• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Entropy generation in bypass transitional boundary layer flows*

    2014-06-01 12:30:01GEORGEJosephOWENLandonXINGTao
    關(guān)鍵詞:課本上表達(dá)能力語感

    GEORGE Joseph, OWEN Landon D., XING Tao

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA, E-mail: geor6350@vandals.uidaho.edu

    MCELIGOT Donald M.

    University of Idaho, Idaho Falls, Idaho 83402, USA

    CREPEAU John C.

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA

    BUDWIG Ralph S.

    University of Idaho, Boise, Idaho 83702, USA

    NOLAN Kevin P.

    Imperial College London, London SW7-28Z, UK

    Entropy generation in bypass transitional boundary layer flows*

    GEORGE Joseph, OWEN Landon D., XING Tao

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA, E-mail: geor6350@vandals.uidaho.edu

    MCELIGOT Donald M.

    University of Idaho, Idaho Falls, Idaho 83402, USA

    CREPEAU John C.

    Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83843, USA

    BUDWIG Ralph S.

    University of Idaho, Boise, Idaho 83702, USA

    NOLAN Kevin P.

    Imperial College London, London SW7-28Z, UK

    (Received June 22, 2014, Revised September 25, 2014)

    The primary objective of this study is to evaluate the accuracy of using computational fluid dynamics (CFD) turbulence models to predict entropy generation rates in bypass transitional boundary layers flows under zero and adverse pressure gradients. Entropy generation rates in such flows are evaluated employing the commercial CFD software, ANSYS FLUENT. Various turbulence and transitional models are assessed by comparing their results with the direct numerical simulation (DNS) data and two recent CFD studies. A solution verification study is conducted on three systematically refined meshes. The factor of safety method is used to estimate the numerical error and grid uncertainties. Monotonic convergence is achieved for all simulations. The Reynolds number based on momentum thickness, Reθ, skin-friction coefficient,fC, approximate entropy generation rates, S''', dissipation coefficient,dC, and the intermittency, γ, are calculated for bypass transition simulations. All Reynolds averaged Navier-Stokes (RANS) turbulence and transitional models show improvement over previous CFD results in predicting onset of transition. The transition SST -kω 4 equation model shows closest agreement with DNS data for all flow conditions in this study due to a much finer grid and more accurate inlet boundary conditions. The other RANS models predict an early onset of transition and higher boundary layer entropy generation rates than the DNS shows.

    entropy generation, bypass transition, Reynolds averaged Navier-Stokes (RANS), transitional boundary layer, turbulence models

    Introduction

    Entropy is the property that serves as a measure of disorder within a system. Entropy generation therefore causes irreversible loss of energy in fluid flows. Determining and minimizing these losses improves the efficiency of a system[1]. Systems that benefit from the minimization of entropy generation include: cooling systems for electronic devices and nuclear reactors, thermal heat exchangers, and more. Four different mechanisms contribute to entropy generation: Mean and fluctuating heat flux and Mean and fluctuating viscous effects. Steady, unheated, laminar flow has zero fluctuations so the entropy generation occurs only from the viscous losses associated with mean velocity gradients. Bypass transition occurs when freestream vortical disturbances induce transition to turbulence in a boundary layer without the intervention of viscous Tollmien-Schlichting waves[2]. Viscous losses associated with the mean and fluctuating velocity gradients cause entropy generation in bypass transitionalboundary layer flows. Many different methods exist to predict entropy generation in fluid systems.

    Direct numerical simulation (DNS) is a proven tool in elucidating flow physics. DNS completely resolves all of the laminar and turbulent length scales and thus can be used as a numerical benchmark to evaluate the accuracy of simulations using various turbulence models. McEligot et al.[3]analyzed DNS results from two different studies conducted by Spalart[4,5]of turbulent boundary layer flows with zero and favorable pressure gradients with Reθranging from 300 to 1 410. The study found that approximately two-thirds of the entropy generation occurs in the viscous layer of a turbulent boundary layer (defined as+y≈30). The study demonstrated that entropy dissipation is nearly universal within the viscous layer of turbulent boundary layer flows with zero and favorable pressure gradients. The study showed that the methodology developed by Rotta[6]for approximating S''' is inaccurate for the given flow characteristics. McEligot et al.[7]similarly analyzed results from a DNS[8]of turbulent channel flow with zero and favorable pressure gradients. McEligot compared two methods for determining entropy generation. The first method evaluated the fluctuating gradients forming the dissipation term in the turbulent enthalpy equation and the second method evaluated an approximate analogy to laminar flow employing assumed boundary layer (and other) approximations[9]. Both methods predict similar S''values. The second method under-predicted entropy generation in the “l(fā)inear” layer and over-predicted entropy generation in the rest of the viscous layer.

