system,where A has a bounded left approximate identity.Then(π,u,X)→(πu,X)is a one-to-one correspondence between the non-degenerate integrable covariant representations of(A,G,α)and the non-degenerate bounded representations of AG.

    ProofIn Lemma 4.1,we have already proved that a non-degenerate integrable covariant representation(π,U)of(A,G,α)induces a non-degenerate integrated representationπUofAG,and that

    To prove the one-to-one correspondence,suppose that(L,X)is a bounded non-degenerate representation ofAG,and let

    We first show thatπis non-degenerate.Givenf∈(G,A)andx∈X,ifis a bounded left approximate identity inA,then by Theorem 4.1,

    Then by the non-degenerateness ofLand as(G,A)is dense inAG,we have thatπis non-degenerate.Sinceis strongly continuous,it is similar to check thatUis strongly continuous.Since the covariance condition is straightforward to check,it follows that(π,U)is a non-degenerate covariant representation.Forf,g∈(G,A),x∈X,

    Let us computeas follows:

    Thus(g)=f?g.It follows that

    Therefore,Since(G,A)is dense inAGandLis nondegenerate,we have thatπU=Lon

    In Theorem 4.2,ifAhas anm-bounded left approximate identity,thenLis a non-degenerate bounded representation ofAG,and

    Then by Theorem 4.1,

    and

    On the other hand,if(π,U)thenUis contractive.Therefore,we get the following corresponding theorem,which is more similar to the-algebra case.

    Theorem 4.3Suppose that(A,G,α)is a Banach algebra dynamical system,where A has a1-bounded left approximate identity.Then(π,u,X)→is a one-to-one correspondence between the non-degenerate covariant representations inand the non-degenerate contractive representations of AG.

    5 Regular Representations

    In the case of-algebra,if(A,G,α)is a-dynamical system,then a representation(π,H)ofAdetermines a regular representation of(G,A).This representation induces a reduced norm on(G,A),and the completion of this norm,denoted byG,is called the reduced crossed product,which is independent of the choice of the faithful representation(π,H).The regular representations are very important,since they are concrete and very easy to get.Moreover,Landstad[4]constructed an important theorem which implies thatAGis equal toAGwhenGis amenable.This theorem ensures the further development of the theory of crossed products.For example,it is a crucial step to construct the duality theory for crossed products,Connes’Thom isomorphism forA(see[5]),and Pimsner and Voiculescu’s six-term exact sequence for theK-group of certain crossed product-algebras(see[6]).

    We will generalize this theory to the case of Banach algebra dynamical systems.In this case,things are very different.Let us start with the definition of the regular representation.

    Give a Banach algebra dynamical system(A,G,α)and a representation(π,X)ofA.Since the representation space of a Banach algebra is a Banach space,we will let the covariant representation space beLp(G,X)withp≥1,not just asL2(G,X).We define a covariant representationby

    for everyxinA,sinGandinLp(G,X),

    and henceSois bounded byπ.λsis a natural isometry for anys∈G,and it is easy to check thatandλare homomorphisms and that

    Therefore,is a well-defined covariant representation of(A,G,α).Then we can define the integral representation ofCc(G,A)onLp(G,X).To determine the reduced norm,let us consider the semi-normFor theC?-dynamical system,wherep=2 andXis a Hilbert space,it is a norm if(π,H)is a faithful representation,and the norm is independent of the choice of the faithful representation(π,H).But in the case of Banach algebra dynamical system,things are different.We give some examples to show that.

    We firstly fixp,and let(A,G,α)be a Banach algebra dynamical system,whereG={e}andAbe any Banach algebra.Then

    Hence the semi-norm depends on the choice of the representation of(π,X).But ifAis aC?-algebra,the semi-norm is independent of the choice of the representation(π,H)since the monomorphism betweenC?-algebras is an isometry(see[10,Chapter VIII,Theorem 4.8]).But in the case of Banach algebras,this property does not hold.

