• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition*

    2014-06-01 12:30:01PEIJi裴吉YUANShouqi袁壽其LIXiaojun李曉俊YUANJianping袁建平
    關(guān)鍵詞:建平

    PEI Ji (裴吉), YUAN Shou-qi (袁壽其), LI Xiao-jun (李曉俊), YUAN Jian-ping (袁建平)

    National Research Center of Pumps, Jiangsu University Zhenjiang 212013, China, E-mail: jpei@ujs.edu.cn

    Numerical prediction of 3-D periodic flow unsteadiness in a centrifugal pump under part-load condition*

    PEI Ji (裴吉), YUAN Shou-qi (袁壽其), LI Xiao-jun (李曉俊), YUAN Jian-ping (袁建平)

    National Research Center of Pumps, Jiangsu University Zhenjiang 212013, China, E-mail: jpei@ujs.edu.cn

    (Received August 20, 2013, Revised January 12, 2014)

    Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadiness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under thedes.0.6Q condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unsteadiness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for obtaining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.

    numerical prediction, flow unsteadiness, turbulence intensity, centrifugal pump with volute

    Introduction

    The centrifugal pump is one of the most important energy conversion device widely used in almost all industrial and agricultural applications: including the nuclear industry, the petroleum industry, the agribusiness, the chemistry industry, as well as the cryogenic propellant pumping. The complex inner flow in the centrifugal pump, with a strong rotor-stator interaction, can generate hydraulic excitation forces and give rise to pressure pulsations, especially under a part-load condition. These dynamic pressures then will lead to mechanical vibrations and alternating stresses in various pump components, called the flow-induced vibration[1]. The vibrations transmitted to the foundations can spread as the solid-borne noise throughout the building, and the vibrating pump structures can also radiate air-borne and fluid-borne noises.

    This periodical rotor-stator interaction involves two kinds of effects, as discussed by Feng et al.[2]. The first is the downstream effect of the impeller on the stator flow, which is characterized by unsteady effects due to the highly distorted relative impeller flow field and impeller wakes. The second is the upstream effect of the stator on the impeller flow, which causes unsteady pressures and velocity fluctuations to the relative flow. This unsteady effect was studied both numerically and experimentally, and most of the investigations focus on the radial diffuser pumps because of the multi-vanes of both the rotor and the stator and the more complicated mechanism. Shi and Tsukamoto[3]made calculations based on the three dimensional unsteady Reynolds-averaged Navier-Stokes (URANS) equations with standard turbulence models within an entire stage of a diffuser pump to investigate the pressure fluctuations due to the interaction between impeller and diffuser vanes. He et al.[4]calculated the 3-D unsteady flow in a diffuser pump stage. All impellerblades and diffuser vanes were considered simultaneously at the design operation point by using a time marching based method. Zhang and Tsukamoto[5]calculated an unsteady flow for a vaned diffuser to investigate unsteady hydrodynamic forces and pressure fluctuations in the diffuser region. Feng et al.[6]calculated the transient flow in an industrial radial pump stage with all the blades by the CFX at the design operating point, and experimental work was carried out to investigate the unsteady flow in a low specific speed radial diffuser pump using LDV and PIV techniques. The phase-averaged velocity field, the turbulence field, and the blade orientation effects were quantitatively examined in detail. Akhras et al.[7]revealed by the LDV that there was a presence of the jet-wake flow structure in the impeller exit. Pintrand et al.[8]presented some results of 2-D LDV measurements within the outer part of the impeller and the vaned diffuser. Sinha and Katz[9]used PIV measurements to identify the unsteady flow structure and turbulence in a transparent radial pump with a vaned diffuser. Some other research work[10-14]can also be found for the study of the pressure fluctuation caused by the periodical unsteady flow in centrifugal pumps and turbines.

    However, most of numerical results mentioned above were only visualized in the whole flow channel for limited time points or at limited monitor positions for a whole impeller revolution. It is not easy to check the unsteadiness of the flow considering both the whole revolution period and the whole flow channel at the same time in such a way. Therefore, it is necessary to find a way that can solve this problem, and can check the flow unsteadiness directly and in detail in the design of a low vibration and low noise pump. In addition, the complex unstable flow under a part-load condition in a centrifugal pump has still not been fully understood. Consequently, this paper focuses on the CFD simulation and the flow unsteadiness analysis for a centrifugal pump with volute under a typical partload conditiondes.(0.6Q). The periodic flow unsteadiness is quantitatively investigated in detail by defining the PFIC, the time-averaged VUIC and the time-averaged TIC in the impeller, the side chamber and the volute fluid domain for an impeller revolution, which can improve the understanding of the impeller-volute interaction in centrifugal pumps and can be used to decrease the unsteadiness in the pump design.