    Another study by McEligot et al.[10]compared the entropy generation predicted from a DNS of turbulent boundary layer flow to the entropy generation predicted from a DNS of channel flow[8,11]. The study demonstrated that the pointwise entropy generation at the boundary of the viscous layer is relatively insensitive for both boundary layer and channel flows with large favorable pressure gradients. The integral over the area of the viscous layer decreased moderately only for boundary layer flows. Walsh and McEligot[12]improved an existing correlation for the dissipation coefficient,dC, using data from multiple DNS studies of low Reθturbulent boundary layer and channel flows with zero and favorable pressure gradients[4,8,13,14]. Walsh et al.[1]analyzed a DNS of bypass transitional boundary layer flows for Reθranging from 115 to 520[15,16]. The study demonstrated that the term for turbulent convection in the turbulent kinetic energy (TKE) balance is significant within the transition region. This is as a consequence of more turbulent energy being produced than dissipated. The study showed that a popular approximation method over-estimates the dissipation coefficient by as much as 17%.

    The study demonstrated that the approach developed by Rotta[6]is more accurate for transitional boundary layers.

    The objective of the current study is to evaluate the accuracy of various turbulence models to predict entropy generation and location of transition within a bypass transitional boundary layer. The commercial CFD software ANSYS FLUENT is employed for simulations. The flow modeled with RANS turbulence model is steady, incompressible, two-dimensional bypass transitional boundary layer flow. The RANS models employed in the study are the -kε model, -kω SST model, RSM model and transitional 4 equation SST -kω model. Quantitative solution verification is conducted using three systematically refined structu-red grids, with the finest grid containing about 10-6grid points. The flow characteristics are compared to the DNS results from Nolan and Zaki[17]and two recent CFD studies by Ghasemi et al.[18,19].

    1. Computational methods

    1.1Turbulence models and numerical methods

    The non-linear Reynolds stress term is closed in the RANS models with the Boussinesq eddy viscosity hypothesis. The displacement thicknessδ*, momentum thicknessθ, corresponding Reynolds numberReθand the Reynolds stresses are calculated as,

    where the variableuiis the velocity along thex,yorzaxis andujis the velocity along an axis different from the direction ofui. This similarly applies toxias the location along a given axisx,yorz. The variableδijin the equation is the Kronecker delta and not the boundary layer thickness. The turbulent kinetic energy,k, is defined as,

    In these equations, not all the variables are constants as is the case for the -kεmodel. The transition SST model couples two additional transport equations with the SST -kωtransport equations. The first additional transport equation is for the intermittency,γ, defined as,

    The onset of transition is controlled by,

    whereReθpis a proprietary empirical correlation for the transition onset andFθtis a function based on the boundary layer correlations. The transport equation for the RSM is,

    1.2High performance computing

    A third-order MUSCL scheme is applied for the momentum and turbulence solvers with the pressurevelocity coupled scheme. A convergence tolerance of 10-10is set for all simulations to ensure the iterative errors are much smaller than the grid errors such that the former can be neglected. Simulations are conducted using several local workstations and on University of Idaho?s HPC computing resource, Big-STEM, using 8-12 core CPU?s. Results are post-processed using Scilab-5.4.1 and Tecplot 360 2013.

    1.3Iterative and statistical convergence

    Statistical convergence of the running mean on the time history of the resistance establishes statistically stationary unsteady solutions[21]. Statistical convergence for the unsteady simulation is determined using the drag coefficient,DC, defined as,

    The drag coefficient is monitored during the simulation. Data are collected once the drag coefficient oscillations around the mean value vary by only 1% of the mean value.

    1.4Solution verification method

    Solution verification is important to estimate the numerical errors and grid uncertainties of a CFD simulation. Numerical errors are due to the numerical solution of the mathematical equations. Aspects of the simulation that cause numerical errors include: discretization, artificial dissipation, incomplete iterative and grid convergence, and computer round-off. To determine numerical errors generally involves performing a sensitivity study by varying the mesh spacing and/or time step size to a smaller value and evaluating the solution differences. HereS1,S2,S3represent the fine, medium, and coarse grid solutions of any variable in the simulations, respectively. The relative percentage difference (δ%) between CFD results and correlation values, represented below asA, is calculated as,

    The solution verification method in place is the factor of safety method[22,23]which requires the use of the following equations with the use of L2 norm for profiles[24],

    where the grid uncertainty,UG, is presented as a percentage of the correlation value or value from the fine grid solution at the same streamwise location. A lower magnitude ofUGusually indicates a better quality of CFD results.