    Next,let(A,G,α)be a Banach algebra dynamical system,whereA=C andαtis trivial.Define a representationπ:C→Then

    We see that this semi-norm depends on the numberp.

    Summing up the two examples above,we see thatdepends on the choice of bothpand(π,X).But we can use the supreme to define the reduced norm.We give the semi-norm onCc(G,A)below,forf∈Cc(G,A),and let

    It is easy to check that this gives a semi-norm onCc(G,A),but in fact,this is a norm.To check it,we only have to find a representation(π,X),such that(λ,Lp(G,X))is a faithful representation onCc(G,A),and Example 2.3 gives a wonderful example(see the procedure of the definition of crossed products in Section 3).Then we can give the definition of the reduced crossed products Banach algebras.

    Definition 5.1(Reduced Crossed Product Banach Algebras)Given a Banach algebra dynamical system(A,G,α),the reduced crossed product Banach algebra of this system is the completion of Cc(G,A)by the norm of·and is denoted by A

    In the following,we will discuss whenAGequalsAGfor a given Banach algebra dynamical system(A,G,α).We give a result as a theorem.

    Theorem 5.1If(A,G,α)is a Banach algebra dynamical system,then AG equals Ais a compact group.

    ProofLet(π,U,X)be a covariant representation of(A,G,α),and(π,U,X)lie inSince the Haar measure of a compact group is finite,μ(G)is a finite positive number.Define a mapν:X→(G,X)byν(x)(t)=Then we have

    Therefore,νis well-defined and is an isometry,soνis an isometric embedding.Recall that the representation:A→B((G,X))is defined by

    fora∈A,t∈Gandξ∈(G,A).

    For eachx∈X,t∈G,νπ(a)x(t)=and

    Then by the covariant property of(π,U),we have thatνπ(a)x(t)=(a)ν(x)(t).It follows that

    for eacha∈A.Then we get the commutative diagram

    On the other hand,for eachx∈Xandt∈G,

    and

    Thusν=and the diagram

    is commutative.

    Then for eachf∈(G,A),

    Since the diagrams above are commutative,is well-defined as it only acts on Ran(ν).Therefore,

    This may not be an equation,sinceνmay not be an isometric isomorphism,so we can not get

    but that is enough to get our result.By the definitions of crossed products and reduced crossed products,the reduced norm is equal to the universal norm on(G,A),and we have thatAGis equal toAG.

    AcknowledgementsThe authors would like to thank all the members in their functional analysis seminar for the inspiring discussions,and they would also like to thank the referees sincerely for the suggestions on improving the paper.

    [1]Turumaru,T.,Crossed products of operator algebras,T?ohoku Math.J.,10,1958,355–365.

    [2]Zeller-Meyer,G.,Produits croiss d’uneC?-algbre par un groupe d’automorphismes,J.Math.Pures Appl.,47,1968,101–239.

    [3]Takai,H.,On a duality for crossed products ofC?-algebras,J.Funct.Anal.,19,1975,25–39.

    [4]Landstad,M.B.,Duality theory of covariant systems,Trans.Amer.Math.Soc.,248,1979,223–267.

    [5]Connes,A.,An analogue of the Thom isomorphism for crossed products of aC?-algebra by an action of R,Adv.Math.,39,1981,31–55.

    [6]Pimsner,M.and Voiculescu,D.,Exact sequences forK-groups and EXT-groups of certain cross-productC?-algebras,J.Operator Theory,4,1980,93–118.

    [7]Williams,D.P.,Crossed products ofC?-algebras,Mathematical Surveys and Monographs,Amer.Math.Soc.,134,2007.

    [8]Dirksen,S.,de Jeu,M.and Wortel,M.,Crossed products of Banach algebras I,Dissertationes Math.,2011,to appear.arXiv:math.FA/1104.5151v2

    [9]Dirksen,S.,de Jeu,M.and Wortel,M.,Extending representations of normed algebras in Banach spaces,2009.arXiv:math.FA/0904.3268v2

    [10]Conway,J.B.,A course in functional analysis,Graduate Texts in Mathematics,96,2nd edition,Springer-Verlag,New York,1990.

