• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-phase air-water flows: Scale effects in physical modeling*

    2014-06-01 12:30:01PFISTERMichael

    PFISTER Michael

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Hydraulic Constructions (LCH), Station 18, CH-1015 Lausanne, Switzerland, E-mail: michael.pfister@epfl.ch

    CHANSON Hubert

    The University of Queensland, School of Civil Engineering, Brisbane QLD 4072, Australia

    Two-phase air-water flows: Scale effects in physical modeling*

    PFISTER Michael

    Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratory of Hydraulic Constructions (LCH), Station 18, CH-1015 Lausanne, Switzerland, E-mail: michael.pfister@epfl.ch

    CHANSON Hubert

    The University of Queensland, School of Civil Engineering, Brisbane QLD 4072, Australia

    (Received February 25, 2014, Revised April 8, 2014)

    Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent scales) can be affected by scale effects, even in relatively large laboratory models.

    air entrainment, hydraulic structures, physical modeling, scale effects, two-phase flow, Morton number

    Introduction

    In 1941, the tunnel spillway on the Arizona side of the Boulder Dam (USA) operated during four months with a relatively small discharge, when a routine inspection indicated that a 35 m long tunnel section was completely destroyed as a consequence of cavitation damage. The repairs included a re-lining combined with the installation of – then not yet common–aeration devices, and the US Bureau of Reclamation undertook a number of “air injection” device model studies in a 60:1 scale model[1]. This study certainly represented a pioneer work in chute aeration studies, although the results seemed rather disappointing at the time. Bradley[1]concluded: “The results of this investigation were negative in character. The plan for aeration of the Boulder Dam spillway by devices constructed on the tunnel invert…does not appear encouraging”. The statement reflected that only very small, insufficient air contents were measured in the physical model, designed based upon a Froude similitude. Bradley[1]acknowledged, “The viscosity of the water and air are same in both model and prototype, and that entrainment of air from the surface will be much more pronounced in the prototype”.

    Air-water two-phase flows have been observed in several hydraulic structures, such as hydraulic jumps, intakes, drop-shafts, spillways, jets and plunge pools (Fig.1(a)). The flow phenomena in these structures are challenging, and yet relevant to hydraulic design. Physical model testing is often applied to investigate the related flow characteristics. In order to keep the physical models within economic dimensions and to minimize the discharges to supply, the Froude similitude and scale factors larger than 30:1 are often applied. These small models characteristically underestimate the air entrainment and transport in the fluid, because the effects of surface tension and viscosity are relatively over-represented in the model, given that water is used as fluid in both model and prototype. This is illustrated in Fig.1, showing a prototype operation (Fig.1(a)), two scale models at 10:1 and 25:1 geometric scales (Figs.1(b), 1(c)).

    Fig.1 Comparison of air-water flows between prototype and laboratory model operations of stepped spillways, (a) Paradise dam stepped spillway (Australia) on 5 March 2013 (Photograph H. Chanson), Q≈2500 m3/s , hc/h=2.9, Re=7× 106, h= 0.62 m, θ=57o, (b) Laboratory experiments (Courtesy of Mr P. Royet, IFSTTAR) Q =0.40 m3/s , hc/h=3.2, Re=2.6× 105, h=0.06 m, θ=53o, and (c) Laboratory experiments (Courtesy of Mr P. Royet, IFSTTAR) Re<4×104, h=0.024 m, θ=63.4o, 59oand 53o(from left to right)

    The literature describes mainly two approaches to combine the Froude similitude with a reasonable approximation of the rate of air entrainment, namely (a) limit the model scale to maximally 10:1[2,3], or (b) respect minimum values of the Weber or Reynolds numbers[4]. Both approaches allow more realistic predictions of air entrainment and transport based upon the scaled model results. These limits are derived from model families or comparisons with prototype measurements, if available[5].

    Early studies of the bubble rise velocity in stagnant fluids highlighted the relevant dimensionless numbers, namely the Reynolds and Weber numbers. The results suggested some limiting value of them, above which the effect of fluid constants on the bubble motion is small. In these contributions, the introduction of the Morton number[6], as a link between the aforementioned numbers, allows for an expression of these limiting values as function of the Froude number. This concept is applied to free-surface flows in hydraulic structures on the basis of recent scaling limitations, and the notion of scale effects is discussed in a broader context.

    1. Bubble rise velocity in stagnant fluid

    The motion of a rising bubble in a stagnant fluid is dominated by the physical constants of the fluid and of the gas, namely μ is the dynamic viscosity, ρ is the density and σ is the surface tension. The first two variables must be theoretically considered for both gas and fluid phases. For pressures which are far from the critical point, the forces within a gas bubble might be neglected as they are small compared to those within the liquid. Note that the critical point describes the condition at which the phase boundary between fluid and gas terminates. For water, the latter is at around 374oC and 22 MPa. These conditions are unlikely in hydraulic engineering, and the gas (herein air) properties are of minor significance.

    The motion of gas bubbles in a fluid is governed by buoyancy, resulting from the density difference between gas and fluid. If the gas density is negligible in comparison to that of the fluid, as for air and water, the buoyancy is a function of the pressure gradient?P/?z, hence the gravitational acceleration g, where z is the vertical elevation. Buoyancy depends further upon the bubble volume which is typically linked to an equivalent sphere diameter D. When a bubble moves relative to the surrounding fluid, the latter generates a resistance linked to the bubble (subscript b) rise velocity Vb.