    1.5Analysis method

    However, the flow considered herein is unheated. Hence, the entropy generation occurs only due to the square of the gradients of the mean streamwise velocity. The integral over the boundary layer of the pointwise entropy generation rate provides the entropy generation rate per unit area,

    The dissipation coefficient,Cd, is a dimensionless variable that represents the entropy generation rate per unit area. The correlation by McEligot and Walsh estimate the dissipation coefficient multiplied byReθas,

    Both the displacement thickness and momentum thickness are integrated toδin place of the upper indefinite bound. Fluctuations in bypass transitional flows necessitate additional terms to the entropy generation equations used for laminar flow. These equations are outlined further by Walsh et al.[1].The dimensionless entropy generation rate per unit area for a transitional flow is calculated as,

    whereu',v',w' are the velocity fluctuations in thex,yandzdirections, respectively. The dimensionless form of Eq.(27) is the dissipation coefficient,

    Intermittency is a measure for determining the laminar, transition, and turbulent regions of the flow and is calculated as,

    Fig.1 Mean velocity profile at inlet

    Fig.2 Reynolds normal stress profiles at inlet

    2. Simulation design and verification

    2.1Geometry and flow conditions

    Fig.3 Reynolds shear stress profile at inlet

    Fig.4 Geometry and mesh representation

    Theεandωvalues at the inlet and for all models, are estimated using the equations from the ANSYS FLUENT User?s Guide[25]as,

    While the Reynolds shear stresses are specified directly at the inlet for the RSM. The use of the inlet meanprofiles from DNS in the current study is more accurate boundary conditions compared to those applied by Ghasemi et al.[18]wherein the inlet boundary condition is specified with a constant turbulent intensity of 3% and a turbulent length scale equal to the boundary layer thickness.

    2.2Mesh and simulation table

    The mesh is created in Pointwise v17.0R1. The grid points in the streamwise direction are uniform and the grid points in the plate-normal direction are clustered near the plate surface, as shown in Fig.4. To assign more grid points toward the wall ensures that enough grid points exist within the boundary layer to capture the high velocity gradients in the boundary layer. A medium mesh and a coarse mesh were created for the solution verification study using a constant grid refinement ratio1/22. Figure 4 shows a schematic representation of the domain with an exaggerated curvature of top wall. The figure is a representation of an adverse pressure gradient geometry and mesh. The coordinate axis and boundaries are labeled.

    A general overview of the different simulations performed in this study is contained in Table 1.2.3Solution verification

    Table 1 Simulation design table

    Table 2 Solution verification for bypass transitional boundary layer flow

    The results from the solution verification study for thek-ωmodel are shown in Table 2. The distance to the asymptotic range (PG=1) is shorter forReθthanCf. Monotonic convergence is achieved. The grid uncertainty is below 1.6%S1for both variables. The solution verification study shows that the bypass transition results are independent of the grid resolution and thus all results are presented on the fine grid.

    3. Results and discussion

    The bypass transition simulation results are compared with the DNS results from Nolan and Zaki[17]. Additionaly, the ZPG results are compared to the CFD results by Ghasemi et al.[18]and APG results with Ghasemi et al.[19]. The current simulations employ a more accurate inlet conditions and much finer mesh than the simulations by Ghasemi et al. Thek,ω,z, profiles and Reynolds stress values are prescribed at the inlet, depending on the model in use, to match the conditions of the DNS simulation. Ghasemi et al. applied a velocity inlet boundary with a specified turbulent intensity of 3% and a turbulent length scale, whereas the mean velocity and turbulent structure profiles obtained from DNS[17]data are specified at the inlet in the current study. Additionally, this study also examines both CFD predictions for entropy generation rates compared to that post-processed from DNS results.

    Fig.5 Reθversus Re1x/2

    3.1Zero pressure gradient (ZPG)

    Fig.6 Reθversus1/2xRe (detailed view near inlet)

    Figure 7 and Fig.8 show how Cfand Cdvary with Re1x/2, respectively. The dissipation coefficient, Cd, provides a measure of the pointwise entropy generation rate, S''' (in non-dimensional form), within the boundary layer for ZPG case as described earlier. The DNS data has a linear slope in the turbulent regime. The laminar region is the initial downward slope, the rise indicates the transition region, and the small oscillations downstream are within the fully turbulent region. Figure 7 also shows the analytical laminar and turbulent lines. Similar to the trends seen in Fig.5, the k-ε model and RSM transition to turbulent profile very close to the inlet and remain turbulent throughout the flow field.