    1. Definition of periodic flow unsteadiness

    The definition of the flow unsteadiness is based on[15-17]. For the transient simulations obtained by the URANS equations, the pressure fluctuation components are only the phase-averaged values, which are highly periodic at each grid node in the whole computational domain, and no instantaneous fluctuating pressure components are obtained. Therefore, the periodical unsteady pressure p at a grid node can be decomposed into two parts: the time-averaged pressureand the periodic pressure p~ representing the part of the pressure that changes periodically with the blade passing frequency, and they are defined as

    Therefore, to determine the magnitude of the three-dimensional pressure fluctuations for an entire revolution period, a non-dimensional pressure fluctuation intensity coefficientis defined, as in our former paper[18-20],

    and it is calculated by the standard deviation of the unsteady pressure normalized by the dynamic pressure based on the impeller tip speed u2. Here, N represents the sample number during one revolution period, t0is the starting time for one period of the transient simulation.

    To clearly understand the 3-D periodical unsteady velocity and the turbulence behavior caused by the impeller-volute interaction in the centrifugal pump with twisted blades, the 3-D velocity unsteadiness intensity and the turbulence intensity in both impeller and volute are defined in this section. In order to examine quantitatively the 3-D unsteadiness of the impeller relative flow, the UVIC Iu3 Dis calculated by the root mean squares of three relative periodic components normalized by the impeller tip speed u2in Eq.(4), and the time-averaged UVICis calculated in Eq.(5) considering the results for 120 time steps in one impeller revolution, and the examined points in the rotor region are in the rotating frame of reference. The UVIC in both sidechamber and volute fluid domains, Su3 D, is defined by the root mean squares of three absolute periodic velocity components in Eq.(6), and the time-averaged UVICis calculated by Eq.(7). The way of calculating periodic velocity components in the rotating and stationary frames of reference can be found in Ref.[15]

    The TIC Tu3 Dis defined in Eq.(8) by the turbulence kinetic energy k( x, y, z,φ). The 3-D time-averaged TICin one period is calculated by Eq.(9).

    It is noted that the broad-band low-frequency fluctuations (i.e., non-periodic) are not considered in this method, and only the periodic fluctuations caused by the RSI with a significant magnitude are included. The method can help to establish the relationship between the geometrical parameters of the hydraulic components and the unsteady flow directly, although so far the unsteady flow behaviors in centrifugal pumps are not well understood.

    2. Numerical simulation

    A commercial single-stage single-suction horizontal centrifugal pump is selected as the calculation model. The overview of the pump structure is shown in Fig.1. The design parameters of the pump is shown in Table 1.

    Table 1 Parameters of the pump

    The 3-D URANS equations are solved using the shear stress transport (SST) turbulence model. The mass conservation equation and the momentum conservation equation for incompressible fluid are as follows:

    where μ is the dynamic viscosity, Fiis the source item, andis the Reynolds stress. Since here all variables are mean flow quantities, it is customary to drop time symbols. The transport equations for k and ω in the SST turbulence model are as follows:

    The structured grids for computational domains are generated using the grid generation tool ICEMCFD 12.1, the grid details in both rotating and stationary domains are partially shown in Figs.2 and 3, and the number of grid elements is 3 657 012 for both rotating and stationary domains. The independence of the solutions from the number of grid nodes is proven by simulating the flow field with different numbers of grid nodes. The maximum non-dimensional wall distance+

    y<40 is obtained in the complete flow field. Both the hub and shroud side chambers between the impeller and the pump casing are also included in the grids to take the leakage flow effect into account.

    Fig.2 Grid details in impeller and side chamber

    Fig.3 Grid in volute domain

    The discretization in space is of second-order accuracy, and the second-order backward Euler scheme is chosen for the time discretization. The interface between the impeller and the casing is set to the “transient rotor-stator” to capture the transient rotor-stator interaction in the flow, because the relative position between the impeller and the casing is different for different time steps with this kind of interface. Two different coordinate systems are utilized for rotation and stationary domains, respectively. The inlet boundary condition is set to the total pressure in the stationary frame while the outlet condition is set to the Mass flow rate, and all specific values are obtained from the laboratory test. The smooth wall condition is used for the near wall function. The chosen time step Δt for the transient simulation is 0.000172414 s for the nominal rotating speed, corresponding to the changed angle of 3o, therefore, 120 transient results are included for one impeller revolution calculation. Within each time step, the number of iterations is chosen as 10 and the iteration stops when the RMS residual is less than 10-4. The convergence criterion for the transient problem is that the result reaches its stable periodicity, 5 revolutions of the impeller for each operational condition in this case are involved. To obtain the stable numerical simulation, a steady calculation with the frozen rotor strategy is carried out in advance.

    3. Results and discussions

    3.1 Experimental validation

    To verify the accuracy of the calculation, experimental data are collected for the model pump in the laboratory, and the test rig is shown in Fig.4. The pressure in the inlet and the outlet is measured by the pressure sensor, with a precision of 0.1%. The flow rates are measured by the LWGY-200A turbine flow meter with the measurement error within 0.5%.

    Fig.4 Test rig

    Fig.5 Performance curves for model pump

    Figure 5 shows the performance curves for the model pump, and the result under each flow rate is the mean value of the unsteady calculation results. As can be seen from the figure, the measured and the calculated heads are compared for different flow rates. Good agreement is obtained for the design and large flow rates, and the calculated head results are lower thanthe measured ones for part-load conditions, because some additional flow instabilities may occur at small flow rates, and it is not easy to capture them accurately by the URANS CFD simulation.