    Schmidt[7]conducted a dimensional analysis of the bubble motion in fluids. He concluded that the related processes can be described based on the following dimensionless numbers:

    The bubble Reynolds number

    Fig.2 Drag coefficient as a function of the bubble Weber number Webfor a single bubble rising at terminal velocity in various stagnant fluids (Habermann and Morton 1954)

    The bubble Froude number

    where ν=/μ σ is the kinematic viscosity. The bubble rise velocity Vbwas included in all dimensionless numbers, and it could not be derived simply from dimensionless charts based upon Reb, Frband Web. A rearrangement was thus proposed to give only one explicit term containing Vb, namely that of the bubble Reynolds number Reb. Schmidt suggested

    Equation (4) describes a priori the bubble characteristics including its diameter D and rise velocity Vb. Equation (5) includes the bubble diameter, fluid constants and gravity acceleration, while Eq.(6) contains exclusively the fluid constants and gravity acceleration. Consequently the bubble rise velocity in a stagnant, infinite fluid volume was expressed by Schmidt[7]as

    He concluded that physical experiments had to be conducted to support the above hypotheses, in particular with different fluids.

    Habermann and Morton[8]performed some experiments related to the drag coefficient of freely rising air bubbles in stagnant fluids under various fluid properties: water at 6oC, 19oC, 21oC and 49oC, glim solution, mineral oil, varsol, turpentine, methyl alcohol, olive oil, syrup, different corn syrup-water mixtures, glycerin-water mixtures, and an ethyl alcohol-water mixture. Equation (6) was adapted by introducing the dimensionless parameter Mo=gμ4/(ρσ3), now called the Morton number[6]

    The tests of Habermann and Morton[8]covered 0.2× 10-2≤Mo ≤0.3× 10-11.

    With increasing bubble size, a change in rising bubble shape was observed, from spherical to ellipsoidal, and finally to spherical cap, for all liquids[8,9]. The bubble volumes at which the transition occurred were functions of the fluid properties, thus of the dimensionless number Mo. The reasoning may be applied to similar bubbles in different fluids, as well as for a single fluid including bubbles under different scale factors. The latter is a common situation in physical modeling of high-velocity free-surface flows in hydraulic structures. There, the two-phase gas-liquid flows are characterized by constant properties since air andwater are used in both prototype and model, whereas other characteristic values linked to geometry and force ratios may vary. Note however that Habermann and Morton[8]concluded that the air bubble motion at the terminal velocity cannot be described solely by the dimensionless numbers presented in Eqs.(4) to (6), because the drag coefficient was also a function of the gas phase motion within the bubbles.

    An example for the effect of the Morton number Mo on the rise bubble drag coefficient is shown in Fig.2. Although no clear trend is recognizable, “l(fā)arge” values of Mo(10-2) tended to relatively large drag coefficients, whereas “small” values of Mo(10-11) indicate smaller drag coefficients. Interestingly, for Web>40, all drag coefficient curves tended to collapse, independent of Mo. A similar trend could be seen in terms of the bubble Reynolds number Reb, where the data collapsed for Reb>3×103. The latter would imply that the terminal bubble rise velocity of air bubbles is similar when the equivalent bubble diameter is larger than some 0.01 m to 0.02 m. In practice, the air bubble rise velocity in water tends to be constant for bubble diameters between 0.001 m and 0.02 m, with increasing rise velocity with augmenting bubble size for D>0.02 m[9].

    2. Conceptual analogy to air-water mixture-flow

    In physical modeling of hydraulic structures, the behavior of a single air bubble in stagnant water is rarely of interest. Typically, the studies focus on the characteristics of air-water mixture flows as a continuum medium, for example, in stepped spillways, hydraulic jumps, free water jets, steep chutes, and dropshafts. The knowledge of the air bubble entrainment and transport is essential to describe the flow properties, including the adequate free-board height, jet disintegration, friction losses, and air-water mass transfer rate[2,10,11].

    Most physical models are kept within economical dimensions, implying a Froude similitude with a geometric scale ratio of typically 30:1 to 60:1[12,13]. The dynamic similitude used to derive model-scaling laws considers the ratios of forces acting on the fluid(s)[6]. The ratio of inertia to gravity forces results in the Froude number; the ratio of inertia to viscous forces gives the Reynolds number, the ratio of inertia to surface tension forces yields the Weber number. A true dynamic similarity of aerated flows require achieving identical Froude number, Reynolds number and Weber number in both prototype and model. This is physically impossible when the same fluids (air, water) are used in both prototype and model[6]. As a consequence, small scale models based upon the Froude similitude may underestimate the air transport in the fluid, because the relative effects of surface tension and viscosity are over-represented[11,14]. Since a true dynamic similitude exists only at full-scale, the underestimation of scale model air entrainment and transport must be minimized in modeling practice by limitations in terms of We or Re. These limits are derived from systematic model families and comparisons with prototype data.

    Fig.3 Bottom air concentration Cbcurves versus normalization functions f, downstream of (a) deflector, (b) drop aerators, with trend line for unaffected tests (–) and symbols for tests affected by scale effects, (–) Pfister and Hager (2010b) with data We0.5>140

    Such limits represent a link between the above description related to the bubble rise velocity (Section 1) and observations from model families (Section 3). By following the results for single bubbles in a stagnant fluid[7,8], a similar concept is proposed herein to adequately model an air-water mixture-flow continuum under a reduced geometric scale factor. The relevant dimensional numbers are:

    The Reynolds number

    Table 1 Limiting scale factors to prevent significant scale effects in two-phase air-water flows under Froude similitude, with a focus on air concentrations (also denoted as void fraction) for undistorted air-water scale models

    The Weber number

    3. Limiting factors

    A number of model families and comprehensive data sets were published to test scale effects in the modeling of air-water two-phase flows. These studies were based upon the Froude and Morton similitudes with undistorted models in geometrically similar models under controlled flow conditions to assess the associated-scale effects. Table 1 summarizes a number of relevant studies, leading to some suggested limiting criteria of about We0.5>110 to 170 and Re>1×105to 3×105when the relevant scaling parameter is the air concentration. For example, Pfister and Hager[15,16]identified a gross underestimate in terms of local bottom air concentration by up to one magnitude as We0.5<140. This is illustrated in Fig.3, where the abscissa corresponds to the streamwise normalizations fDand fSgiven by these authors, and the trend lines correspond to the best fit of all data from tests with We0.5≥140.