    Fig.7 Cfversus Re1x/2

    Fig.8 Cdversus Re1x/2

    In Fig.7, the k-ε model shows an initial laminar profile near the inlet, similar to DNS, before transition occurs downstream. The k-ω model shows a laminar region until Re1x/2=215, where the onset of transition is predicted by the model. The k-ω model shows close agreement of predicted Cfto the DNS data from the inlet until the onset of transition and also in the turbulent region but transition occurs upstream compared to the k-ω 4 equation model and the DNS data. The k-ω 4 equation model shows better agreement with the DNS data for both Cdand Cf. The Cdand Cfpredicted by the k-ω 4 equation model is very accurate compared to the DNS data until the transitional point in DNS at Re1x/2=450. The model, however, over predicts the location of the onset of transition which occurs much later than DNS at Re1x/2=575.

    Fig.9 γ versus η

    Fig.10 Cfversus Re1x/2for various RANS models for APGweak

    Figure 9 shows that all turbulence models examined in this study predict transition onset (γ≤0.05) earlier than the DNS data. The k-ω, k-ε, and RSM?s demonstrate very similar trends with steeper slopes than the k-ω 4 equation models. The k-ω 4 equation model is the closest to the DNS data in predicting the transition onset location but over-predicts γ by as much as 10% in the fully turbulent region. All models tend to predict a much steeper slope in the transition region compared to the much smoother slope in the DNS data.

    3.2Adverse pressure gradient (APG)

    The bypass transition simulation results for APG cases are also compared to the DNS results from Nolan and Zaki[17]and the CFD results by Ghasemi et al.[19]. The APG results are evaluated using the skinfriction coefficient,fC, and the approximate pointwise entropy generation rate, S'''.

    3.2.1 APGweak: β=-0.08

    The under prediction of Cfin the fully turbulent regime compared to Ghasemi et al.[19]is due to the differences in the inlet boundary conditions specified. Specifying a constant turbulent intensity of 3% and a specific length scale rather a mean profile for turbulent structures as in the simulations by Ghasemi et al. could result in over prediction of fully turbulent regime compared to the actual capabilities of each RANS model.

    Fig.11 S''' versus y+for various RANS models for APGweaknear location of transition shown by values of Re1x/2

    Figure 11 shows the comparison of approximate point-wise entropy generation rates, S''', as predicted by each model within the boundary layer plotted normal to the wall in terms of y+. Since different models predict varying locations of transition, the entropy generation rate (S''') comparison is made at different locations along the flat plate for each model. These locations (indicated by Re1x/2values) are selected at a point near the onset of transition as predicted by each model.

    Figure 11(a) shows the -kε and RSM model and Figure 11(b) shows the -kω SST and transitional -kω 4 equation models compared with results from DNS and Ghasemi. As seen from the figures the predictions from the current study are more accurate in terms of trends, magnitude and location than from Ghasemi for all corresponding models compared to DNS values. This is a direct result of better resolution within the boundary layer using more grid points near the wall and keeping y+<1 at the first grid point away from the plate. The predictions from the k-ε, RSM and k-ω SST are considerably closer to DNS values than Ghasemi et al.. The transitional k-ω 4 equation model is the most accurate among all models although it slightly over-predicts the magnitude of S'''.

    Fig.12 Cfversus Re1/2xfor various RANS models APGStrong

    3.2.2 APGstrong: β=-0.14

    小學(xué)語文教學(xué)不應(yīng)該只局限于課本上幾篇簡單的文章和詩歌,老師應(yīng)該多鼓勵學(xué)生們進(jìn)行課外的閱讀來輔助語文學(xué)習(xí),只要是文字優(yōu)美的符合小學(xué)生認(rèn)知規(guī)律和能力都可以鼓勵學(xué)生進(jìn)行廣泛閱讀,通過課外閱讀他們也可以體會到文字的魅力也可以有效地提升學(xué)生們的語感,間接性的提高學(xué)生們的口語表達(dá)能力,同時也能為以后學(xué)生的寫作打下堅實(shí)的閱讀和寫作基礎(chǔ)。

    Figure 12 shows the comparison of Cfpredicted from various models along the length of the flat plate versus Re1/2xon a log-log scale. The DNS[17]results show that Cfdeviates from the Blasius laminar approximation at approximately Re1x/2=180 and predicts a lower Cfvalue in the laminar region as seen in the previous APGweakcase.

    The stronger adverse pressure gradient causes an earlier shift on predicted Cffrom the analytical app-roximation. The DNS predicts the onset of transition at about Re1x/2=330 and fully developed turbulent flow beyond Re1x/2=450. The Stronger APG also shows an increase the maximum magnitude of S'''from 1.1 in the APGweakcase to a value of 1.5.