    国产精品麻豆人妻色哟哟久久| 黄片播放在线免费| 在现免费观看毛片| 国产日韩欧美亚洲二区| 免费高清在线观看日韩| 免费在线观看黄色视频的| 男女国产视频网站| 一二三四在线观看免费中文在 | 精品国产一区二区三区久久久樱花| 亚洲av国产av综合av卡| 欧美国产精品一级二级三级| 秋霞在线观看毛片| 宅男免费午夜| 午夜福利网站1000一区二区三区| 久久久国产一区二区| 亚洲综合精品二区| av在线app专区| 看免费成人av毛片| 成人黄色视频免费在线看| 国产片内射在线| 老司机亚洲免费影院| 涩涩av久久男人的天堂| 天堂中文最新版在线下载| 精品国产一区二区久久| 91精品国产国语对白视频| 三级国产精品片| 精品一品国产午夜福利视频| 日韩人妻精品一区2区三区| 精品久久蜜臀av无| 最后的刺客免费高清国语| 九九爱精品视频在线观看| 在线精品无人区一区二区三| 国产精品偷伦视频观看了| 男女高潮啪啪啪动态图| 国产精品国产三级国产专区5o| 成年女人在线观看亚洲视频| 日韩av在线免费看完整版不卡| 久久人人爽人人爽人人片va| 9热在线视频观看99| 久久久久久久亚洲中文字幕| 国产女主播在线喷水免费视频网站| 成人国产av品久久久| 十分钟在线观看高清视频www| 日日爽夜夜爽网站| 涩涩av久久男人的天堂| 国产免费一级a男人的天堂| 最近最新中文字幕免费大全7| 大片免费播放器 马上看| 女的被弄到高潮叫床怎么办| videosex国产| 成人国语在线视频| 在线 av 中文字幕| 两个人免费观看高清视频| 午夜福利网站1000一区二区三区| 成人影院久久| 国产精品一二三区在线看| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 最近中文字幕高清免费大全6| 欧美丝袜亚洲另类| 成人亚洲精品一区在线观看| 免费在线观看黄色视频的| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 人妻一区二区av| 久久99精品国语久久久| 久久久久久久精品精品| 老熟女久久久| 国产成人精品无人区| 亚洲av福利一区| 婷婷色综合www| 乱码一卡2卡4卡精品| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 王馨瑶露胸无遮挡在线观看| 一级爰片在线观看| 国产精品 国内视频| 午夜久久久在线观看| 久久久久国产精品人妻一区二区| 久久亚洲国产成人精品v| 丝袜人妻中文字幕| 啦啦啦中文免费视频观看日本| 女人被躁到高潮嗷嗷叫费观| 日本色播在线视频| 啦啦啦中文免费视频观看日本| 在线亚洲精品国产二区图片欧美| 黑丝袜美女国产一区| 99热网站在线观看| 人妻少妇偷人精品九色| 人人妻人人爽人人添夜夜欢视频| 午夜av观看不卡| 亚洲精品久久午夜乱码| 中文字幕制服av| 岛国毛片在线播放| 一本色道久久久久久精品综合| 一本久久精品| 午夜福利乱码中文字幕| 美女脱内裤让男人舔精品视频| 1024视频免费在线观看| 在线观看免费日韩欧美大片| 视频区图区小说| 国产高清国产精品国产三级| 2021少妇久久久久久久久久久| 久久99热6这里只有精品| 高清毛片免费看| 尾随美女入室| 80岁老熟妇乱子伦牲交| 国产精品国产av在线观看| 亚洲精品一二三| 日韩,欧美,国产一区二区三区| 成人午夜精彩视频在线观看| 亚洲丝袜综合中文字幕| 日本欧美视频一区| 男人添女人高潮全过程视频| 久久精品熟女亚洲av麻豆精品| 国产伦理片在线播放av一区| 成人毛片60女人毛片免费| 久久久久精品久久久久真实原创| 欧美精品av麻豆av| 少妇猛男粗大的猛烈进出视频| 国精品久久久久久国模美| av国产精品久久久久影院| 最近中文字幕高清免费大全6| 国产成人免费无遮挡视频| 