    Fig.6 Time-averaged PFIC distributions in impeller domain at midspan

    Fig.7 Time-averaged PFIC distributions around blades at midspan

    3.2 Pressure fluctuation intensity analysis under 0.6Qdes.condition

    The time-averaged PFIC distribution is shown in Fig.6, which can describe the pressure fluctuation characters for the entire impeller revolution period in the impeller domain. The maximum fluctuation intensity can be found at the blade trailing edge near the blade pressure side for every flow channel under the partload condition. The relative high pressure fluctuation intensity can be clearly observed near the impeller outlet, and the intensity decreases gradually from the outlet to the impeller inlet area, because of a strong rotor-stator interaction at the impeller outlet area. Figure 7 shows the pressure fluctuation intensity distribution around all blades of the impeller at the midspan, and the time-averaged PFIC distributions on both PS and SS of the blade can be clearly seen. The streamline coordinate is defined as 0 at the inlet, 0.25 at the blade leading edge, 0.75 at the trailing edge, and 1.0 at the outlet. The PFIC at LE is smaller than at TE, and a sharp increase of PFIC can be seen at TE, which corresponds to the maximum value described above. From TE to LE, the PFIC decreases slowly around the blade, and the change rate is larger around PS of the blade. The PFIC distribution around PS is larger than SS, and the difference increases from LE to TE. In addition, the PFIC distributions for all blades are almost similar, and the distribution of PFIC is symmetrical in the impeller.

    Fig.8 Time-averaged PFIC distributions in side chamber and volute domain

    Figure 8 shows the time-averaged PFIC distributions in the side chamber and the volute domain. From the left picture, a high pressure fluctuation can be seen at the area near the blade outlet, which means that in this area a strong fluctuation intensity can be found for three directions. In the right picture, the maximum PFIC can be observed at the beginning section of the spiral not far from the tongue in the volute.

    Fig.9 Time-averaged VUIC distributions in impeller domain

    3.3 Velocity unsteadiness intensity analysis under 0.6Qdes.condition

    Figure 9 shows the time-averaged VUIC distribution in the impeller domain, which can describe the unsteadiness of the flow velocity in the centrifugal pump for entire impeller revolution. In the impeller channel, a high velocity unsteadiness can be clearly seen at position A which is near the blade suction side not far from the blade leading edge, and the unsteadiness spreads to the flow channel toward the outlet direction. In addition, a strong unsteadiness can be seen also at the blade trailing edge near the pressure side. However, in the axial direction, the time-averagedVUIC distributions in the impeller channel are different, a large VUIC can be observed near the blade hub side, as shown at position B.

    Fig.10 Time-averaged VUIC distributions in side chamber and volute

    The time-averaged VUIC distributions in the side chamber and the volute domain under the part-load condition are shown in Fig.10. A strong velocity unsteadiness for an impeller revolution can be found at position A which is strongly influenced by the leakage flow in the pump, although the unsteadiness in the side chamber is not strong. Therefore, the leakage flow has a significant effect on the inflow of the impeller, and can increase the inflow unsteadiness near the wall. In the volute, a strong VUIC can be also found in the area near the volute base line and the tongue, that means that the RSI effects are strong in these areas, which causes the strong velocity variations.

    Fig.11 Time-averaged TIC distributions in impeller domain

    3.4 Turbulence intensity analysis under 0.6Qdes.condition

    Figure 11 shows the time-averaged TIC distribution in the impeller domain under the part-load condition, which can describe the turbulence variation intensity for an impeller revolution. A very strong TIC can be clearly found at position A in the impeller channel near the blade suction side, which takes a half width of the channel. In addition, from the meridian section plane, a strong time-averaged TIC distribution can be observed near the impeller shroud side, shown as position B.

    Figure 12 shows the time-averaged TIC distribution in the side chamber and the volute under the partload condition. A strong influence of leakage flow on the inflow turbulence unsteady behaviors can be clearly observed, and the flow with a strong TIC can be seen near the wall, because the unstable flow and the vortexes are caused in this region. An obvious timeaveraged TIC can be also observed in the side chamber, because the flow channel is narrow, and the viscosity of the water becomes an important factor influencing the unsteady flow, and some vortexes with a relatively strong turbulence intensity can be observed in this region.

    Fig.12 Time-averaged TIC distributions in side chamber and volute

    4. Conclusions

    Based on the CFD simulation, the 3-D inner flow field in a centrifugal pump with volute is investigated from a brand new angle of view to check some new phenomena of the unsteady flow under a part-load condition in this paper. The whole flow passage is considered in the calculation, and the 3-D periodic flow unsteadiness is quantitatively investigated in detail by defining the time-averaged PFIC, VUIC and TIC, which are calculated by averaging the results of each mesh node for entire impeller revolution period to evaluate the strength distributions of flow unsteadiness directly and comprehensively. The following conclusions are reached from the analysis of the results.

    (1) A high pressure fluctuation intensity can be observed near the impeller outlet. The pressure fluctuation intensity is larger near the blade pressure side than near the suction side. A high fluctuation intensity can be also observed at the beginning section of the spiral of the volute.

    (2) The flow velocity unsteadiness intensity is stronger near the blade suction side than near the pressure side, and a strong intensity can be observed near the blade hub side.