    Figure 12(a) show the k-ε and RSM model and Fig.12(b) shows the k-ω SST and transitional k-ω 4 eqation models. The k-ε, RSM, k-ω SST and k-ω 4 equation models predict onset of transition at=170, 195, 210 and 290, respectively. The k-ε model transitions to fully turbulent flow near the inlet for the current study as in the study by Ghasemi et al.. This may be a result of the stronger pressure gradient being imposed on the flow and thereby indicating the models incapability in handling strong adverse pressure gradients effectively. The RSM, k-ω SST and k-ω 4 equation models follow similar trends as seen in the APGweakcase with better comparison to DNS values than that by Ghasemi et al.[19].

    Fig.13 S''' versus y+for various RANS models APGStrong

    Following the trend seen in previous results the models in current study under predict magnitude of Cfin the fully turbulent regime. Possible causes for such under prediction maybe as noted earlier in APGWeakresults.

    Figure 13 shows the comparisons of predicted approximate point-wise entropy generation rate S'''within the boundary layer normal to the wall near the location of transition point in terms of y+. It is noteworthy that, since the k-ε model transitions near the inlet under the strong adverse pressure gradient, Fig.13(a) shows a turbulent profile of predicted entropy generation rate at Re1x/2=175 for this model. The RSM, k-ω SST and k-ω 4 equation models predict more accurate comparable profiles for S''' near their transition location than the models by Ghasemi et al..

    4. Conclusions and future work

    In the future, the capability of using differentLES models to predict entropy generation rates for bypass transitional flows with and without streamwise pressure gradients will be evaluated. Sensitivity of LES models to grid resolution and time step size will be examined following the recent general framework for LES verification and validation[26,27]. The use of unsteady hydrodynamic instabilities in velocity and turbulent structure profiles at the inlet may lead to more accurate CFD predictions for bypass transitional boundary layer flows for both RANS and LES models.

    Acknowledgements

    This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0004751. The authors would also like to thank Dr. Tamer Zaki, Dr. Kevin Nolan, and Dr. Edmond Walsh for meaningful contributions.

    [1] WALSH E. J., MCELIGOT D. M. and BRANDT L. et al. Entropy generation in a boundary layer transitioning under the influence of freestream turbulence[J]. Jour- nal of Fluids Engineering, 2011, 133(6): 061203.

    [2] ZAKI T. A., DURBIN P. A. Mode interaction and the bypass route to transition[J]. Journal of Fluid Mecha- nics, 2005, 531(1): 85-111.

    [3] MCELIGOT D. M., WALSH E. J. and LAURIEN E. et al. Entropy generation in the viscous parts of turbulent boundary layers[J]. Journal of Fluids Engineering, 2008, 130(6): 061205.

    [4] SPALART P. R. Direct simulation of a turbulent boundary layer up to Reθ=1410[J]. Journal of Fluid Mechanics, 1988, 187(1): 61-98.

    [5] SPALART P. R. Numerical study of sink-flow boundary layers[J]. Journal of Fluid Mechanics, 1986, 172(1): 307-328.

    [6] ROTTA J. Turbulent boundary layers in incompressible flow[J]. Progress in Aerospace Sciences, 1962, 2(1): 1-95.

    [7] MCELIGOT D. M., WALSH E. J. and LAURIEN E. et al. Entropy generation in the viscous layer of a turbulent channel flow[R]. Idaho National Laboratory (INL), 2006.

    [8] ABE H., KAWAMURA H. and MATSUO Y. Direct numerical simulation of a fully developed turbulent channel flow with respect to the reynolds number dependence[J]. Journal of Fluids Engineering, 2001, 123(2): 382-393.

    [9] KRAUSE E., OERTEL H. J. and SCHLICHTING H. Boundary-layer theory[M]. New York, USA: Springer, 2004.

    [10] MCELIGOT D. M., NOLAN K. P. and WALSH E. J. Effects of pressure gradients on entropy generation in the viscous layers of turbulent wall flows[J]. International Journal of Heat and Mass Transfer, 2008, 51(5-6): 1104-1114.

    [11] TSUKAHARA T., SEKI Y. and KAWAMURA H. et al. DNS of turbulent channel flow at very low Reynolds numbers[C]. Proceedings of the 4th International Symposium on Turbulence and Shear Flow Pheno- mena. Williamsburg, USA, 2005, 935-940.

    [12] WALSH E. J., MCELIGOT D. M. A New correlation for entropy generation in low Reynolds number turbulent shear layers[J]. International Journal of Fluid Me- chanics Research, 2009, 36(6): 566-572.

    [13] ABE H., KAWAMURA H. and MATSUO Y. Surface heat-flux fluctuations in a turbulent channel flow up to Reτ=1020 with Pr=0.025 and 0.71[J]. International Journal of Heat and Fluid Flow, 2004, 25(3): 404- 419.