    Despite the relatively limited scope of experimental investigations listed in Table 1, their results demonstrated unequivocally the limitations for the physical modeling of two-phase air-water flows. The findings of these systematic experimental studies highlighted that (1) the notion of scale effects must be defined in terms of some specific set of two-phase airwater characteristics, and (2) some aerated flow properties are more affected by scale effects than others, even in large-size facilities[5,14]. The selection of the criteria to assess scale effects is critical: e.g., void fraction, turbulence intensity, or bubble size. Any mention of scale effects must be associated with a list oftested parameters[14,17], and this is well-known in mono-phase flows[18]. The experimental data showed that some parameters, such as bubble sizes and turbulent scales, are likely to be most affected by scale effects[5,14,19]. It is noteworthy that no distorted physical modeling of air-water flows was considered yet, though the scale distortion may enable to achieve some similarity in terms of bubble rise velocity on chute spillways and inclined plunging jets.

    Self-similarity is another powerful tool in turbulent air-water flow investigations involving a wide spectrum of spatial and temporal scales. Self-similarity is closely linked to dynamic and kinematic similarities, and the existence of self-similar relationships may have major implications on the measurement strategy in experimental and physical modeling studies[20,21]. Although it is impossible to achieve a true dynamic similarity in air-water flows because of too many relevant dimensionless parameters, a number of laboratory data showed several self-similar relationships that remain invariant under changes of scale. The results may provide a picture general enough to be used, as a first approximation, to characterize the air-water flow properties in similar hydraulic structures irrespective of the physical scale[22].

    In addition to dynamic similarity and self-similarity, a further modeling approach may be based upon some theoretical developments leading to theoretically-based equations. An illustration is the analytical solution of the advection diffusion equation for air bubbles[2,11,23,24]. The existence of theoretical relationships may have some implications regarding the laboratory study approach and measurement methods. The existence of an analytical solution may allow a drastic reduction of the amount of measurements.

    4. Discussion

    Previous studies used mostly two criteria to assess scale effects, i.e., the limiting values in terms of We0.5and Re (Table 1). When the same fluids (air and water) are used in prototype and model, the two numbers depend on each other, besides Fr and the Morton number Mo (Eq.(8)). The use of the Froude similitude with air and water as fluids in both model and the prototype leads to a similitude in terms of the Morton number: Mo is the constant and Fr is the constant. For a given Froude number Fr, the product MoFr2=We3/Re4has to be identical in the model and prototype flows. A transformation of Eq.(8) gives the direct relationship between the Reynolds number and Weber number

    Fig.4 Relationship between Re and Fr for We0.5=140 (Eq.(12))

    Table 1 suggests that the proposed limiting relationships in terms of scale effects for air-water flows have become more restrictive over time. The trend might be linked to the development in measurement techniques, allowing for more precise and punctual (instead of cross-sectional) two-phase air-water flow measurements. Ultimately, no scale effect is observed at full scale only, using air and water in prototype and model: i.e., in prototype flow conditions. But prototype observations are rare. The Aviemore Dam spillway investigations in New Zealand remain a key reference[25,26]. A few prototype observations were conducted, mostly qualitative like at the Dachaoshan Dam spillway[27]. But even the Aviemore Dam spillway data sets might be challenging. The flow conditions corresponded to Re≈2×106, which is one to two orders of magnitude lower than the design flow conditions of very large spillway systems. A number of recent air-water studies on dynamic similarity would suggest that the extrapolation of Aviemore Dam results could be subjected to some scale effects at larger Reynolds number. Figures 1 and 5 provide some comparative illustrations of prototype and laboratory airwater two-phase flows. Figure 1 presents some airwater skimming flow above a stepped spillway. The close-up photographs suggest that the turbulence next to the inception point of free-surface aeration differs significantly between prototype and models for a com-parable Froude number. Figure 5 shows a hydraulic jump stilling basin in operation. In the prototype (Fig.5(a)), the hydraulic power dissipated in the hydraulic jump as 6 MW per unit width, compared to 230 W/m in the laboratory model (Fig.5(b)) for an identical Froude number. Again the surface turbulence appears substantially different despite an identical Froude number.

    Fig.5 Comparison of air-water flow features between prototype and laboratory model operations of hydraulic jumps, (a) Hydraulic jump stilling basin downstream of Paradise Dam spillway (Australia) on 30 December 2010 (Courtesy of B. Chanson): Q≈6 300 m3/s, Fr=8, Re=2×107, and (b) Laboratory experiment: Q=0.030 m3/s, Fr=8, Re=6×104

    5. Conclusions

    The physical modeling of air-water two-phase flows in hydraulic engineering would require the Froude number (Fr), Weber number (We) and Reynolds number (Re) to be identical in prototype and laboratory. This is physically impossible unless working at full-scale. A re-arrangement of the dimensionless numbers results in the introduction of the Morton number (Mo). The survey of a number of detailed investigations served as the basis to the described scale effects in modeling high-speed two-phase flows. The results have highlighted the significance of the non-dimensional numbers Fr, We and Re, their combination yielding Mo, and some limiting values of Re or We to reduce scale effects. Combining these considerations together with published limits to minimize scale effects in terms of air concentration, the outcome indicates that values of Re>2×105to 3× 105should be respected to avoid relevant scale effects in terms of air concentrations within 5≤Fr≤15. If one limitation is considered, then the other is implicitly respected. For Fr<5, these limits have to be selected more conservatively. The notion of scale effects is closely linked with the definition of specific set of two-phase air-water characteristics.