    (3) A strong turbulence intensity can be clearly found near the blade suction side and near the impeller shroud side. An obvious time-averaged turbulence intensity can be observed in the side chamber.

    (4) The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbule-nce intensity near the wall.

    The accumulative flow unsteadiness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for obtaining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.

    Acknowledgement

    The authors would also like to thank Prof. Feng Jian-jun from Xi’an University of Technology.

    [1] GüLICH J. F.Centrifugal pumps[M]. Heidelberg, Germeny: Springer, 2010.

    [2] FENG J., BENRA F.-K. and DOHMEN H. J. Investigation of periodically unsteady flow in a radial pump by CFD simulations and LDV measurements[J].Journalof Turbomachinery,2011, 133(1): 011004.

    [3] SHI F., TSUKAMOTO H. Numerical study of pressure fluctuations caused by impeller-diffuser interaction in a diffuser pump stage[J].Journal of Fluids Engineering,2001, 123(3): 466-474.

    [4] HE L., CHEN T. and WELLS R. G. et al. Analysis of rotor-rotor and stator-stator interferences in multi-stage turbomachines[J].Journal of Turbomachinery,2002, 124(4): 564-571.

    [5] ZHANG M., TSUKAMOTO H. Unsteady hydrodynamic forces due to rotor-stator interaction on a diffuser pump with identical number of vanes on the impeller and diffuser[J].Journal of Fluids Engineering,2005, 127(4): 743-751.

    [6] FENG J., BENRA F.-K. and DOHMEN H. J. Unsteady flow visualization at part-load conditions of a radial diffuser pump: by PIV and CFD[J].Journal of Visuali-zation,2009, 12(1): 65-72.

    [7] AKHRAS A., HAJEM M E. and MOREL R. et al. Internal flow investigation of a centrifugal pump at the design point[C].Proceedings of 20th IAHR Symposium on Hydraulic Machinery and Systems.Charlotte, NC, USA, 2000.

    [8] PINTRAND G., CAIGNAERT G. and BOIS G. et al. Analysis of unsteady flows in a vaned diffuser radial flow pump[C].Proceeding of the XXIst IAHR Symposium on Hydraulic Machinery and Systems.Lausanne, Switzerland, 2002.

    [9] SINHA M., KATZ J. Quantitative visualization of the flow in a centrifugal pump with diffuser vanes. part I: On flow structures and turbulence[J].Journal of FluidsEngineering,2000, 122(1): 97-107.

    [10] RODRIGUZE C. G., EGUSQUIZA E. and SANTOS I. F. Frequencies in the vibration induced by the rotor stator interaction in a centrifugal pump turbine[J].Journalof Fluids Engineering,2007, 129(11): 1428-1435.

    [11] BYSKOV R. K., JACOBSEN C. B. and PEDERSEN N. Flow in a centrifugal pump impeller at design and offdesign conditions-Part II: Large eddy simulations[J].Journal of Fluids Engineering,2003, 125(1): 61-72.

    [12] LIU Shu-hong, SHAO Jie and WU Shang-feng et al. Numerical simulation of pressure fluctuation in Kaplan turbine[J].Science China Technological Sciences,2008, 51(8): 1137-1148.

    [13] LIU Hou-lin, WANG Kai and KIM Hyoung-Bum et al. Experimental investigation of the unsteady flow in a double-blade centrifugal pump impeller[J].ScienceChina Technological Sciences,2013, 56(4): 812-817.

    [14] JIANG Wei, LI Guo-jun and ZHANG Xin-sheng. Effect of oblique angle of blade trailing edge on pressure fluctuation in centrifugal pump[J].Journal of Drainage and Irrigation Machinery Engineering,2013, 31(5): 369-372.

    [15] FENG J. Numerical and experimental investigations on rotor-stator interaction in radial diffuser pumps[D]. Doctoral Thesis, Duisburg, Germeny: University of Duisburg-Essen, 2008.

    [16] FENG J., BENRA F.-K., DOHMEN H. J. Application of different turbulence models in unsteady flow simulations of a radial diffuser pump[J].Forschung Ingenieu-rwesen,2010, 74(3): 123-133.

    [17] FENG J., BENRA F.-K. and DOHMEN H. J. Unsteady flow investigation in rotor-stator interface of a radial diffuser pump[J].Forschung Ingenieurwesen,2010, 74(4): 233-242.

    [18] PEI J., YUAN S. and BENRA F.-K. et al. Numerical prediction of unsteady pressure field within the whole flow passage of a radial single-blade pump[J].Journalof Fluids Engineering,2012, 134(10): 101103.

    [19] PEI Ji, YUAN Shou-qi and YUAN Jian-ping. Numerical analysis of periodic flow unsteadiness in a singleblade centrifugal pump[J].Science China Technologi-cal Sciences,2013, 56(1): 212-221.

    [20] PEI Ji, YUAN Shou-qi and YUAN Jian-ping et al. The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump[J].Journal of Hydrodynamics,2013, 25(5): 702-709.

    10.1016/S1001-6058(14)60029-9

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51239005, 51009072), the National Science and Technology Pillar Program of China (Grant No. 2011BAF14B04).