    [14] HOYAS S., JIMéNEZ J. Scaling of the velocity fluctuations in turbulent channels up to Re=2003[J]. Physics of fluids, 2006, 18(1): 011702.

    [15] SCHLATTER P., BRANDT L. and De LANGE H. et al. On streak breakdown in bypass transition[J]. Physics of fluids, 2008, 20(1): 101505.

    [16] BRANDT L., SCHLATTER P. and HENNINGSON D. S. Transition in boundary layers subject to free-stream turbulence[J]. Journal of Fluid Mechanics, 2004, 517: 167-198.

    [17] NOLAN K., ZAKI T. A. Conditional sampling of transitional boundary layers in pressure gradients[J]. Jour- nal of Fluid Mechanics, 2013, 728: 306-339.

    [18] GHASEMI E., MCELIGOT D. and NOLAN K. et al. Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS[J]. International Communications in Heat and Mass Transfer, 2012, 41(1): 10-16.

    [19] GHASEMI E., MCELIGOT D. M. and NOLAN K P. et al. Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence[J]. International Journal of Heat and Mass Transfer, 2014, 77(1): 475-488.

    [20] ANSYS. “FLUENT theory guide v14.0.0.”[R]. 2011.

    [21] XING T., BHUSHAN S. and STERN F. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees[J]. Ocean Engineering, 2012, 55(3): 23-43.

    [22] XING T., STERN F. Closure to “Discussion of “Factors of safety for Richardson extrapolation”? (2011, Journal of Fluids Engineering, 133, 115501)[J]. Journal of Fluids Engineering, 2011, 133(11): 115502.

    [23] XING T., STERN F. Factors of safety for richardson extrapolation[J]. Journal of Fluids Engineering, 2010, 132(6): 061403.

    [24] WILSON R. V., STERN F. and COLEMAN H. W. et al. Comprehensive approach to verification and validation of CFD simulations-Part 2: Application for rans simulation of a cargo/container ship[J]. Journal of Fluids Engineering, 2001, 123(4): 803-810.

    [25] ANSYS. “FLUENT user guide v14.0.0.”[R]. 2011.

    [26] XING T., GEORGE J. Quantitative verification and validation of large eddy simulations[C]. ASME 2014 Verification and Validation Symposium. Las Vegas, Nevada, USA, 2014.

    [27] XING Tao. A general framework for verification and validation of large eddy simulations (keynote speaker)[C]. Proceedings of the 13th National Congress on Hydrodynamics and 26th Conference on Hydrodynamics. Qingdao, China, 2014, 40-58.