    The results of recent experimental investigations emphasized that the selection of the criteria to assess scale effects is critical. These results show that some parameters, such as bubble sizes and turbulent scales, are likely to be affected by scale effects, even in relatively large-size laboratory models (e.g., 2:1 to 3:1). No scale effect is only observed at full scale using the same fluids in prototype and model. As final words, the present study emphasizes (again) the needs for full-scale prototype data of two-phase air-water flows, typically observed in prototype hydraulic structures.

    Acknowledgement

    The work was supported by the Australian Research Council (Grant No. DP120100481).

    [1] BRADLEY J. N. Study of air injection into the flow in the boulder dam spillway tunnels[R]. Hydraulic Labora- tory Report 186, USBR, Denver CO., 1945.

    [2] CHANSON H.Air bubble entrainment in free-surface turbulent shear flows[M]. London, UK: Academic Press, 1997.

    [3] BOES R. M. (MINOR H. E., HAGER W. H. eds.).Scale effects in modelling two-phase stepped spillway flow (Hydraulics of stepped spillways)[M]. Rotterdam, The Netherlands: A. A. Balkema, 2000, 53- 60.

    [4] PFISTER M., CHANSON H. Discussion to scale effects in physical hydraulic engineering models[J].Jour-nal of Hydraulic Research,2012, 50(2): 244-246.

    [5] CHANSON H. Hydraulics of aerated flows: Qui Pro Quo?[J].Journal of Hydraulic Research,2013, 51(3): 223-243.

    [6] PFISTER M., HAGER W. H. History and significance of the Morton number in hydraulic engineering[J].Journal of Hydraulic Engineering,2014, 140(5): 02514001.

    [7] SCHMIDT E. ?hnlichkeitstheorie der Bewegung von Flüssigkeitsgasgemsichen (similarity theory of motion in fluid-gas mixtures)[R]. Forschungsheft 365, 1-3, VDI- Verlag, Berlin, 1934(in German).

    [8] HABERMAN W. L., MORTON R. K. An experimental study on bubbles moving in liquids[J].Transactions of the American Society of Civil Engineers,1956, 121(1): 227-250.

    [9] COMOLET R. Sur le mouvement d’une bulle de gaz dans un liquide (gas bubble motion in a liquid medium)[J].La Houille Blanche,1979, (1): 31-42(in French).

    [10] RAO N. S. L., KOBUS H. E. and BARCZEWSKI B. H.Characteristics of self-aerated free-surface flows[M]. Berlin, Germany: E. Schmidt Verlag, 1975.

    [11] WOOD I. R.Air entrainment in free-surface flows. IAHR hydraulic structures design manual 4[M]. Rotterdam, The Netherlands: A. A. Balkema, 1991.

    [12] NOVAK P., CABELKA J.Models in hydraulic engineering. physical principles and design applicatio-ns[M]. London, UK: Pitman Publication, 1981.

    [13] CHANSON H. (CHANSON H. eds.)Physical modelling of hydraulics (Hydraulics of open channel flow: An introduction)[M]. 1st edition, London, UK: Edward Arnold, 1999, 261-283.

    [14] CHANSON H. Turbulent air-water flows in hydraulic structures: Dynamic similarity and scale effects[J].En-vironmental Fluid Mechanics,2009, 9(2): 125-142.

    [15] PFISTER M., HAGER W. H. Chute aerators I: Air transport characteristics[J].Journal of Hydraulic Enginee-ring, ASCE,2010, 136(6): 352-359.

    [16] PFISTER M., HAGER W. H. Chute aerators II: Hydraulic design[J].Journal of Hydraulic Engineering,ASCE,2010, 136(6): 360-367.

    [17] CHANSON H., CHACHEREAU Y. Scale effects affecting two-phase flow properties in hydraulic jump with small inflow Froude number[J].Experimental The-rmal and Fluid Science,2013, 45: 234-242.

    [18] SCHULTZ M. P., FLACK K. A. Reynolds-number scaling of turbulent channel flow[J].Physics of Fluids,2013, 25(2): 025104.

    [19] CHANSON H.Environmental hydraulics of open channel flows[M]. Oxford, UK: Elsevier Butterworth- Heinemann, 2004, 483.

    [20] BARENBLATT G. I.Scaling, self-similarity, and intermediate asymptotics[M]. Cambridge, UK: Cambridge University Press, 1996, 386.

    [21] FOSS J., PANTON R. and YARIN A. (TROPEA C., YARIN A. and FOSS J. eds.).Nondimensional representation of the boundary-value problem (Experimental fluid mechanics)[M]. Berlin, Germany: Springer, 2007, 33-83.

    [22] FELDER S., CHANSON H. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute[J].Experiments in Fluids,2009, 47(1): 1-18.

    [23] WOOD I. R. Air entrainment in high speed flows[C].Proceedings International Symposium Scale Effects in Modelling Hydraulic Structures, IAHR.Esslingen, Germany, 1984.