    Biography: PEI Ji (1984-), Male, Ph. D.

    猜你喜歡
    建平
    Her dream came true
    Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
    建平博物館藏遼代雞冠壺
    仝建平 教授
    Preface
    周建平教授
    清·傅山論書句
    The Effect of Grammar Teaching on Writing in China
    卷宗(2016年3期)2016-05-10 07:41:06
    Ideology Manipulation Reflected in the Translation of Selected Works of Mao Zedong
    教師·下(2009年11期)2009-12-25 08:53:50
    影像站等
    文史天地(2009年11期)2009-12-09 05:55:10
    日韩中文字幕欧美一区二区| 日韩一卡2卡3卡4卡2021年| 国产又爽黄色视频| 国产精品熟女久久久久浪| 色综合婷婷激情| 国产日韩欧美亚洲二区| 国产亚洲午夜精品一区二区久久| 最新美女视频免费是黄的| 蜜桃国产av成人99| 亚洲国产欧美一区二区综合| 免费在线观看影片大全网站| 国产精品99久久99久久久不卡| 999久久久精品免费观看国产| 王馨瑶露胸无遮挡在线观看| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 亚洲免费av在线视频| 最新的欧美精品一区二区| 老司机影院毛片| 久久精品aⅴ一区二区三区四区| 一边摸一边抽搐一进一出视频| www.精华液| 一个人免费在线观看的高清视频| av欧美777| 老熟女久久久| 欧美乱码精品一区二区三区| 国产男女内射视频| 亚洲天堂av无毛| 免费女性裸体啪啪无遮挡网站| 国产不卡av网站在线观看| 午夜精品国产一区二区电影| 久久精品亚洲熟妇少妇任你| 久久影院123| 久久久精品国产亚洲av高清涩受| 69av精品久久久久久 | 五月开心婷婷网| 国产日韩欧美在线精品| 午夜激情av网站| 免费一级毛片在线播放高清视频 | 香蕉国产在线看| netflix在线观看网站| 精品久久蜜臀av无| 亚洲精品乱久久久久久| 精品人妻在线不人妻| 午夜福利影视在线免费观看| 777米奇影视久久| 在线av久久热| 欧美一级毛片孕妇| 亚洲精品国产一区二区精华液| 人妻一区二区av| 久久中文看片网| 国产精品国产av在线观看| 美女午夜性视频免费| 亚洲成人免费av在线播放| 法律面前人人平等表现在哪些方面| 久久久久网色| 高清在线国产一区| 高清在线国产一区| 久久青草综合色| 一级毛片女人18水好多| 高清黄色对白视频在线免费看| 久久天堂一区二区三区四区| 国产真人三级小视频在线观看| 国产精品久久久久久精品古装| 欧美亚洲日本最大视频资源| 亚洲av成人不卡在线观看播放网| 日韩成人在线观看一区二区三区| 国产在线一区二区三区精| 午夜精品国产一区二区电影| 涩涩av久久男人的天堂| 97在线人人人人妻| 成人特级黄色片久久久久久久 | 欧美在线黄色| 午夜福利一区二区在线看| 欧美黄色片欧美黄色片| 久久精品熟女亚洲av麻豆精品| 国产男女内射视频| 亚洲一卡2卡3卡4卡5卡精品中文| 深夜精品福利| 久久中文字幕一级| 精品人妻熟女毛片av久久网站| 少妇粗大呻吟视频| 欧美日韩国产mv在线观看视频| 精品国内亚洲2022精品成人 | 男女边摸边吃奶| 国产成人精品久久二区二区91| 国产精品av久久久久免费| 日韩视频一区二区在线观看| 香蕉丝袜av| 亚洲久久久国产精品| 久久久国产欧美日韩av| av视频免费观看在线观看| 80岁老熟妇乱子伦牲交| 亚洲午夜精品一区,二区,三区| tocl精华| 国产精品久久久久久人妻精品电影 | 啦啦啦在线免费观看视频4| 成人18禁在线播放| 夜夜夜夜夜久久久久| 男人操女人黄网站| 亚洲一区二区三区欧美精品| 天堂中文最新版在线下载| 美女高潮到喷水免费观看| 日韩精品免费视频一区二区三区| 热re99久久精品国产66热6| 亚洲成人免费电影在线观看| 999精品在线视频| 精品亚洲成国产av| 男人舔女人的私密视频| 日韩一区二区三区影片| 欧美久久黑人一区二区| 王馨瑶露胸无遮挡在线观看| 九色亚洲精品在线播放| 久久久久久久国产电影| 人妻 亚洲 视频| 天堂动漫精品| 国产亚洲欧美在线一区二区| 精品国产一区二区三区久久久樱花| 亚洲性夜色夜夜综合| 美女高潮到喷水免费观看| 狠狠婷婷综合久久久久久88av| 欧美日韩中文字幕国产精品一区二区三区 | 色婷婷av一区二区三区视频| 精品午夜福利视频在线观看一区 | 一本久久精品| 在线观看免费日韩欧美大片| 精品免费久久久久久久清纯 | av在线播放免费不卡| 久久精品国产亚洲av香蕉五月 | 亚洲av日韩精品久久久久久密| 天天操日日干夜夜撸| 久久精品91无色码中文字幕| 丝袜人妻中文字幕| 麻豆国产av国片精品| 