    10.1016/S1001-6058(14)60075-5

    * Biography: GEORGE Joseph (1986-), Male,

    Master Candidate

    XING Tao, E-mail: xing@uidaho.edu

    猜你喜歡
    課本上表達(dá)能力語感
    閱讀教學(xué)中學(xué)生語感的培養(yǎng)
    甘肅教育(2020年6期)2020-09-11 07:46:08
    如何有效培養(yǎng)學(xué)生的語感
    甘肅教育(2020年6期)2020-09-11 07:45:54
    創(chuàng)新寫作教學(xué),培養(yǎng)表達(dá)能力
    “讀”辟蹊徑 助培語感——指向語感培養(yǎng)的朗讀教學(xué)策略
    談學(xué)生口語表達(dá)能力的培養(yǎng)
    甘肅教育(2020年20期)2020-04-13 08:05:22
    借課本
    加強(qiáng)聯(lián)想力和口語表達(dá)能力
    論中學(xué)語文閱讀教學(xué)中語感的培養(yǎng)
    學(xué)生口語表達(dá)能力的培養(yǎng)
    重視典型例題 關(guān)注中考類似題
    精品一区二区三区视频在线| 国产精品人妻久久久影院| 精品少妇黑人巨大在线播放| 久久国产精品男人的天堂亚洲 | 国产又色又爽无遮挡免| 久久久欧美国产精品| 免费大片黄手机在线观看| 一区二区三区精品91| 啦啦啦在线观看免费高清www| 岛国毛片在线播放| 免费观看a级毛片全部| 制服人妻中文乱码| 在现免费观看毛片| 国产日韩欧美亚洲二区| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 黑人高潮一二区| 精品久久蜜臀av无| 考比视频在线观看| 国产成人午夜福利电影在线观看| 国产色婷婷99| 午夜免费男女啪啪视频观看| 亚洲,欧美,日韩| 国产伦理片在线播放av一区| 久热这里只有精品99| 久热这里只有精品99| 亚洲精品久久成人aⅴ小说| 日韩一区二区视频免费看| 久久久久久久亚洲中文字幕| 亚洲第一av免费看| 午夜福利乱码中文字幕| 久久久欧美国产精品| www.av在线官网国产| 韩国av在线不卡| 久久久久网色| 一二三四在线观看免费中文在 | 巨乳人妻的诱惑在线观看| 国产av码专区亚洲av| 亚洲欧美成人综合另类久久久| 久久99热这里只频精品6学生| 久久人人爽人人片av| 午夜福利乱码中文字幕| 精品酒店卫生间| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频| 晚上一个人看的免费电影| 免费在线观看完整版高清| 亚洲av中文av极速乱| 国产一级毛片在线| 日本黄色日本黄色录像| 欧美bdsm另类| 嫩草影院入口| tube8黄色片| 熟女电影av网| xxx大片免费视频| 国产亚洲精品久久久com| 精品亚洲成a人片在线观看| 亚洲av电影在线进入| 视频区图区小说| 日日爽夜夜爽网站| 久久精品国产a三级三级三级| 日韩制服丝袜自拍偷拍| 国产精品久久久久久久电影| av又黄又爽大尺度在线免费看| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 国产熟女欧美一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 91精品国产国语对白视频| 欧美xxxx性猛交bbbb| h视频一区二区三区| 国产免费福利视频在线观看| 精品久久国产蜜桃| 国产精品国产三级国产专区5o| 97超碰精品成人国产| 亚洲av中文av极速乱| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| 亚洲成av片中文字幕在线观看 | 亚洲欧洲国产日韩| 少妇猛男粗大的猛烈进出视频| 黑人巨大精品欧美一区二区蜜桃 | 下体分泌物呈黄色| 熟女av电影| 永久网站在线| 观看av在线不卡| 777米奇影视久久| 午夜免费鲁丝| 在线免费观看不下载黄p国产| 久久人人97超碰香蕉20202| 男女午夜视频在线观看 | 免费av中文字幕在线| 青春草亚洲视频在线观看| 久久ye,这里只有精品| 日日爽夜夜爽网站| 男人爽女人下面视频在线观看| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 精品一区二区三卡| 深夜精品福利| 亚洲人成77777在线视频| av在线观看视频网站免费| 亚洲国产精品一区三区| 成年av动漫网址| 波野结衣二区三区在线| 一本—道久久a久久精品蜜桃钙片| 又黄又粗又硬又大视频| 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| av国产精品久久久久影院| 免费黄网站久久成人精品| 久久女婷五月综合色啪小说| 精品久久蜜臀av无| 久久久精品区二区三区| 欧美最新免费一区二区三区| 又粗又硬又长又爽又黄的视频| 亚洲欧美一区二区三区国产| 捣出白浆h1v1| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品成人久久小说| 久久久久久久久久成人| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 成年动漫av网址| 男的添女的下面高潮视频| 欧美精品亚洲一区二区| 久久99精品国语久久久| 青春草亚洲视频在线观看| 国产成人欧美| 