久久精品久久精品一区二区三区| 天堂8中文在线网| 啦啦啦中文免费视频观看日本| 制服人妻中文乱码| 9色porny在线观看| 人妻人人澡人人爽人人| 欧美亚洲日本最大视频资源| 80岁老熟妇乱子伦牲交| 满18在线观看网站| 欧美另类一区| 热re99久久精品国产66热6| 亚洲国产日韩一区二区| 高清av免费在线| 侵犯人妻中文字幕一二三四区| 99国产精品免费福利视频| 国产极品粉嫩免费观看在线| 曰老女人黄片| 久久鲁丝午夜福利片| 亚洲欧洲国产日韩| 人妻少妇偷人精品九色| 欧美激情极品国产一区二区三区 | 精品亚洲成国产av| 视频在线观看一区二区三区| 美女福利国产在线| 成年动漫av网址| 免费人妻精品一区二区三区视频| 国产在视频线精品| 国产毛片在线视频| 日韩制服骚丝袜av| 免费黄色在线免费观看| 久久久久久久久久成人| 最近最新中文字幕免费大全7| 熟女人妻精品中文字幕| 亚洲中文av在线| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 少妇的逼水好多| 成人黄色视频免费在线看| 最后的刺客免费高清国语| 亚洲丝袜综合中文字幕| 国产麻豆69| www日本在线高清视频| 午夜免费观看性视频| 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 免费在线观看完整版高清| 久久精品久久久久久噜噜老黄| 国产在视频线精品| 捣出白浆h1v1| 中文精品一卡2卡3卡4更新| 少妇熟女欧美另类| 国产有黄有色有爽视频| 狂野欧美激情性xxxx在线观看| 欧美成人精品欧美一级黄| 精品人妻熟女毛片av久久网站| 亚洲伊人久久精品综合| 日韩一区二区三区影片| 香蕉丝袜av| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| 久久99精品国语久久久| 五月天丁香电影| 91精品三级在线观看| 日本wwww免费看| 国产片特级美女逼逼视频| 18+在线观看网站| 人体艺术视频欧美日本| 国产精品三级大全| 国产精品蜜桃在线观看| www.av在线官网国产| 亚洲伊人久久精品综合| 亚洲精品中文字幕在线视频| 国产女主播在线喷水免费视频网站| 色视频在线一区二区三区| av在线app专区| 国产极品天堂在线| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 国产一区亚洲一区在线观看| 中文字幕制服av| 亚洲一码二码三码区别大吗| 久久97久久精品| 久久精品熟女亚洲av麻豆精品| 日本午夜av视频| 久久国内精品自在自线图片| 久久久久久久久久成人| 欧美国产精品一级二级三级| 在线观看人妻少妇| 亚洲精品,欧美精品| 午夜福利影视在线免费观看| 欧美+日韩+精品| 一本—道久久a久久精品蜜桃钙片| 在线免费观看不下载黄p国产| 少妇高潮的动态图| 在线观看国产h片| 新久久久久国产一级毛片| 亚洲精品乱码久久久久久按摩| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 熟女电影av网| 美女福利国产在线| 亚洲国产精品999| av片东京热男人的天堂| 99热全是精品| 人成视频在线观看免费观看| 99九九在线精品视频| 久久毛片免费看一区二区三区| 最新中文字幕久久久久| 三级国产精品片| 免费观看av网站的网址| 亚洲,一卡二卡三卡| 成年女人在线观看亚洲视频| 最近最新中文字幕免费大全7| 久久久精品区二区三区| 永久免费av网站大全| 美女福利国产在线| 国产在线视频一区二区| 91久久精品国产一区二区三区| 国产深夜福利视频在线观看| 香蕉国产在线看| 久久国内精品自在自线图片| 久久女婷五月综合色啪小说| 亚洲色图综合在线观看| 国产毛片在线视频| 国产视频首页在线观看| 男女无遮挡免费网站观看| 少妇人妻 视频| 国产日韩欧美视频二区| 午夜福利网站1000一区二区三区| av电影中文网址| 日本黄色日本黄色录像| 丰满迷人的少妇在线观看| 免费黄频网站在线观看国产| 免费播放大片免费观看视频在线观看| 999精品在线视频| 午夜福利网站1000一区二区三区| 高清欧美精品videossex| 欧美日本中文国产一区发布| 国产精品女同一区二区软件| 蜜桃在线观看..| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 日本wwww免费看| 妹子高潮喷水视频| 蜜臀久久99精品久久宅男| 亚洲四区av| 十八禁网站网址无遮挡| 久久人人爽av亚洲精品天堂| 91成人精品电影| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 欧美精品人与动牲交sv欧美| 99久久精品国产国产毛片| 亚洲中文av在线| 两个人看的免费小视频| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 伊人久久国产一区二区| 国产欧美日韩综合在线一区二区| 超碰97精品在线观看| 国产免费一级a男人的天堂| 国产免费一区二区三区四区乱码| 少妇高潮的动态图| 中文字幕av电影在线播放| a级片在线免费高清观看视频| 亚洲精品乱久久久久久| 在线观看人妻少妇| 国产成人免费观看mmmm| 高清在线视频一区二区三区| 精品一区二区三区四区五区乱码 | 男女下面插进去视频免费观看 | a级毛片在线看网站| 我要看黄色一级片免费的| www.av在线官网国产| 丰满迷人的少妇在线观看| 在线观看免费视频网站a站| 亚洲一级一片aⅴ在线观看| 久久久久久久大尺度免费视频| 国产极品天堂在线| 韩国av在线不卡| 伊人亚洲综合成人网| 人妻人人澡人人爽人人| 国产av码专区亚洲av| 亚洲色图综合在线观看| 黄色配什么色好看| 天美传媒精品一区二区| 久久av网站| 伦理电影免费视频| 国产av一区二区精品久久| 在线观看三级黄色| 国产色婷婷99| 日韩中文字幕视频在线看片| 国产精品久久久av美女十八| xxx大片免费视频| 国产日韩欧美亚洲二区| 十分钟在线观看高清视频www| 高清毛片免费看| 五月伊人婷婷丁香| 国产一级毛片在线| 如日韩欧美国产精品一区二区三区| 水蜜桃什么品种好| 男女啪啪激烈高潮av片| 水蜜桃什么品种好| 日韩一本色道免费dvd| a级毛片黄视频| 一级毛片黄色毛片免费观看视频| 又黄又粗又硬又大视频| 熟女电影av网| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 你懂的网址亚洲精品在线观看| 国产免费一区二区三区四区乱码| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 亚洲,欧美,日韩| 成人18禁高潮啪啪吃奶动态图| 考比视频在线观看| 色哟哟·www| 国产精品久久久av美女十八| 欧美精品国产亚洲| 日韩一区二区视频免费看| 日韩三级伦理在线观看| 亚洲三级黄色毛片| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 日韩三级伦理在线观看| 青春草视频在线免费观看| 五月玫瑰六月丁香| 久久婷婷青草| √禁漫天堂资源中文www| 国产色婷婷99| 97在线视频观看| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| 午夜福利乱码中文字幕| 伦理电影免费视频| 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 