久9热在线精品视频| 别揉我奶头~嗯~啊~动态视频| 久久久精品国产亚洲av高清涩受| √禁漫天堂资源中文www| 99精品在免费线老司机午夜| 亚洲成人手机| 国产99久久九九免费精品| 国产成人欧美在线观看 | tocl精华| 可以免费在线观看a视频的电影网站| 国产色视频综合| 国产精品偷伦视频观看了| 久久精品91无色码中文字幕| 99riav亚洲国产免费| 久久性视频一级片| 国产av又大| 久9热在线精品视频| 亚洲国产精品一区二区三区在线| 汤姆久久久久久久影院中文字幕| 亚洲一区二区三区欧美精品| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 高清黄色对白视频在线免费看| 18禁美女被吸乳视频| 免费观看人在逋| 精品免费久久久久久久清纯 | 欧美激情极品国产一区二区三区| 黄色视频不卡| 日韩熟女老妇一区二区性免费视频| 国产精品九九99| 国产精品九九99| 久久精品人人爽人人爽视色| av有码第一页| 欧美激情高清一区二区三区| 性高湖久久久久久久久免费观看| 国产精品二区激情视频| 大陆偷拍与自拍| 欧美精品一区二区免费开放| 日韩大片免费观看网站| 99精国产麻豆久久婷婷| 岛国毛片在线播放| 久久av网站| 99国产精品一区二区蜜桃av | 国产一卡二卡三卡精品| 国产高清激情床上av| 91精品三级在线观看| 51午夜福利影视在线观看| 亚洲欧洲日产国产| 国产成人欧美在线观看 | 亚洲精品国产一区二区精华液| 黄色a级毛片大全视频| 丝袜美足系列| 亚洲成人手机| 色综合婷婷激情| av不卡在线播放| 一区二区三区激情视频| 免费看a级黄色片| 91麻豆精品激情在线观看国产 | 精品少妇黑人巨大在线播放| 99re6热这里在线精品视频| 捣出白浆h1v1| 亚洲人成77777在线视频| 亚洲一码二码三码区别大吗| 这个男人来自地球电影免费观看| 菩萨蛮人人尽说江南好唐韦庄| 少妇的丰满在线观看| 国产精品免费大片| 亚洲欧美日韩高清在线视频 | 日本欧美视频一区| 国产欧美日韩一区二区三| 91成年电影在线观看| av网站免费在线观看视频| 一区二区av电影网| 婷婷丁香在线五月| 人人妻人人爽人人添夜夜欢视频| 97在线人人人人妻| 欧美黑人精品巨大| 国产在线免费精品| 十八禁人妻一区二区| 亚洲一码二码三码区别大吗| 交换朋友夫妻互换小说| 日韩大码丰满熟妇| 成人手机av| 久9热在线精品视频| 精品久久久久久电影网| 亚洲成国产人片在线观看| 国产精品久久电影中文字幕 | 国产精品电影一区二区三区 | 国产精品亚洲av一区麻豆| 国产激情久久老熟女| 久久久久久久久免费视频了| 真人做人爱边吃奶动态| 我要看黄色一级片免费的| 天天躁日日躁夜夜躁夜夜| 老司机在亚洲福利影院| 变态另类成人亚洲欧美熟女 | 午夜两性在线视频| 麻豆成人av在线观看| 日韩精品免费视频一区二区三区| 成年人免费黄色播放视频| 一区二区三区精品91| 亚洲精品一二三| 人人妻人人爽人人添夜夜欢视频| 亚洲第一青青草原| 免费看十八禁软件| 男女高潮啪啪啪动态图| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 一二三四社区在线视频社区8| 午夜福利在线免费观看网站| 久久性视频一级片| 欧美精品av麻豆av| 黄色视频在线播放观看不卡| 国产主播在线观看一区二区| 中文字幕另类日韩欧美亚洲嫩草| 在线观看免费午夜福利视频| 婷婷丁香在线五月| 正在播放国产对白刺激| xxxhd国产人妻xxx| 久久精品亚洲熟妇少妇任你| 午夜免费成人在线视频| 黑丝袜美女国产一区| 99久久精品国产亚洲精品| 亚洲成人手机| 超碰97精品在线观看| 天天躁夜夜躁狠狠躁躁| 久久亚洲精品不卡| 丝袜美腿诱惑在线| 久久精品91无色码中文字幕| 国产精品秋霞免费鲁丝片| 一级毛片女人18水好多| 激情视频va一区二区三区| 国产不卡av网站在线观看| 老鸭窝网址在线观看| 亚洲成a人片在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品一卡2卡三卡4卡5卡| 日韩 欧美 亚洲 中文字幕| 高清视频免费观看一区二区| 黄频高清免费视频| 国产成人av教育| 99九九在线精品视频| 97在线人人人人妻| 国产一区二区三区在线臀色熟女 | 69av精品久久久久久 | av电影中文网址| 天堂动漫精品| 日韩中文字幕视频在线看片| 久久精品国产99精品国产亚洲性色 | 日韩 欧美 亚洲 中文字幕| 国产免费现黄频在线看| 少妇裸体淫交视频免费看高清 | 国产三级黄色录像| 最黄视频免费看| 最新美女视频免费是黄的| 午夜福利影视在线免费观看| 欧美日韩黄片免| 国产又色又爽无遮挡免费看| 女人久久www免费人成看片| 一边摸一边抽搐一进一小说 | 在线观看免费午夜福利视频| 欧美国产精品一级二级三级| 丰满少妇做爰视频| 超碰97精品在线观看| 精品一品国产午夜福利视频| 大陆偷拍与自拍| 亚洲天堂av无毛| 国产亚洲午夜精品一区二区久久| 欧美日韩国产mv在线观看视频| 亚洲精品在线美女| 