    [24] CHANSON H. (GUALTIERI C., MIHAILOVIC D. T. eds.).Advective diffusion of air bubbles in turbulent water flows (Fluid mechanics of environmental interfaces)[M]. Leiden, The Netherlands: Taylor and Francis, 2008, 163-196.

    [25] KELLER R. J. Field measurement of self-aerated high speed open channel flow[D]. Doctoral Thesis, Christ- church, New Zealand: University of Canterbury, 1972.

    [26] CAIN P. Measurements within self-aerated flow on a large spillway[D]. Doctoral Thesis, Christchurch, New Zealand: University of Canterbury, 1978.

    [27] LIN K., HAN L. Stepped spillway for dachaoshan RCC dam[C].Proceedings 29th IAHR Biennial Congress,Special Seminar.Beijing, China, 2001, 88-93.

    [28] KOBUS H. (KOBUS H. ed.).Local air entrainment and detrainment (Symp. scale effects in modelling hydraulic structures)[M]. Esslingen: Technische Akademie, 1984, 1-10.

    [29] KOSCHITZKY H.-P. Dimensionierungskonzept für Sohlbelüfter in Schussrinnen zur Vermeidung von Kavitationssch?den (Design concept for chute aerators to avoid cavitation damage)[R]. Mitteilung 65. Institut für Wasserbau, TU: Stuttgart, 1987(in German).

    [30] RUTSCHMANN P. (VISCHER D. ed.).Belüftungseinbauten in Schussrinnen (Chute aerators) (Mitteilung 97. laboratory of hydraulics, hydrology and glaciolo-gy)[M]. ETH: Zurich, 1988(in German).

    [31] SKRIPALLE J. Zwangsbelüftung von Hochgeschwindigkeitsstr?mungen an zurückspringenden Stufen im Wasserbau (forced aeration of high-speed flows at chute aerators)[R]. Mitteilung 124. Technische Universit?t, Berlin, 1994(in German).

    [32] CHANSON H. Understanding air-water mass transfer in rectangular dropshafts[J].Journal of EnvironmentalEngineering and Science,2004, 3(5): 319-330.

    [33] CHANSON H., AOKI S. and HOQUE A. Physical modelling and similitude of air bubble entrainment at vertical circular plunging jets[J].Chemical EngineeringScience,2004, 59(4): 747-754.

    [34] CHANSON H., GONZALEZ C. A. Physical modelling and scale effects of air-water flows on stepped spillways[J].Journal of Zhejiang University Science,2005, 6A(3): 243-250.

    [35] MURZYN F., CHANSON H. Experimental assessment of scale effects affecting two-phase flow properties in hydraulic jumps[J].Experiments in Fluids,2008, 45(3): 513-521.

    [36] FELDER S. Air-water flow properties on stepped spillways for embankment dams: Aeration, energy dissipation and turbulence on uniform, non-uniform and pooled stepped chutes[D]. D octoral Thesis, Brisbane, Australia: The University ofQueensland, 2013.

    10.1016/S1001-6058(14)60032-9

    * Biography: PFISTER Michael (1976-), Male, Ph. D., Research and Teaching Associate

