• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes*

    2014-06-01 12:30:00XIAOYexiang肖業(yè)祥WANGZhengwei王正偉ZHANGJin張瑾LUOYongyao羅永要

    XIAO Ye-xiang (肖業(yè)祥), WANG Zheng-wei (王正偉), ZHANG Jin (張瑾), LUO Yong-yao (羅永要)

    State Key Laboratory of Hydroscience and Engineering and Deparment of Thermal Engineering, Tsinghua University, Beijing 100084, China, E-mail: xiaoyex@mail.tsinghua.edu.cn

    Numerical predictions of pressure pulses in a Francis pump turbine with misaligned guide vanes*

    XIAO Ye-xiang (肖業(yè)祥), WANG Zheng-wei (王正偉), ZHANG Jin (張瑾), LUO Yong-yao (羅永要)

    State Key Laboratory of Hydroscience and Engineering and Deparment of Thermal Engineering, Tsinghua University, Beijing 100084, China, E-mail: xiaoyex@mail.tsinghua.edu.cn

    (Received June 7, 2013, Revised August 5, 2013)

    Previous experimental and numerical analyses of the pressure pulse characteristics in a Francis turbine are extended here by using the unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport (SST) turbulence model to model the unsteady flow within the entire flow passage of a large Francis pump turbine with misaligned guide vanes at the rated rotational speed. The S-curve characteristics are analyzed by a combined use of the model test and the steady state simulation with the aligned guide vane firstly. Four misaligned guide vanes with two different openings are chosen to analyze the influence of pressure pulses in the turbine. The characteristics of the dominant unsteady flow frequencies in different parts of the pump turbine for various misaligned guide vane openings are investigated in detail. The predicted hydraulic performance and the pressure fluctuations show that the misaligned guide vanes reduce the relative pressure fluctuation amplitudes in the stationary part of the flow passage, but not the runner blades. The misaligned guide vanes have changed the low frequencies in the entire flow passage with the change of the pulse amplitudes mainly due to changes in the rotor-stator interaction and the low frequency vortex rope flow behavior.

    pump turbine, misaligned guide vanes, pressure pulsation, rotor stator interaction, numerical simulation

    Introduction

    The development of pumped storage plants in China has promoted studies of the stability of pump turbine units. The hydraulic interactions between the runner blades and the guide vanes are a well-known cause of vibrations and noises in pump turbines[1]. Misaligned guide vanes were originated from an incident involving wicket gates in the Vianden 10 power station in 1973, which could turn freely and were different from those usual wicket gates in the opening. A series of model tests on these devices were carried out in Norway[1]. Misaligned guide vanes are used in pump turbines and also in many pump storage plants in China to improve the stability in the no-load mode and the turbine startup mode, to eliminate vibrations, to improve the S-curve characteristics and to cut down the surge pressure raises under the turbine load-rejections, such as in the Tianhuangping, Zhanghewan and Heimifeng stations. Therefore, it is necessary to clarify the influence of the MGV on the internal flow mechanism and performance changes.

    The application of misaligned guide vanes in pump storage turbines has promoted hydrodynamics researches of the RSI between the misaligned guide vanes and the runner[2,3]. The rotor stator interactions (RSI) involve a combination of the effects of the viscous flow, the wake, and the structures[4-6]. Recently, notable effort was focused on the RSI and the low frequency vortex rope in the draft tube in pump turbines[7]. Misaligned guide vanes improve the pump turbine stability in the no-load and turbine startup modes and reduce the pressure surges during turbine load-rejections[8]. Experimental and numerical studies were carried out for the MGV devices. Billdal and Wedmark[9]used the MGV to overcome difficulties with aligned guide vanes and to obtain a stable speed after the load rejection experimentally. Qian et al.[10]analyzed the influence of misaligned guide vanes onthe pressure oscillations inside a Francis turbine experimentally and numerically, and it is found that the new rotor-stator interaction between the MGV and the runner increases the high-frequency pressure pulsation in the guide and spiral casing. Xiao et al.[11-13]pointed out that the vane MGV can be used to avoid the influence of the S characteristics under a steady flow. Xiao et al.[14]simulated the unsteady flow behavior and the pressure pulse changes of a pump-turbine with the MGVs at the rated speed.

    The pump turbine vibration mechanisms with misaligned guide vanes need to be studied in order to improve the S-curve characteristics, the hydraulic performance and the operating stability of pump turbines. This paper combines model tests with numerical simulations to analyze the S characteristics of a pump-turbine with aligned guide vanes firstly. The misaligned guide vanes would influence the pressure pulses in various turbine modes, which is then investigated to enable more applications of misaligned guide vanes in pump turbines. Previous numerical and experimental studies of the pressure pulse characteristics and the unsteady flow behavior in a large Francis turbine are extended here to studies of 3-D flow mechanisms in a pump turbine[15,16]. This study focuses on the characteristics of the dominant unsteady flow frequencies in the entire flow passage of the pump turbine for various misaligned guide vane openings.

    1. Prototype pump turbine

    The Francis pump turbine under consideration has a runner of 3.9 m in diameter. The turbine mode design water head H is 500 m for the turbine of 7 runner blades, 20 stay vanes and 20 guide vanes. The rotational speed is 500 rpm. The computed flow domain includes the entire turbine flow passage as shown in Fig.1.