精品一品国产午夜福利视频| 国产免费福利视频在线观看| 日本一区二区免费在线视频| 91精品国产国语对白视频| 国产亚洲精品一区二区www | 精品一区二区三区视频在线观看免费 | 精品卡一卡二卡四卡免费| 亚洲三区欧美一区| a级片在线免费高清观看视频| 国产精品成人在线| 50天的宝宝边吃奶边哭怎么回事| 日本黄色视频三级网站网址 | 久久久久久久大尺度免费视频| 亚洲中文av在线| 国产精品成人在线| 国产精品电影一区二区三区 | 美国免费a级毛片| 国产日韩欧美视频二区| 亚洲美女黄片视频| 国产亚洲欧美在线一区二区| 波多野结衣一区麻豆| 亚洲 欧美一区二区三区| 嫩草影视91久久| 一个人免费在线观看的高清视频| 视频区图区小说| 国产男女内射视频| 精品少妇久久久久久888优播| 成人特级黄色片久久久久久久 | 十八禁网站网址无遮挡| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 亚洲美女黄片视频| 欧美精品人与动牲交sv欧美| 久久人人爽av亚洲精品天堂| 亚洲成人免费电影在线观看| 久热这里只有精品99| 国产精品偷伦视频观看了| 日日爽夜夜爽网站| 乱人伦中国视频| 国产亚洲欧美在线一区二区| 一区二区av电影网| www日本在线高清视频| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 热re99久久国产66热| 午夜福利视频在线观看免费| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区四区五区乱码| 国产免费视频播放在线视频| 蜜桃国产av成人99| 他把我摸到了高潮在线观看 | 在线观看舔阴道视频| 国产xxxxx性猛交| 国产黄色免费在线视频| 国产成人av激情在线播放| 亚洲欧美激情在线| 久久中文看片网| 国产精品成人在线| 9色porny在线观看| 亚洲欧美激情在线| 人妻一区二区av| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 老司机亚洲免费影院| 久久国产精品男人的天堂亚洲| 国产三级黄色录像| 亚洲一区二区三区欧美精品| 黄片播放在线免费| 久久精品国产a三级三级三级| 国产精品av久久久久免费| 日本wwww免费看| 亚洲av片天天在线观看| 成人国产一区最新在线观看| 女性生殖器流出的白浆| 视频区图区小说| 国产成人精品久久二区二区免费| 久久人人97超碰香蕉20202| 亚洲国产欧美一区二区综合| 日本wwww免费看| av天堂久久9| 一个人免费看片子| 亚洲国产欧美一区二区综合| 多毛熟女@视频| 性高湖久久久久久久久免费观看| 亚洲熟女精品中文字幕| 国产99久久九九免费精品| 国产高清视频在线播放一区| av有码第一页| 国产一区二区在线观看av| 午夜91福利影院| 欧美av亚洲av综合av国产av| 日本a在线网址| 欧美日韩亚洲国产一区二区在线观看 | 久久精品国产亚洲av香蕉五月 | 成人免费观看视频高清| 可以免费在线观看a视频的电影网站| 蜜桃国产av成人99| 极品教师在线免费播放| 免费av中文字幕在线| 日韩免费av在线播放| 视频区欧美日本亚洲| 无人区码免费观看不卡 | 女人高潮潮喷娇喘18禁视频| 亚洲精品自拍成人| 色综合婷婷激情| 欧美午夜高清在线| 日本wwww免费看| 国产精品亚洲一级av第二区| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 亚洲中文日韩欧美视频| 日韩 欧美 亚洲 中文字幕| 嫁个100分男人电影在线观看| 精品少妇内射三级| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久小说| 国产成+人综合+亚洲专区| 日韩欧美一区二区三区在线观看 | 丝袜喷水一区| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 欧美 亚洲 国产 日韩一| 亚洲,欧美精品.| 香蕉国产在线看| 午夜免费鲁丝| 99re在线观看精品视频| 欧美乱妇无乱码| 搡老熟女国产l中国老女人| 日韩三级视频一区二区三区| 99久久精品国产亚洲精品| 国产精品1区2区在线观看. | 国产老妇伦熟女老妇高清| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 黄片播放在线免费| av线在线观看网站| 老鸭窝网址在线观看| 午夜免费鲁丝| 国产在线观看jvid| 久久性视频一级片| 国产精品熟女久久久久浪| 久久毛片免费看一区二区三区| 亚洲国产av新网站| 国产精品99久久99久久久不卡| 热99久久久久精品小说推荐| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 狠狠精品人妻久久久久久综合| 黄频高清免费视频| 国产精品一区二区在线不卡| 91字幕亚洲| 纵有疾风起免费观看全集完整版| 最近最新中文字幕大全电影3 | 性高湖久久久久久久久免费观看| 可以免费在线观看a视频的电影网站| 