    亚洲国产日韩一区二区| 中文字幕亚洲精品专区| 亚洲人与动物交配视频| 少妇 在线观看| 国产老妇伦熟女老妇高清| 综合色丁香网| 观看美女的网站| 91精品伊人久久大香线蕉| 一级毛片电影观看| 天堂中文最新版在线下载| av福利片在线观看| 国产精品久久久久久久电影| 国产成人精品无人区| 日韩一本色道免费dvd| 国产精品无大码| 婷婷色综合大香蕉| 亚洲天堂av无毛| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 精品国产国语对白av| 亚洲人与动物交配视频| 又黄又爽又刺激的免费视频.| 成年女人在线观看亚洲视频| 免费黄网站久久成人精品| 免费少妇av软件| 最近最新中文字幕免费大全7| 哪个播放器可以免费观看大片| 欧美精品一区二区免费开放| 少妇人妻 视频| 欧美日韩精品成人综合77777| 99热国产这里只有精品6| av播播在线观看一区| 看非洲黑人一级黄片| 街头女战士在线观看网站| 26uuu在线亚洲综合色| 国产成人精品婷婷| 国产一区亚洲一区在线观看| 中国三级夫妇交换| freevideosex欧美| 亚洲精品,欧美精品| 亚洲精品国产av蜜桃| 一区二区三区免费毛片| 最后的刺客免费高清国语| 国模一区二区三区四区视频| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜爱| 久久午夜福利片| 欧美 亚洲 国产 日韩一| 插阴视频在线观看视频| 最近2019中文字幕mv第一页| 久久精品夜色国产| 中文字幕亚洲精品专区| 在线观看一区二区三区激情| 秋霞伦理黄片| 久久鲁丝午夜福利片| 一本大道久久a久久精品| 国产成人精品久久久久久| 久久久欧美国产精品| 国产成人一区二区在线| 国产免费一级a男人的天堂| 青青草视频在线视频观看| 美女福利国产在线| 国产视频内射| 在线观看一区二区三区激情| 99热这里只有是精品50| 久久久精品免费免费高清| 国产精品一区二区三区四区免费观看| 国产熟女欧美一区二区| freevideosex欧美| 七月丁香在线播放| 校园人妻丝袜中文字幕| 国产精品嫩草影院av在线观看| 免费黄色在线免费观看| 又爽又黄a免费视频| 18+在线观看网站| 国产一级毛片在线| 国产精品国产三级国产专区5o| 男人狂女人下面高潮的视频| 涩涩av久久男人的天堂| 亚洲国产精品999| www.av在线官网国产| 寂寞人妻少妇视频99o| 久久久久精品久久久久真实原创| 日本猛色少妇xxxxx猛交久久| 卡戴珊不雅视频在线播放| av女优亚洲男人天堂| 欧美 日韩 精品 国产| 丝袜喷水一区| 亚洲精品一二三| 久久久久久久久久成人| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品一区二区三区在线| 日韩中字成人| 菩萨蛮人人尽说江南好唐韦庄| 五月开心婷婷网| av.在线天堂| 国产免费福利视频在线观看| freevideosex欧美| 精品国产一区二区久久| 日韩不卡一区二区三区视频在线| 91在线精品国自产拍蜜月| 久久精品夜色国产| 涩涩av久久男人的天堂| 黄色欧美视频在线观看| 国产成人一区二区在线| 久久人妻熟女aⅴ| 人人妻人人澡人人看| 亚洲国产精品一区三区| 婷婷色综合www| 丰满饥渴人妻一区二区三| 免费人成在线观看视频色| 99国产精品免费福利视频| 国产免费一级a男人的天堂| 黑人高潮一二区| 精品卡一卡二卡四卡免费| 少妇人妻精品综合一区二区| 中文字幕亚洲精品专区| 国产一区有黄有色的免费视频| 国产黄片美女视频| 91aial.com中文字幕在线观看| 激情五月婷婷亚洲| 日本av手机在线免费观看| 欧美日韩av久久| 欧美成人午夜免费资源| 在线播放无遮挡| 久久久久久久久久久久大奶| 亚洲国产欧美在线一区| 色视频在线一区二区三区| 国产在视频线精品| 午夜精品国产一区二区电影| 久久这里有精品视频免费| av福利片在线观看| 91午夜精品亚洲一区二区三区| 日本wwww免费看| 9色porny在线观看| 免费黄色在线免费观看| 国产精品人妻久久久久久| 黄片无遮挡物在线观看| 综合色丁香网| 久热久热在线精品观看| a级一级毛片免费在线观看| 日韩熟女老妇一区二区性免费视频| 日韩人妻高清精品专区| 国产精品免费大片| 狂野欧美白嫩少妇大欣赏| 在线观看一区二区三区激情| 国产黄片美女视频| 哪个播放器可以免费观看大片| 18禁在线播放成人免费| 老司机影院成人| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| 精品国产一区二区久久| 日日摸夜夜添夜夜爱| 男人爽女人下面视频在线观看| 自线自在国产av| 麻豆成人av视频| 最新的欧美精品一区二区| 成人18禁高潮啪啪吃奶动态图 | 美女脱内裤让男人舔精品视频| 深夜a级毛片| 黑人猛操日本美女一级片| 男人和女人高潮做爰伦理| 精品99又大又爽又粗少妇毛片| 午夜福利,免费看| 亚洲精品视频女| 国产成人免费观看mmmm| 啦啦啦中文免费视频观看日本| 另类精品久久| 久久这里有精品视频免费| 国产av码专区亚洲av| 国产精品国产三级国产av玫瑰| 99九九在线精品视频 | 日韩制服骚丝袜av| 国产黄片视频在线免费观看| 亚洲精品第二区| 国产午夜精品一二区理论片| 免费人妻精品一区二区三区视频| 国产男人的电影天堂91| 能在线免费看毛片的网站| 久久久久久人妻| 国产精品.久久久| 这个男人来自地球电影免费观看 | 少妇高潮的动态图| 国产精品成人在线| 观看美女的网站| 国产69精品久久久久777片| 久久婷婷青草| 性高湖久久久久久久久免费观看| 亚洲av中文av极速乱| 免费久久久久久久精品成人欧美视频 | 亚洲激情五月婷婷啪啪| xxx大片免费视频| 亚洲va在线va天堂va国产| 热re99久久精品国产66热6| 久久久久久久亚洲中文字幕| 女人久久www免费人成看片| 欧美精品一区二区免费开放| 91在线精品国自产拍蜜月| 国产爽快片一区二区三区| 久久亚洲国产成人精品v| 亚洲精品亚洲一区二区| 一级毛片 在线播放| 99久久综合免费| 美女福利国产在线| 国产无遮挡羞羞视频在线观看| 国产乱人偷精品视频| 精品少妇黑人巨大在线播放| 国产 一区精品| 国产成人a∨麻豆精品| 免费黄网站久久成人精品| 国产一区二区三区综合在线观看 | 91精品国产九色| a级一级毛片免费在线观看| 波野结衣二区三区在线| 少妇人妻 视频| 亚洲国产最新在线播放| 韩国高清视频一区二区三区| 午夜视频国产福利| 久久99一区二区三区| 久久精品久久久久久噜噜老黄| 嫩草影院新地址| 最近2019中文字幕mv第一页| 精品久久久噜噜| 国产精品久久久久久久电影| www.