    Fig.1 The flow passage of a prototype Franceis pump turbine

    The positions of the four misaligned guide vanes are shown in Fig.2. The optimum guide vane opening is 23o. The misaligned guide vanes have openings of 14oor 24o, with the other guide vanes having openings of 9 degrees in the analyses. The parameters for the three operating conditions are listed in Table 1. For all three operating conditions, the rotational speeds are all the rated speed and the water heads are all 500 m.

    Fig.2 Positions of the four misaligned guide vanes

    Table 1 Operation conditions for unsteady flow simulations

    Fig.3 Three meshes near the stay vanes and the misaligned guide vanes

    An unstructured mesh is used so that the cell density could be controlled manually based on the flow features. The effects of the mesh on the computational results are studied in preliminary calculations to determine the appropriate number of elements. Six different sizes of meshes and the number of elements from 6.7×104to 3.2×105are chosen. The steady numerical simulation shows that the efficiency results are more accurate with larger element number. The computing deviation of different grids is under 0.2% when the grid element is larger than 2.6×105. So, the final mesh has about 1.24×105nodes and 2.6×105elements in the entire flow passage. The spiral case region has a relatively coarse mesh, with the mesh refined downstream as the flow is accelerated. Particular attention is paid to the discretization near the stay vanes, the guidevanes and the runner blades to correctly represent the local large velocity gradients. The local meshes for the three misaligned guide vane opening cases are shown in Fig.3.

    The k-ω based SST model combines the k-ε and k-ω models by introducing a blending function with the objective to get the best out of both models. The SST model accounts for the transport of the turbulent shear stresses and gives very accurate predictions of the onset and the amount of flow separation with adverse pressure gradients[17]. A second-order backward Euler scheme is used for the convection terms with a central difference scheme for the diffusion terms in the momentum equations. The model is implemented in ANSYS CFX 13. The Reynolds number is about 2×107for the present pump turbine, which affects the low frequency of the pressure fluctuation. For those unsteady simulations, the time step is related to the runner rotational speed to achieve one complete runner revolution every 100 time steps. The data are recorded every 2 time steps. The long periods for the irregular fluctuating flows are analyzed for 2 000 time steps in each case with data sampled for the last 1 000 steps. The pressures are converted to heads at various frequencies. The dominant relative frequency (f/fn) and the pulse amplitude at this frequency are then calculated by fast Fourier transforms (FFT).

    Fig.4 Model test performance curves with different openings in turbine model[18]

    2. Analyses of experimental and numerical results

    2.1 Comparison of experimental and numerical results

    The model pump-turbine has a runner of 0.4046 m in diameter. The rated speed is 1 700 rpm. The model test unit speed-unit flow1111(n-Q) curves of five openings of 4o, 9o, 12o, 16oand 20oare shown in Fig.4[18]. The model tests are carried out without misaligned guide vanes. According to the model test performance curves, for those given openings, the unit flow Q11rapidly bends downward and even bends back to the horizontal axis n11, with a decreasing unit flow, it forms a S-curve shape in the larger unit speed region. The pumped turbine is required to change the operating modes frequently, so the transform among the turbine, the braking and the reverse pump operation modes is necessary, once it operates in the S-curve region, the entire unit stability will be deteriorated.

    Fig.5 Numerical and experimental unit speed-unit flow curves at the guide vane opening of 9o

    The calculation for the prototype pump turbine is used to select the guide vane opening of 9oto predict the performance curve. The steady-state simulation is performed with more than 15 simulation points of the turbine mode. The predicted steady unit speed-unit flow curves are compared with the experimental data, as shown in Fig.5. The basic trend of the experimental performance data agrees with the simulated turbine performance curve. At a larger unit flow, the experimental unit flow is larger than the predicted data. At a larger unit speed, the experimental unit speed is larger than the predicted data, too. The steady-state simulations have large errors in the range of S-curves. Although the predicted performance curves agree with the measured data, the error in the steady simulations is obvious.

    2.2 Pressure analysis in the flow diversion region

    During the calculations, the flow data are saved at selected points inside the spiral case, the stay vanes and the guide vanes, as shown in Fig.6(a). Five points are on the spiral case (named sp1-sp5), four on the stay vanes (named sv1-sv4), four on the pressure side of the guide vanes (named mv1–mv4), and four on the suction side of the guide vanes (named gv1-gv4) with each set of four points evenly arranged along the circumferential direction. Four points are also located on the MGV suction side (named gv5-gv8). All these points are located on the middle span plane (0.5 span) along the blade height. They are in a stationary reference frame.

    The pressure is recorded at those seventeen points in the spiral case, the stay vane and the guide vane in the unsteady predictions. The relative peak-to-peak pulse amplitude is defined as ΔH/ H, where ΔH is the amplitude of the pressure fluctuation in the time domain. The relative peak-to-peak amplitudes of the pulses are shown in Figs.6(b)-6(f) for the three different MGV openings. In each figure, the last column is the average of the relative pulse amplitude at the fouror five points.