777久久人妻少妇嫩草av网站| 十八禁网站网址无遮挡| 在线av久久热| 成人特级黄色片久久久久久久 | 久9热在线精品视频| 高清欧美精品videossex| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久av网站| 可以免费在线观看a视频的电影网站| 亚洲欧美激情在线| 国产精品自产拍在线观看55亚洲 | 中文字幕色久视频| 激情视频va一区二区三区| 国产精品 国内视频| 欧美性长视频在线观看| 久久久久精品人妻al黑| 高清av免费在线| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 99久久99久久久精品蜜桃| 国产精品国产av在线观看| 亚洲国产成人一精品久久久| 99在线人妻在线中文字幕 | 亚洲avbb在线观看| 男女午夜视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产视频一区二区在线看| 99国产精品一区二区蜜桃av | 怎么达到女性高潮| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| av免费在线观看网站| 黄色视频,在线免费观看| 久久人人爽av亚洲精品天堂| 91成人精品电影| 中文字幕人妻熟女乱码| 在线观看www视频免费| 最近最新免费中文字幕在线| 又黄又粗又硬又大视频| 91精品三级在线观看| 亚洲avbb在线观看| 乱人伦中国视频| 免费观看a级毛片全部| 咕卡用的链子| 国产亚洲欧美在线一区二区| 淫妇啪啪啪对白视频| 久热这里只有精品99| 久久久久久亚洲精品国产蜜桃av| 午夜两性在线视频| 男女下面插进去视频免费观看| 色视频在线一区二区三区| 国产无遮挡羞羞视频在线观看| 啦啦啦 在线观看视频| svipshipincom国产片| 久久国产精品男人的天堂亚洲| 欧美黄色淫秽网站| 国产深夜福利视频在线观看| 久久久国产成人免费| 女同久久另类99精品国产91| 亚洲av日韩在线播放| 丝袜美足系列| 午夜福利一区二区在线看| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| 国产男女超爽视频在线观看| av网站在线播放免费| 国产精品影院久久| 午夜老司机福利片| 三上悠亚av全集在线观看| 亚洲熟女精品中文字幕| 一级a爱视频在线免费观看| 69av精品久久久久久 | 欧美激情极品国产一区二区三区| 国产精品一区二区免费欧美| 他把我摸到了高潮在线观看 | 亚洲欧美色中文字幕在线| 女人精品久久久久毛片| 黑人巨大精品欧美一区二区蜜桃| 后天国语完整版免费观看| 亚洲三区欧美一区| 国产精品 国内视频| 久久久久网色| 久久99一区二区三区| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久男人| 天天躁日日躁夜夜躁夜夜| 国产精品av久久久久免费| 9191精品国产免费久久| 欧美日本中文国产一区发布| 国产成人av激情在线播放| 国产欧美日韩一区二区三| 国产精品 欧美亚洲| 国产日韩欧美在线精品| 欧美一级毛片孕妇| 亚洲国产毛片av蜜桃av| 久久精品国产99精品国产亚洲性色 | 免费观看人在逋| 91九色精品人成在线观看| 日韩视频一区二区在线观看| 国产1区2区3区精品| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 天堂动漫精品| 日本av手机在线免费观看| 亚洲成av片中文字幕在线观看| 最新美女视频免费是黄的| 亚洲视频免费观看视频| 国产高清videossex| 在线永久观看黄色视频| 久久久精品94久久精品| 亚洲国产看品久久| 中文字幕色久视频| 精品一区二区三卡| 最新在线观看一区二区三区| tube8黄色片| 人妻久久中文字幕网| 国产又色又爽无遮挡免费看| 精品久久蜜臀av无| 国产精品久久久av美女十八| 亚洲免费av在线视频| 免费看a级黄色片| av片东京热男人的天堂| 纯流量卡能插随身wifi吗| 午夜精品久久久久久毛片777| 国产精品久久久久久精品古装| 久久精品亚洲av国产电影网| 午夜两性在线视频| 黄片大片在线免费观看| 激情视频va一区二区三区| 久久精品亚洲av国产电影网| 亚洲三区欧美一区| 国产黄频视频在线观看| 日本黄色视频三级网站网址 | 交换朋友夫妻互换小说| 成年版毛片免费区| 久久免费观看电影| 麻豆成人av在线观看| 国产成人影院久久av| 亚洲三区欧美一区| 欧美精品一区二区免费开放| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 老熟女久久久| 久久精品国产99精品国产亚洲性色 | 欧美日韩福利视频一区二区| 午夜视频精品福利| 日本一区二区免费在线视频| 国产日韩欧美亚洲二区| 国产单亲对白刺激| 免费看a级黄色片| 久久久国产一区二区| 1024香蕉在线观看| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频|