色视频.com| 久久久久久久精品精品| 国产精品久久久久久久久免| 十八禁网站网址无遮挡 | 国产精品一区www在线观看| 涩涩av久久男人的天堂| 国产成人精品福利久久| 国产熟女午夜一区二区三区 | 精品久久久精品久久久| 乱码一卡2卡4卡精品| 欧美三级亚洲精品| 3wmmmm亚洲av在线观看| 91在线精品国自产拍蜜月| 精品人妻一区二区三区麻豆| 国产精品一区二区性色av| 久久久久视频综合| 99久久精品国产国产毛片| 久久久精品免费免费高清| 亚洲欧美一区二区三区黑人 | 热re99久久国产66热| 国产精品伦人一区二区| 国产探花极品一区二区| 天堂中文最新版在线下载| 在线观看三级黄色| 久久人人爽人人片av| 免费看不卡的av| 日韩一本色道免费dvd| 9色porny在线观看| 国产亚洲一区二区精品| 久久久久久久久久成人| 中文欧美无线码| 亚洲色图综合在线观看| 国产精品久久久久久久久免| 99re6热这里在线精品视频| 午夜福利在线观看免费完整高清在| 国产亚洲午夜精品一区二区久久| 亚洲欧美一区二区三区国产| 国产伦在线观看视频一区| 日韩伦理黄色片| 亚洲精品国产av成人精品| 蜜桃在线观看..| 精品国产乱码久久久久久小说| 十八禁高潮呻吟视频 | 精品久久久精品久久久| 秋霞伦理黄片| 久久热精品热| 观看美女的网站| av黄色大香蕉| 男女免费视频国产| 日韩强制内射视频| 欧美日韩亚洲高清精品| .国产精品久久| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产| 日本黄色日本黄色录像| 一级毛片 在线播放| 国产老妇伦熟女老妇高清| 日日摸夜夜添夜夜添av毛片| 精品国产一区二区久久| 国产精品熟女久久久久浪| 亚洲久久久国产精品| av免费在线看不卡| 国产黄色视频一区二区在线观看| 黄色配什么色好看| 欧美精品国产亚洲| 99热6这里只有精品| 女性生殖器流出的白浆| 女人精品久久久久毛片| 人妻少妇偷人精品九色| 国产精品99久久久久久久久| 99热网站在线观看| 在线 av 中文字幕| 国产一区二区三区综合在线观看 | 一级毛片aaaaaa免费看小| 国产精品成人在线| 日韩欧美精品免费久久| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 久久青草综合色| 国产爽快片一区二区三区| 国产有黄有色有爽视频| 亚洲欧洲日产国产| 香蕉精品网在线| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 永久免费av网站大全| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看| 国产成人a∨麻豆精品| 久久精品国产亚洲av涩爱| 激情五月婷婷亚洲| 国产又色又爽无遮挡免| 国产视频首页在线观看| 97超碰精品成人国产| 精品久久国产蜜桃| 秋霞伦理黄片| 欧美少妇被猛烈插入视频| 男人添女人高潮全过程视频| 国产国拍精品亚洲av在线观看| 丝袜喷水一区| 黑人高潮一二区| 国产日韩欧美亚洲二区| 日本wwww免费看| 午夜精品国产一区二区电影| 少妇人妻一区二区三区视频| 久热久热在线精品观看| av福利片在线| 免费黄网站久久成人精品| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 另类亚洲欧美激情| 精品久久国产蜜桃| 国产午夜精品一二区理论片| 久久久久人妻精品一区果冻| 久久av网站| 噜噜噜噜噜久久久久久91| a级一级毛片免费在线观看| 欧美精品国产亚洲| 国产日韩欧美在线精品| 国产亚洲欧美精品永久| 午夜免费观看性视频| 大码成人一级视频| 夜夜爽夜夜爽视频| 午夜激情久久久久久久| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 免费看不卡的av| 男女国产视频网站| 另类亚洲欧美激情| 18禁在线播放成人免费| 一个人看视频在线观看www免费| 一级毛片久久久久久久久女| 欧美日本中文国产一区发布| 色视频在线一区二区三区| 高清视频免费观看一区二区| 综合色丁香网| 岛国毛片在线播放| 好男人视频免费观看在线| 亚洲av二区三区四区| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| 亚洲av电影在线观看一区二区三区| 国产在线男女| 成人漫画全彩无遮挡| 熟女av电影| 偷拍熟女少妇极品色| 国产伦在线观看视频一区| 亚洲情色 制服丝袜| 午夜福利,免费看| 国产日韩一区二区三区精品不卡 | 大香蕉久久网| av国产久精品久网站免费入址| 波野结衣二区三区在线| 免费观看的影片在线观看| 天堂中文最新版在线下载| 亚洲av免费高清在线观看| 在线看a的网站| 亚洲精品日本国产第一区| 亚洲精品aⅴ在线观看| 国产老妇伦熟女老妇高清| 两个人的视频大全免费| 97精品久久久久久久久久精品| 纵有疾风起免费观看全集完整版| a 毛片基地| 男女边摸边吃奶| 秋霞在线观看毛片| 深夜a级毛片| 女的被弄到高潮叫床怎么办| www.