    Fig.6 Predicted relative pulse amplitudes in front of the runner at 17 points for three cases

    The calculated results show that, in the spiral case, the relative pressure amplitude increases along the flow direction for all three cases. The pulse amplitude at each monitoring point decreases as the MGV opening increases. At smaller monitoring point radii, the relative pulse amplitude increases from the spiral case to the stay vane and to the pressure side of the guide vane, with a dramatically increase on the suction side of the guide vane. Three sets of points on the stay vane and the guide vane, sv1 to sv4, mv1 to mv4, and gv1 to gv4, are evenly arranged along the circumferential direction. The results in Figs.6(c) and 6(d) show that the pulse amplitude is less than 12%, with little difference between the four values on each surface. The relative pulse amplitude then increases dramatically on the suction side of the guide vane, by almost 40%, as shown in Figs.6(e) and 6(f). The results show that the amplitudes at the four symmetric points (gv1 to gv4) change greatly for the case MGV15, which means that the MGV leads to a nonuniform flow in the circumferential direction to cause large differences in the pulse amplitudes between the four points. The average pressure pulses in the flow diversion region show that the misaligned guide vanes can significantly reduce the pulse amplitude. As the MGV opening increases, the pulse amplitudes decrease significantly.

    2.3 Pressure analysis for the runner blade passage

    There are also eight monitoring points rotating with the runner between the two runner blades in the blade passage (named rv1-rv8) as shown in Fig.7(a) to record the pressure pulses. The relative pulse amplitudes at the eight rotating points in the blade passage are shown in Fig.7(b) for the three MGV openings.

    These results show that the pulse amplitudes decrease gradually from point rv1 to rv8 in the cases MGV0 and MGV5. However for the case MGV15, the pressure pulses at the first three points increase from 40% to 50%, and then decrease gradually from rv3 to rv8. At the same monitoring point, the pulse amplitudes also increase in some extent from the case MGV0 to MGV15. Thus, the MGV will reduce the pulse amplitudes in the stay parts of the pump turbine flow passages, but will increase the pulse amplitudes within the rotating runner blade passages.

    Fig.7 Predicted relative pulse amplitudes at the eight rotating points inside the runner passage

    Fig.8 The streamline in guide vane and runner middle span surface at the same time of 4.8 s

    The predicted results show that the increase of the MGV opening increases the relative pulse amplitudes at the runner rotating points. The features of the flow structures inside the runner passage at various MGV openings are shown in Fig.8, with the streamline distributions on the runner inlet mid-span surface around point rv1 in the rotating coordinate. The streamline distributions can be seen on this surface for three cases. For the case MGV0 with small guide vane opening, there is a significant turbulence created in each seven blade passages, as shown in Fig.8(a). The vortices in the runner passages are the main reason of the large pressure pulse amplitudes, and the so called unstable S-curve characteristics for the pump-turbine. By using the misaligned guide vanes, the flow is increased for those MGV passages, which decreases the vortex in the downstream blade passages. With larger MGV openings, the flow is increased more and fewer vortices are found in the corresponding blade passage, as shown in Figs.8(b) and 8(c). In each blade passage, the flow structure will change from a smooth pattern to vortices periodically with the runner rotating, which results in more larger pressure pulse amplitudes.

    Fig.9 Predicted relative pulse amplitudes at the three sections in the draft tube

    2.4 Pressure analysis in the draft tube

    The flow data recorded include also those at three sections (named dt1-dt3) in the upper tube, with each section having four points near the wall. Point 1 on the dt2 plane is named dt21 with the other pointsnamed in a same manner, as shown in Fig.9(a). These points are in a stationary reference frame. The relative peak-to-peak pressure amplitudes at these 12 survey points along the cone tube (from dt1 to dt3) are shown in Figs.9(b)-9(d). At each section, the relative pressure pulse amplitudes at the four points near the wall are almost the same. The maximum amplitude reaches 4% at dt14 for the case MGV0. The relative amplitudes decrease gradually along the flow direction from section dt1 to dt3 for all three cases. The average pressure amplitudes in the draft tube indicate that the misaligned guide vanes reduce the pulse amplitude in an increased extent as the MGV opening increases.

    2.5 Analysis of the pulse spectrum

    The pressure pulse spectra are analyzed at various points throughout the entire flow passage. The pulse amplitude spectra at points sp5, sv4, mv4, gv4, rv1, rv4, rv8 and dt11 are shown in Fig.10 for all three cases. The calculated pressure pulse frequencies and amplitude spectra for the case MGV0 are shown in Fig.10(a). The pressure amplitude spectra show that at each point (sp5 to gv4) inside the runner upstream, the frequencies 7fn, 14fnand 21fnare included, These frequencies, which are 7 times the runner rotational frequency, which corresponds to the number of blades on the runner, are the results of the rotor-stator interference between the runner and the guide vanes, which, thus, is one of the main factors creating the pressure pulses in the turbine guide components. Figure 10(a) also shows that the 7fnpulse amplitudes gradually increases from point sp5 to gv4, indicating that the influence of the runner becomes stronger along the flow direction upstream of the runner. In addition, the dominant frequency is a low frequency of 0.732fn. At the rotating points (rv1, rv4 and rv8), the dominant frequency is 20fn, instead of the low frequency in the upstream region. The 20fnpulse amplitudes decrease gradually from point rv1 to rv8, indicating that the influence of the cascades is weakened along the flow direction. At the draft tube point dt11, the dominant frequency is still the low frequency of 0.732fn, due to the unsteady vortex rope in the draft tube.

    The calculated pressure pulse amplitude spectra for the cases MGV5 and MGV15 are shown in Figs.10(b) and 10(c). For these two cases, the spectra show that at the points (sp5 to gv4) inside the upstream of the runner, the frequencies of 7fn, 14fnand 21fncan still be found. The 7k fnpulse amplitudes also gradually increase from point sp5 to gv4. For the case MGV5, the dominant frequency is still a low frequency of 1.07fn, with an obvious 0.54fncomponent. For the case MGV15, the dominant frequency changes to 0.63fn, with an obvious 1.27fncomponent.