亚洲久久久国产精品| 青青草视频在线视频观看| 色5月婷婷丁香| 欧美精品av麻豆av| 亚洲成av片中文字幕在线观看 | videossex国产| 性高湖久久久久久久久免费观看| 男男h啪啪无遮挡| 岛国毛片在线播放| 亚洲高清免费不卡视频| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 制服丝袜香蕉在线| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 性色av一级| av在线观看视频网站免费| 建设人人有责人人尽责人人享有的| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 国产极品粉嫩免费观看在线| 涩涩av久久男人的天堂| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品| 有码 亚洲区| 两个人免费观看高清视频| 精品一区在线观看国产| 亚洲,欧美精品.| 成人漫画全彩无遮挡| 欧美人与善性xxx| 国产综合精华液| 精品人妻熟女毛片av久久网站| 久久精品久久精品一区二区三区| 国产精品一区二区在线观看99| 亚洲国产最新在线播放| 国产福利在线免费观看视频| 少妇人妻精品综合一区二区| 亚洲精品,欧美精品| 亚洲精品456在线播放app| 哪个播放器可以免费观看大片| 在线亚洲精品国产二区图片欧美| 美女国产视频在线观看| 欧美97在线视频| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 久久97久久精品| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 天天操日日干夜夜撸| 少妇人妻精品综合一区二区| 日本色播在线视频| 亚洲精品一区蜜桃| 国产精品人妻久久久影院| 亚洲精品久久成人aⅴ小说| 国产视频首页在线观看| 在线精品无人区一区二区三| 国产av国产精品国产| 国产成人精品在线电影| 婷婷色综合www| 边亲边吃奶的免费视频| 秋霞在线观看毛片| 日韩伦理黄色片| 丝瓜视频免费看黄片| 国产成人91sexporn| 久久精品国产亚洲av天美| 国产国语露脸激情在线看| 久久精品国产a三级三级三级| 日韩大片免费观看网站| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 久久鲁丝午夜福利片| 好男人视频免费观看在线| 天堂中文最新版在线下载| 黄色视频在线播放观看不卡| 只有这里有精品99| 高清毛片免费看| 日韩三级伦理在线观看| 蜜桃在线观看..| 91在线精品国自产拍蜜月| 老司机影院毛片| 老司机影院成人| 久久久亚洲精品成人影院| 另类精品久久| 99香蕉大伊视频| 18禁动态无遮挡网站| 成人黄色视频免费在线看| 亚洲av在线观看美女高潮| 在线观看三级黄色| 中国美白少妇内射xxxbb| 亚洲,一卡二卡三卡| 插逼视频在线观看| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 精品亚洲乱码少妇综合久久| 精品久久国产蜜桃| 国产一区二区三区综合在线观看 | 亚洲av欧美aⅴ国产| 99热全是精品| 日本wwww免费看| 男人添女人高潮全过程视频| 欧美日韩视频高清一区二区三区二| 90打野战视频偷拍视频| 亚洲国产精品成人久久小说| 欧美日韩视频精品一区| 午夜福利视频在线观看免费| 国产精品欧美亚洲77777| 久久精品国产亚洲av涩爱| 欧美日韩国产mv在线观看视频| 边亲边吃奶的免费视频| 美女视频免费永久观看网站| 中国三级夫妇交换| 18禁国产床啪视频网站| 久久国产亚洲av麻豆专区| 九九在线视频观看精品| 国产黄色视频一区二区在线观看| 