色视频.com| 91成人精品电影| 国产欧美另类精品又又久久亚洲欧美| 秋霞伦理黄片| 欧美性感艳星| 国产成人精品福利久久| 亚洲国产最新在线播放| 三级国产精品欧美在线观看| 亚洲欧美一区二区三区国产| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 日本vs欧美在线观看视频 | √禁漫天堂资源中文www| 赤兔流量卡办理| 久久影院123| 久久久久久久久久成人| 热re99久久国产66热| 欧美日韩综合久久久久久| 中文字幕精品免费在线观看视频 | 亚洲成色77777| 午夜老司机福利剧场| 国产成人精品久久久久久| 亚洲欧美中文字幕日韩二区| 汤姆久久久久久久影院中文字幕| 婷婷色av中文字幕| 亚洲国产av新网站| 夜夜爽夜夜爽视频| 久久久久人妻精品一区果冻| 国产欧美亚洲国产| 能在线免费看毛片的网站| 欧美xxⅹ黑人| 亚洲精品第二区| 深夜a级毛片| 九九爱精品视频在线观看| 99热网站在线观看| 亚洲丝袜综合中文字幕| 青青草视频在线视频观看| 久久久久国产网址| 一区二区三区乱码不卡18| 两个人的视频大全免费| 极品人妻少妇av视频| 一区二区三区免费毛片| 日本午夜av视频| 国产 一区精品| 美女xxoo啪啪120秒动态图| 国产亚洲一区二区精品| 99国产精品免费福利视频| 亚洲第一区二区三区不卡| 成人国产av品久久久| 亚洲国产精品成人久久小说| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 亚洲欧美中文字幕日韩二区| 国产精品人妻久久久久久| 国产一区二区三区av在线| 男女国产视频网站| 18禁动态无遮挡网站| 免费观看av网站的网址| 久久久精品94久久精品| 如何舔出高潮| 夜夜看夜夜爽夜夜摸| 久久ye,这里只有精品| 国产乱来视频区| 99精国产麻豆久久婷婷| 搡老乐熟女国产| 国产精品久久久久久久久免| 大陆偷拍与自拍| 一级毛片电影观看| 晚上一个人看的免费电影| 九九在线视频观看精品| 狂野欧美激情性xxxx在线观看| 嘟嘟电影网在线观看| 国产精品秋霞免费鲁丝片| 午夜老司机福利剧场| 日韩精品免费视频一区二区三区 | 有码 亚洲区| 狠狠精品人妻久久久久久综合| 久久99一区二区三区| 最近中文字幕高清免费大全6| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 高清不卡的av网站| 黄色欧美视频在线观看| 国产 一区精品| 五月天丁香电影| 亚洲欧美日韩东京热| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 久久人妻熟女aⅴ| 观看美女的网站| 在线观看人妻少妇| 汤姆久久久久久久影院中文字幕| 男男h啪啪无遮挡| 亚洲丝袜综合中文字幕| 3wmmmm亚洲av在线观看| 曰老女人黄片| 成人免费观看视频高清| 国产精品欧美亚洲77777| 内地一区二区视频在线| 男女啪啪激烈高潮av片| 99九九在线精品视频 | av一本久久久久| 一级爰片在线观看| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 成年人免费黄色播放视频 | 国产免费视频播放在线视频| 久久毛片免费看一区二区三区| 26uuu在线亚洲综合色| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 免费av中文字幕在线| 亚洲av在线观看美女高潮| 日产精品乱码卡一卡2卡三| 欧美 亚洲 国产 日韩一| 国产在线免费精品| 久久人人爽人人爽人人片va| 精品人妻熟女av久视频| 国产精品.久久久| 久久ye,这里只有精品| 国产成人精品一,二区| 欧美亚洲 丝袜 人妻 在线| 免费观看的影片在线观看| 内射极品少妇av片p| 日韩av免费高清视频| 三上悠亚av全集在线观看 | 中文字幕精品免费在线观看视频 | 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品| 九九久久精品国产亚洲av麻豆| 美女视频免费永久观看网站| 国内少妇人妻偷人精品xxx网站| 午夜老司机福利剧场| 亚洲经典国产精华液单| 一级毛片久久久久久久久女| 蜜桃在线观看..| 色哟哟·www| 久久精品国产鲁丝片午夜精品| 日本色播在线视频| 秋霞在线观看毛片| 两个人的视频大全免费| 99九九在线精品视频 | 日韩强制内射视频| 乱人伦中国视频| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频| 国产成人freesex在线| 久久久精品94久久精品| 国产在线一区二区三区精| 日本色播在线视频| 亚洲欧美日韩另类电影网站| 国产成人精品无人区| 最后的刺客免费高清国语| 免费看光身美女| 久久ye,这里只有精品| 国产精品国产av在线观看| 日韩三级伦理在线观看| 久久精品国产a三级三级三级| 国产一区二区三区av在线| 天堂中文最新版在线下载| 91精品国产国语对白视频| 高清视频免费观看一区二区| 亚洲内射少妇av| 国产成人精品一,二区| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 精品午夜福利在线看| 秋霞伦理黄片| 久久久久人妻精品一区果冻| 色5月婷婷丁香| 观看美女的网站| 国产黄片美女视频| 精品卡一卡二卡四卡免费| 夫妻性生交免费视频一级片| 亚洲欧美清纯卡通| 91久久精品电影网| 久久人人爽人人片av| 黄片无遮挡物在线观看| 91精品国产九色| 少妇人妻久久综合中文| 国产亚洲av片在线观看秒播厂| 爱豆传媒免费全集在线观看| 一级毛片aaaaaa免费看小| av天堂久久9| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 国产精品一区二区在线观看99| 日韩免费高清中文字幕av| 两个人的视频大全免费| a级毛色黄片| 精品国产乱码久久久久久小说| 亚洲精品一区蜜桃| 日韩中文字幕视频在线看片| 久久毛片免费看一区二区三区| 日本爱情动作片www.在线观看| 免费av不卡在线播放| 在现免费观看毛片| 久久久久久久久久久久大奶| 欧美丝袜亚洲另类| 亚洲伊人久久精品综合| 又黄又爽又刺激的免费视频.| 精品久久国产蜜桃| 欧美人与善性xxx| 能在线免费看毛片的网站| 天天操日日干夜夜撸| 国产亚洲一区二区精品| 精品久久久久久电影网| 成人美女网站在线观看视频| 91久久精品国产一区二区三区| 免费看光身美女| 亚洲欧美清纯卡通| 久久久午夜欧美精品| 成年av动漫网址| 日韩av免费高清视频| 伊人久久精品亚洲午夜| 国模一区二区三区四区视频| 久久99一区二区三区|