    Fig.10 Predicted pressure amplitude spectra in the entire flow passage of the three cases

    For the cases MGV5 and MGV15, at the rotating points (rv1, rv4 and rv8), one sees the 20fnfrequency with the amplitudes of the 20fnpulses decreasing gradually from point rv1 to rv8. The dominant frequencies are 2fn, 4fnand 6fn. The amplitudes of the 2kfnpulses are very large in both cases, due to the two sets of misaligned guide vanes. At the draft tube point dt11, the dominant frequency changes to 0.54fnin the case MGV5 and 0.63fnin the case MGV15.The misaligned guide vane and the openings also change the unsteady vortex rope flow behavior in the draft tube.

    Figure 10 also shows the amplitude of the energy spectra E at these monitoring points for all three cases. In the runner upstream region and the draft tube, the RSI (7k fnand 20fn) pulse energy spectra change a little for all three cases, while the misaligned guide vanes reduce the low frequencies and the energy spectra significantly. That is the reason why the misaligned guide vanes reduce the pulse amplitudes in the stationary parts of the turbine. At all rotating points, the 20fnpulse energy spectra are almost the same for all three cases, while the 2kfnpulse energy spectra increase dramatically in the cases MGV5 and MGV15, then the pulse amplitudes are increased. These two sets of misaligned guide vanes destroy the consistency of the runner inner flow, which becomes more evident with the increase of the opening.

    3. Conclusions

    The pressure pulses in a Francis pump turbine are predicted numerically under turbine operating conditions for the rated rotational speed at different misaligned guide vane openings.

    The numerical results show that the misaligned guide vanes significantly reduce the pulse amplitudes in the stationary parts of the turbine, with larger amplitude decreases, when the misaligned guide vane opening increases. However, the misaligned guide vane increases the pulse amplitudes within the rotating runner blade passages with the pulse amplitudes increasing more with increasing misaligned guide vane opening.

    The pressure pulse spectra indicate that the misaligned guide vane opening changes the low frequencies and the energy spectra in the entire flow passage. The change in the pulse amplitude is mainly due to the effect of the RSI and the low frequency vortex rope behavior in the entire flow passage.

    Acknowledgement

    This work was supported by the State Key Laboratory of Hydroscience and Engineering, Tsinghua University (Grant No. 2014-KY-05).

    [1] GREIN H., BACHMANN P. Hydraulic torque on misaligned guide vanes[J].Water Power and Dam Con-struction,1976, 28(2): 37-40.

    [2] RODRIGUEZ C. G., EGUSQUIZA E. and SANTOS I. F. Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine[J].Jour-nal of Fluids Engineering,2007, 129(11): 1248-1435.

    [3] ZOBEIRI A., KUENY J.-L. and FARHAT M. et al. Pump-turbine rotor-stator interactions in generating mode: Pressure fluctuation in distributor channel[C].Proceedings of the 23rd IAHR Symposium.Yokohama, Japan, 2006.

    [4] NENNEMANN B., VU T. and FARHAT M. CFD prediction of unsteady wicket gate-impeller interaction in Francis turbines: A new standard hydraulic design pro- cedure[C].Waterpower XIV.Austin, USA, 2005.

    [5] SUSAN-RESIGA R., CIOCAN G. D. and ANTON I. et al. Analysis of the swirling flow downstream a Francis turbine runner[J].Journal of Fluids Engineering,2006, 128(1): 177-189.

    [6] SCHOBEIRI M. T., ABDELFATTAH S. and CHIBLI H. Investigating the cause of computational fluid dynamics deficiencies in accurately predicting the efficiency and performance of high pressure turbines: A combined experimental and numerical study[J].Journal of FluidsEngineering,2012, 134(10): 101104.

    [7] DRING R. P., JOSLYN H. D. and HARDIN L. W. et al. Turbine rotor-stator interactions[J].Journal of FluidsEngineering,1982, 104(4): 729-742.

    [8] SHAO W. Y. Improving stability by misaligned guide vanes in pumped storage plant[C].2009 Asia-Pacific Power and Energy Engineering Conference.Wuhan, China, 2009.

    [9] BILLDAL J. T., WEDMARK A. Recent experiences with single stage reversible pump turbines in GE Energy’s hydro business[C].Hydro 2007.Granada, Spain, 2007.

    [10] QIAN Z. D., ZHENG B. and HUAI W. X. et al. Analysis of pressure oscillations in a Francis hydraulic turbine with misaligned guide vanes[J].Proceedings of the Institution of Mechanical Engineers, Part A: Journalof Power and Energy,2010, 224(1): 139-152.

    [11] XIAO Ruo-fu, SUN Hui and LIU Wen-chao et al. Analysis of S characteristics and its pressure pulsation of pump-turbine under pre-opening guide vanes[J].Journal of Mechanical Engineering,2012, 48(8): 174-179(in Chinese).

    [12] SUN H., XIAO R. F. and YANG W. et al. The optimal model of misaligned guide vanes for a particular pumpturbine[C].The 26th IAHR Symposium on HydraulicMachinery and Systems.Beijing, China, 2012.