男人操女人黄网站| 国产精品麻豆人妻色哟哟久久| 91久久精品国产一区二区三区| 国产欧美亚洲国产| 国产精品久久久久成人av| 日韩一本色道免费dvd| 18禁动态无遮挡网站| 爱豆传媒免费全集在线观看| 亚洲国产精品999| 精品卡一卡二卡四卡免费| 天天操日日干夜夜撸| 婷婷成人精品国产| 久久久久视频综合| 亚洲,欧美,日韩| 一级毛片我不卡| 亚洲精品视频女| 晚上一个人看的免费电影| 各种免费的搞黄视频| kizo精华| 日韩欧美精品免费久久| 日韩一本色道免费dvd| 纯流量卡能插随身wifi吗| 亚洲成国产人片在线观看| 宅男免费午夜| 一区二区三区乱码不卡18| 中文天堂在线官网| 三上悠亚av全集在线观看| 亚洲精品色激情综合| 人妻一区二区av| 人妻人人澡人人爽人人| av在线观看视频网站免费| 国产乱人偷精品视频| 精品久久国产蜜桃| 精品酒店卫生间| 热99国产精品久久久久久7| 欧美精品一区二区免费开放| 国产高清三级在线| 丰满迷人的少妇在线观看| 人体艺术视频欧美日本| 黄网站色视频无遮挡免费观看| 国产成人91sexporn| 另类亚洲欧美激情| 国产成人a∨麻豆精品| 国产免费一级a男人的天堂| 黄色 视频免费看| 亚洲av福利一区| 日本黄色日本黄色录像| 男人爽女人下面视频在线观看| 69精品国产乱码久久久| 亚洲国产看品久久| 看免费av毛片| 精品福利永久在线观看| 久久人人97超碰香蕉20202| 国产亚洲午夜精品一区二区久久| 看十八女毛片水多多多| 51国产日韩欧美| 久久精品久久久久久噜噜老黄| 久久婷婷青草| 嫩草影院入口| 国产永久视频网站| 久久久久久人妻| 一级毛片电影观看| 色网站视频免费| 侵犯人妻中文字幕一二三四区| 菩萨蛮人人尽说江南好唐韦庄| 热99久久久久精品小说推荐| 成人无遮挡网站| 在线观看免费日韩欧美大片| 久久久久久久亚洲中文字幕| 免费观看性生交大片5| 午夜福利网站1000一区二区三区| 18禁观看日本| 伦理电影免费视频| 全区人妻精品视频| 国产成人欧美| 一级a做视频免费观看| 久久精品人人爽人人爽视色| 99热全是精品| 爱豆传媒免费全集在线观看| 亚洲精品美女久久av网站| 在现免费观看毛片| 99热国产这里只有精品6| 考比视频在线观看| 一级毛片我不卡| 中文欧美无线码| 少妇精品久久久久久久| 久久精品久久精品一区二区三区| av网站免费在线观看视频| 亚洲图色成人| 美女xxoo啪啪120秒动态图| 制服丝袜香蕉在线| 国产爽快片一区二区三区| 伦理电影免费视频| 狠狠婷婷综合久久久久久88av| 啦啦啦啦在线视频资源| 国产国拍精品亚洲av在线观看| 久久久久精品人妻al黑| 九色亚洲精品在线播放| 一级毛片 在线播放| 亚洲在久久综合| 欧美日韩av久久| 人人妻人人澡人人看| 蜜桃在线观看..| 99久国产av精品国产电影| 99热国产这里只有精品6| 国产又色又爽无遮挡免| 久久国内精品自在自线图片| 日韩伦理黄色片| 亚洲精华国产精华液的使用体验| 一区二区三区乱码不卡18| 免费观看a级毛片全部| 国产淫语在线视频| av国产久精品久网站免费入址| 亚洲美女黄色视频免费看| 在线观看免费视频网站a站| 久久精品国产综合久久久 | 高清在线视频一区二区三区| 欧美日韩视频高清一区二区三区二| 亚洲精品aⅴ在线观看| 高清毛片免费看| 9色porny在线观看| 男的添女的下面高潮视频| av线在线观看网站| 丰满迷人的少妇在线观看| 午夜福利网站1000一区二区三区| 久久精品国产亚洲av天美| 黄片播放在线免费| 久久久久久久久久久久大奶| 国产亚洲av片在线观看秒播厂| 日韩成人av中文字幕在线观看| 永久免费av网站大全| 男女午夜视频在线观看 | 狠狠婷婷综合久久久久久88av| 国产欧美日韩一区二区三区在线| 久久久精品94久久精品|