    [13] SUN H., XIAO R. F. and LIU W. C. et al. Analysis of S characteristics and pressure pulsations in a pump-turbine with misaligned guide vanes[J].Journal of FluidsEngineering, 2013, 135(5): 051101.

    [14] XIAO Y. X., SUN D. G. and WANG Z. W. et al. Numerical analysis of unsteady flow behavior and pressure pulsation in pump turbine with misaligned guide vanes[C]The 26th IAHR Symposium on HydraulicMachinery and Systems.Beijing, China, 2012.

    [15] XIAO Y., WANG Z. and YAN Z. et al. Numerical analysis of unsteady flow under high-head operating conditions in Francis turbine[J].Engineering Computations,2010, 27(3): 365-386.

    [16] XIAO Y. X., WANG, Z. W. and YAN Z. G. Experimental and numerical analysis of blade channel vortices in a Francis turbine runner[J].Engineering Computatio-ns,2011, 28(2): 154-171.

    [17] MENTER F. R. A comparison of some recent eddy-viscosity turbulence models[J].Journal of Fluids Engi-neering,1996, 118(3): 514-519.

    [18] MEI Z. Y.The pump storage power station technology[M]. Beijing, China: China Machinery Industry Press, 2000(in Chinese).

    10.1016/S1001-6058(14)60028-7

    * Project supported by the National Natural Science Foundation of China (Grant No. 51009077), the National High Technology Research and Development Program of China (863 Program, 2009AA05Z424).

    Biography: XIAO Ye-xiang (1978-), Male, Ph. D.

    WANG Zheng-wei, E-mail: wzw@mail.tsinghua.edu.cn

    丝袜美腿诱惑在线| 一级毛片 在线播放| 色哟哟·www| 校园人妻丝袜中文字幕| 亚洲av综合色区一区| 国产精品香港三级国产av潘金莲 | 免费黄频网站在线观看国产| 看免费成人av毛片| 汤姆久久久久久久影院中文字幕| 欧美少妇被猛烈插入视频| 日韩欧美精品免费久久| 狠狠精品人妻久久久久久综合| 亚洲欧美成人精品一区二区| 视频在线观看一区二区三区| 欧美精品av麻豆av| 国产 精品1| 老熟女久久久| 久久精品人人爽人人爽视色| 视频区图区小说| 观看美女的网站| 一级黄片播放器| 亚洲精品久久成人aⅴ小说| 欧美日韩一区二区视频在线观看视频在线| 18禁裸乳无遮挡动漫免费视频| 少妇猛男粗大的猛烈进出视频| 丰满饥渴人妻一区二区三| 秋霞伦理黄片| 亚洲av日韩在线播放| 性少妇av在线| 亚洲精品国产av成人精品| 免费黄网站久久成人精品| 国产精品二区激情视频| 1024视频免费在线观看| 搡老乐熟女国产| 成年人午夜在线观看视频| 日本91视频免费播放| 国产探花极品一区二区| 欧美日韩一级在线毛片| 丝袜美足系列| 亚洲美女搞黄在线观看| 久久鲁丝午夜福利片| 久久99精品国语久久久| 亚洲欧洲精品一区二区精品久久久 | 婷婷色综合大香蕉| 黄片播放在线免费| 999精品在线视频| 欧美黄色片欧美黄色片| 欧美人与性动交α欧美精品济南到 | 水蜜桃什么品种好| 日韩在线高清观看一区二区三区| 黄片无遮挡物在线观看| 亚洲色图综合在线观看| 老熟女久久久| 大话2 男鬼变身卡| 欧美国产精品一级二级三级| 日韩 亚洲 欧美在线| 久久狼人影院| 成人毛片a级毛片在线播放| 成年女人毛片免费观看观看9 | 亚洲国产av影院在线观看| 午夜免费鲁丝| 在现免费观看毛片| 香蕉精品网在线| 久久久久久久国产电影| videos熟女内射| 日韩视频在线欧美| 岛国毛片在线播放| 成人毛片60女人毛片免费| 亚洲激情五月婷婷啪啪| 欧美日韩精品成人综合77777| 亚洲美女视频黄频| 夫妻午夜视频| 日日摸夜夜添夜夜爱| 午夜91福利影院| 免费日韩欧美在线观看| 久热久热在线精品观看| 青春草视频在线免费观看| 欧美激情 高清一区二区三区| 欧美日本中文国产一区发布| 母亲3免费完整高清在线观看 | 久久 成人 亚洲| 春色校园在线视频观看| 在线亚洲精品国产二区图片欧美| 1024香蕉在线观看| 一区二区av电影网| 国产老妇伦熟女老妇高清| 男人添女人高潮全过程视频| 欧美亚洲 丝袜 人妻 在线| 亚洲情色 制服丝袜| 热re99久久精品国产66热6| 国产探花极品一区二区| 国产精品秋霞免费鲁丝片| 国产免费一区二区三区四区乱码| 成年动漫av网址| 久久免费观看电影| 欧美日韩视频高清一区二区三区二| 欧美亚洲日本最大视频资源| 国产高清不卡午夜福利| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 国产精品一区二区在线观看99| 女人精品久久久久毛片| 9热在线视频观看99| 赤兔流量卡办理| 一区二区三区精品91| 亚洲精品久久午夜乱码| 天天躁狠狠躁夜夜躁狠狠躁| 视频在线观看一区二区三区| 亚洲,一卡二卡三卡| 老熟女久久久| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 18禁观看日本| 欧美日韩综合久久久久久| 精品午夜福利在线看| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 亚洲伊人久久精品综合| 最近2019中文字幕mv第一页| 女性生殖器流出的白浆| 多毛熟女@视频| 国产日韩欧美视频二区| 在线天堂中文资源库| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 亚洲欧美成人精品一区二区| 久久久久久伊人网av| 不卡av一区二区三区| 久久久精品免费免费高清| 亚洲av中文av极速乱| 91成人精品电影| 国产精品av久久久久免费| 中国三级夫妇交换| 久久久精品区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 丰满迷人的少妇在线观看| 国产欧美日韩一区二区三区在线| 永久免费av网站大全| 丰满迷人的少妇在线观看| 免费黄网站久久成人精品| 狠狠婷婷综合久久久久久88av| 有码 亚洲区| 国产亚洲一区二区精品| 免费观看在线日韩| 激情五月婷婷亚洲| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| 亚洲精品国产色婷婷电影| 999精品在线视频| 99精国产麻豆久久婷婷| 国产一区二区 视频在线| 成年av动漫网址| 免费观看av网站的网址| 青春草亚洲视频在线观看| 国产亚洲一区二区精品| 青春草视频在线免费观看| 香蕉丝袜av| av网站在线播放免费| 人妻系列 视频| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 搡老乐熟女国产| 老司机亚洲免费影院| 亚洲精品久久成人aⅴ小说| 国产一区二区三区av在线| 热re99久久国产66热| 一级爰片在线观看| 亚洲av国产av综合av卡| 亚洲婷婷狠狠爱综合网| 另类亚洲欧美激情| 国产麻豆69| 国产精品嫩草影院av在线观看| 久久毛片免费看一区二区三区| av福利片在线| 久久国内精品自在自线图片| 亚洲成av片中文字幕在线观看 | 激情视频va一区二区三区| 看十八女毛片水多多多| 一级片'在线观看视频| 在线观看www视频免费| 国产免费现黄频在线看| 丰满乱子伦码专区| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| 亚洲精品久久午夜乱码| 一区二区日韩欧美中文字幕| av片东京热男人的天堂| 麻豆精品久久久久久蜜桃| av有码第一页| 在线观看国产h片| 欧美成人午夜免费资源| 亚洲精品,欧美精品| av国产久精品久网站免费入址| 精品一品国产午夜福利视频| 精品久久久久久电影网| 啦啦啦啦在线视频资源| 亚洲av日韩在线播放| 青青草视频在线视频观看| 新久久久久国产一级毛片| 视频在线观看一区二区三区| 超碰成人久久| 日韩熟女老妇一区二区性免费视频| 亚洲国产欧美在线一区| 超色免费av| 午夜精品国产一区二区电影| 我的亚洲天堂| 成人国语在线视频| 日本wwww免费看| 国产一区二区 视频在线| 韩国av在线不卡| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在| av免费在线看不卡| 久久国内精品自在自线图片| 在线观看一区二区三区激情| 免费女性裸体啪啪无遮挡网站| 免费不卡的大黄色大毛片视频在线观看| 人妻人人澡人人爽人人| 精品亚洲成a人片在线观看| 欧美日韩综合久久久久久| 久久久久久伊人网av| 亚洲精品国产av成人精品| 欧美精品高潮呻吟av久久| 99re6热这里在线精品视频| av在线观看视频网站免费| 欧美国产精品一级二级三级| 丝袜美足系列| 高清av免费在线| 亚洲精品久久久久久婷婷小说| 十八禁网站网址无遮挡| 国产在线一区二区三区精| 另类精品久久| 精品亚洲成a人片在线观看| 十八禁高潮呻吟视频| 精品亚洲成国产av| 黑丝袜美女国产一区| 日本vs欧美在线观看视频| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 成人亚洲欧美一区二区av| 精品一区二区免费观看| 精品少妇久久久久久888优播| 三级国产精品片| 欧美 日韩 精品 国产| 久久精品国产亚洲av涩爱| 香蕉国产在线看| 999久久久国产精品视频| 国产成人精品福利久久| 少妇被粗大猛烈的视频| 一二三四中文在线观看免费高清| 美女国产高潮福利片在线看| 亚洲国产色片| 亚洲av中文av极速乱| 天美传媒精品一区二区| av在线老鸭窝| 国产精品一国产av| 久久国内精品自在自线图片| 国产成人午夜福利电影在线观看| 91国产中文字幕| 卡戴珊不雅视频在线播放| 香蕉精品网在线| 满18在线观看网站| 中文字幕最新亚洲高清| 韩国av在线不卡| 欧美人与善性xxx| 亚洲美女视频黄频| 国产黄色视频一区二区在线观看| 九草在线视频观看| 极品人妻少妇av视频| 成年人午夜在线观看视频| 久久精品国产亚洲av涩爱| 精品国产一区二区久久| av女优亚洲男人天堂| 人人妻人人爽人人添夜夜欢视频| 精品一区二区免费观看| 夜夜骑夜夜射夜夜干| 日本91视频免费播放| 久久免费观看电影| 亚洲色图综合在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品视频女| 日本wwww免费看| 欧美日韩av久久| 美女高潮到喷水免费观看| 欧美bdsm另类| 色播在线永久视频| 久久久久久人妻| 日韩av在线免费看完整版不卡| 91精品国产国语对白视频| 国产精品麻豆人妻色哟哟久久| 亚洲激情五月婷婷啪啪| 午夜免费鲁丝| 久久精品国产a三级三级三级| 看十八女毛片水多多多| 十分钟在线观看高清视频www| 免费日韩欧美在线观看| 人人妻人人爽人人添夜夜欢视频| 一区二区av电影网| 91精品伊人久久大香线蕉| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 久久久国产精品麻豆| 久久久久视频综合| 国产无遮挡羞羞视频在线观看| 成人亚洲精品一区在线观看| 色婷婷av一区二区三区视频| 最近中文字幕高清免费大全6| 精品亚洲乱码少妇综合久久| 成人毛片60女人毛片免费| 久久久久久久久免费视频了| 亚洲精品国产av蜜桃| 狠狠婷婷综合久久久久久88av| 激情五月婷婷亚洲| 久久久久久久国产电影| 寂寞人妻少妇视频99o| 中国国产av一级| 亚洲图色成人| 欧美精品人与动牲交sv欧美| 精品少妇久久久久久888优播| 国产亚洲av片在线观看秒播厂| 男女啪啪激烈高潮av片| 日本爱情动作片www.在线观看| 在线观看人妻少妇| 超色免费av| 王馨瑶露胸无遮挡在线观看| 宅男免费午夜| 精品久久蜜臀av无| 999精品在线视频| 国产成人一区二区在线| 男女高潮啪啪啪动态图| 午夜免费男女啪啪视频观看| 免费久久久久久久精品成人欧美视频| 青春草视频在线免费观看| 成人国语在线视频| 国产成人精品一,二区| 日日撸夜夜添| 久久久a久久爽久久v久久| 国产国语露脸激情在线看| 老汉色∧v一级毛片| 大香蕉久久成人网| 另类精品久久| av福利片在线| av线在线观看网站| 日韩一卡2卡3卡4卡2021年| 亚洲美女搞黄在线观看| 日本vs欧美在线观看视频| 黑人巨大精品欧美一区二区蜜桃| 性少妇av在线| 国产一区有黄有色的免费视频| 国产精品秋霞免费鲁丝片| 天天躁夜夜躁狠狠躁躁| 少妇人妻久久综合中文| 日日啪夜夜爽| 成人国语在线视频| 免费少妇av软件| 亚洲国产欧美在线一区| 秋霞伦理黄片| 在线观看国产h片| 亚洲欧美成人精品一区二区| 在线观看美女被高潮喷水网站| 久久av网站| 黑人欧美特级aaaaaa片| 国产精品二区激情视频| 黄色毛片三级朝国网站| 国产白丝娇喘喷水9色精品| 91精品伊人久久大香线蕉| 女性生殖器流出的白浆| 咕卡用的链子| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 亚洲一码二码三码区别大吗| 亚洲欧美精品综合一区二区三区 | 国产一区亚洲一区在线观看| 日韩电影二区| 欧美中文综合在线视频| 18禁国产床啪视频网站| 精品少妇久久久久久888优播| 99国产精品免费福利视频| 欧美日韩视频高清一区二区三区二| 亚洲,欧美,日韩| 国产成人av激情在线播放| 深夜精品福利| 久久精品久久精品一区二区三区| 久久久国产精品麻豆| 亚洲国产欧美网| 欧美日韩综合久久久久久| 美国免费a级毛片| 精品国产乱码久久久久久男人| 国语对白做爰xxxⅹ性视频网站| 最近中文字幕2019免费版| 性色avwww在线观看| 欧美激情高清一区二区三区 | 亚洲欧美色中文字幕在线| 精品午夜福利在线看| 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久 | 亚洲av在线观看美女高潮| 极品人妻少妇av视频| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | 国产综合精华液| 亚洲成av片中文字幕在线观看 | 1024香蕉在线观看| 亚洲精品久久午夜乱码| 在线精品无人区一区二区三| 亚洲色图综合在线观看| 成人亚洲欧美一区二区av| 日韩免费高清中文字幕av| 国产成人精品久久久久久| 中文乱码字字幕精品一区二区三区| 天天操日日干夜夜撸| 欧美日韩精品网址| 青草久久国产| 韩国精品一区二区三区| 国产精品人妻久久久影院| 久久精品熟女亚洲av麻豆精品| √禁漫天堂资源中文www| 国产不卡av网站在线观看| 国产成人av激情在线播放| 久久久久国产网址| videossex国产| 成年美女黄网站色视频大全免费| 狂野欧美激情性bbbbbb| 国产精品一国产av| 久久精品国产鲁丝片午夜精品| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 一级毛片电影观看| 国产在线视频一区二区| 久久精品国产综合久久久| 久久人妻熟女aⅴ| 水蜜桃什么品种好| 亚洲精品,欧美精品| 亚洲成人一二三区av| 日韩伦理黄色片| 国产日韩欧美亚洲二区| 国产激情久久老熟女| 久久亚洲国产成人精品v| xxxhd国产人妻xxx| 99国产综合亚洲精品| www日本在线高清视频| 美女大奶头黄色视频| 性色av一级| 亚洲欧美成人综合另类久久久| 久久久国产欧美日韩av| 精品一区在线观看国产| 日本黄色日本黄色录像| 美国免费a级毛片| 亚洲av欧美aⅴ国产| 亚洲精品在线美女| 日韩制服骚丝袜av| 国产精品香港三级国产av潘金莲 | 亚洲精品国产一区二区精华液| 少妇的逼水好多| 久久精品久久精品一区二区三区| 国产有黄有色有爽视频| 日韩 亚洲 欧美在线| 国产精品一国产av| 极品少妇高潮喷水抽搐| 国产精品无大码| 女性生殖器流出的白浆| 国产精品欧美亚洲77777| 久久这里有精品视频免费| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| www.精华液| av视频免费观看在线观看| av一本久久久久| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| 成年女人在线观看亚洲视频| 在线观看三级黄色| 女人高潮潮喷娇喘18禁视频| 久久久久精品久久久久真实原创| 纯流量卡能插随身wifi吗| 欧美人与性动交α欧美精品济南到 | 亚洲精品国产av成人精品| 亚洲人成77777在线视频| 日本av手机在线免费观看| 久久久精品免费免费高清| 亚洲欧洲日产国产| 少妇被粗大的猛进出69影院| 国产精品三级大全| 久热这里只有精品99| 亚洲国产av影院在线观看| 一边摸一边做爽爽视频免费| 男女下面插进去视频免费观看| 9色porny在线观看| 伊人久久国产一区二区| 免费观看a级毛片全部| 亚洲精品在线美女| 久久99精品国语久久久| 亚洲av免费高清在线观看| 精品国产乱码久久久久久男人| 大片免费播放器 马上看| 成人免费观看视频高清| xxxhd国产人妻xxx| 人人妻人人爽人人添夜夜欢视频| 在线观看国产h片| 国产不卡av网站在线观看| 男女边吃奶边做爰视频| 亚洲国产看品久久| av网站在线播放免费| 亚洲国产看品久久| √禁漫天堂资源中文www| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 成人午夜精彩视频在线观看| 久久久精品94久久精品| 国产精品国产av在线观看| 亚洲欧洲精品一区二区精品久久久 | 大码成人一级视频| 国产精品久久久av美女十八| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 日日撸夜夜添| 国产一区有黄有色的免费视频| 女人精品久久久久毛片| 人妻 亚洲 视频| 校园人妻丝袜中文字幕| 免费观看av网站的网址| 超碰97精品在线观看| 久久久久久伊人网av| 蜜桃在线观看..| 国产精品久久久久久av不卡| 日韩av不卡免费在线播放| 久久久久久免费高清国产稀缺| 免费观看a级毛片全部| 韩国精品一区二区三区| 国产视频首页在线观看| 最近中文字幕2019免费版| 人妻系列 视频| 亚洲国产av影院在线观看| 久久毛片免费看一区二区三区| 国产精品久久久久久av不卡| 亚洲av欧美aⅴ国产| 男人舔女人的私密视频| 男女高潮啪啪啪动态图| 国产欧美亚洲国产| 黄色视频在线播放观看不卡| 免费播放大片免费观看视频在线观看| 久久这里有精品视频免费| 国产成人a∨麻豆精品| 一级,二级,三级黄色视频| av线在线观看网站| 中国国产av一级| 欧美日韩一区二区视频在线观看视频在线| 啦啦啦啦在线视频资源| 国产男人的电影天堂91| 日本黄色日本黄色录像| 欧美日韩av久久| 久久久精品国产亚洲av高清涩受| 18+在线观看网站| 美国免费a级毛片| 91aial.com中文字幕在线观看| 亚洲欧美色中文字幕在线| 久久精品久久精品一区二区三区| 天天操日日干夜夜撸| 自线自在国产av| 国产人伦9x9x在线观看 | 欧美日韩av久久| 日本wwww免费看| 亚洲欧美成人精品一区二区| 一本大道久久a久久精品| 男人操女人黄网站| 亚洲国产看品久久| 嫩草影院入口| 国产黄频视频在线观看| 国产色婷婷99| 午夜福利视频精品| 2022亚洲国产成人精品| 亚洲欧美色中文字幕在线| 亚洲色图综合在线观看| 亚洲激情五月婷婷啪啪| 午夜福利视频在线观看免费| 久久久久久久精品精品| av网站免费在线观看视频| 国产在线一区二区三区精| 美女xxoo啪啪120秒动态图| 免费女性裸体啪啪无遮挡网站| 晚上一个人看的免费电影| 日韩av免费高清视频| 亚洲人成77777在线视频| 在线观看www视频免费| 一级片'在线观看视频| 色94色欧美一区二区| 日韩中文字幕欧美一区二区 | 日本wwww免费看| 熟女av电影| www日本在线高清视频| 综合色丁香网| 大话2 男鬼变身卡| www.自偷自拍.com| 人人澡人人妻人| 天天操日日干夜夜撸| 国产乱人偷精品视频| 黄片播放在线免费| av网站免费在线观看视频| 新久久久久国产一级毛片| 看免费av毛片| 亚洲av中文av极速乱| 亚洲欧美色中文字幕在线| 在线观看免费高清a一片| 只有这里有精品99| 久久狼人影院| 欧美日韩国产mv在线观看视频| 男人操女人黄网站| 欧美变态另类bdsm刘玥| 超碰成人久久| 搡女人真爽免费视频火全软件| 午夜免费男女啪啪视频观看| 99久国产av精品国产电影| 一二三四在线观看免费中文在| 少妇被粗大猛烈的视频| 熟女av电影|