欧美日韩一区二区视频在线观看视频在线| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 久久人妻熟女aⅴ| 夫妻午夜视频| 免费看av在线观看网站| 99视频精品全部免费 在线| 亚洲av福利一区| a级毛片黄视频| 久久久欧美国产精品| av免费观看日本| 18禁在线无遮挡免费观看视频| av在线老鸭窝| 久久99蜜桃精品久久| 免费观看无遮挡的男女| 成年动漫av网址| 91aial.com中文字幕在线观看| 卡戴珊不雅视频在线播放| 乱码一卡2卡4卡精品| 国产免费一级a男人的天堂| 国产日韩一区二区三区精品不卡| 亚洲少妇的诱惑av| 18在线观看网站| 91在线精品国自产拍蜜月| 日日啪夜夜爽| 欧美日韩成人在线一区二区| 最近手机中文字幕大全| 久热这里只有精品99| 成人黄色视频免费在线看| 亚洲国产最新在线播放| 久久精品aⅴ一区二区三区四区 | 亚洲天堂av无毛| 亚洲国产最新在线播放| 亚洲,欧美精品.| 国产极品粉嫩免费观看在线| a 毛片基地| 免费看光身美女| 日韩大片免费观看网站| 国产一级毛片在线| 成人毛片a级毛片在线播放| 美女xxoo啪啪120秒动态图| 自线自在国产av| 中文天堂在线官网| 99久久综合免费| 日韩电影二区| 又大又黄又爽视频免费| 亚洲欧美日韩另类电影网站| 在线天堂最新版资源| 男女国产视频网站| 免费黄频网站在线观看国产| 亚洲色图 男人天堂 中文字幕 | 大香蕉久久网| 国产一区亚洲一区在线观看| 激情视频va一区二区三区| 久久国产精品大桥未久av| 一级片'在线观看视频| 亚洲av综合色区一区| 中文字幕另类日韩欧美亚洲嫩草| 男女免费视频国产| 男女国产视频网站| 免费黄频网站在线观看国产| av免费观看日本| 老司机亚洲免费影院| 熟女av电影| 97人妻天天添夜夜摸| 国产精品不卡视频一区二区| 日韩大片免费观看网站| 蜜桃国产av成人99| 亚洲av日韩在线播放| 午夜免费鲁丝| 午夜视频国产福利| 七月丁香在线播放| 国产免费现黄频在线看| 成人漫画全彩无遮挡| 伊人久久国产一区二区| 两性夫妻黄色片 | 国产精品.久久久| 少妇的逼好多水| 香蕉精品网在线| 亚洲欧美一区二区三区黑人 | 欧美亚洲日本最大视频资源| 男的添女的下面高潮视频| 久久 成人 亚洲| 久久婷婷青草| 日韩精品有码人妻一区| 日韩一区二区三区影片| 纵有疾风起免费观看全集完整版| 热re99久久国产66热| 久久精品aⅴ一区二区三区四区 | 丰满迷人的少妇在线观看| 男女午夜视频在线观看 | 丝瓜视频免费看黄片| 欧美最新免费一区二区三区| 国产一区二区在线观看av| 久久久久人妻精品一区果冻| 欧美日韩亚洲高清精品| 国产熟女欧美一区二区| 久久午夜综合久久蜜桃| 亚洲国产欧美日韩在线播放| 尾随美女入室| 午夜福利在线观看免费完整高清在| 日韩中字成人| 久久久久久久精品精品| 亚洲欧洲国产日韩| 国产精品一国产av| 久久久精品94久久精品| 高清欧美精品videossex| 丝瓜视频免费看黄片| 色94色欧美一区二区| 亚洲av成人精品一二三区| 日日爽夜夜爽网站| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久av网站| 日本av免费视频播放| 久久青草综合色| 国产成人欧美| 色94色欧美一区二区| 菩萨蛮人人尽说江南好唐韦庄| 国产免费视频播放在线视频| 乱人伦中国视频| 中文字幕另类日韩欧美亚洲嫩草| 久久人人爽人人爽人人片va| 国产69精品久久久久777片| 午夜福利在线观看免费完整高清在| 亚洲精品久久午夜乱码| 免费在线观看完整版高清| 自拍欧美九色日韩亚洲蝌蚪91| 国产爽快片一区二区三区| 亚洲精品久久久久久婷婷小说| 午夜福利影视在线免费观看| 久久女婷五月综合色啪小说| 日日摸夜夜添夜夜爱| 赤兔流量卡办理| 一本色道久久久久久精品综合| 婷婷色av中文字幕| 18在线观看网站| 在现免费观看毛片| 精品熟女少妇av免费看| 日韩欧美精品免费久久| 国产免费现黄频在线看| 啦啦啦视频在线资源免费观看| 热99久久久久精品小说推荐| 有码 亚洲区| 在线观看人妻少妇| 国产麻豆69| 国产69精品久久久久777片| 伊人亚洲综合成人网| 最后的刺客免费高清国语| 久久鲁丝午夜福利片| 久久ye,这里只有精品| 国产免费又黄又爽又色| 一本色道久久久久久精品综合| 三上悠亚av全集在线观看| 婷婷色麻豆天堂久久| 99久国产av精品国产电影| 亚洲成色77777| 综合色丁香网| 亚洲久久久国产精品| 激情五月婷婷亚洲| 日韩一区二区视频免费看| 亚洲成国产人片在线观看| 熟妇人妻不卡中文字幕| 国产一区二区在线观看日韩| 欧美成人午夜精品| 久久久亚洲精品成人影院| 国产精品久久久久成人av| 成人亚洲精品一区在线观看| 久久国产亚洲av麻豆专区| a级片在线免费高清观看视频| 精品久久蜜臀av无| 午夜影院在线不卡| 在线观看三级黄色| 精品一区二区三卡| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 少妇人妻久久综合中文| 97在线人人人人妻| 亚洲综合色惰| 91成人精品电影| 亚洲国产av新网站| 国产乱人偷精品视频| 国产一区二区在线观看日韩| 久久久久久人人人人人| 26uuu在线亚洲综合色| 妹子高潮喷水视频| 亚洲美女黄色视频免费看| 少妇人妻精品综合一区二区| av网站免费在线观看视频| 春色校园在线视频观看| 熟女电影av网| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 一本久久精品| 肉色欧美久久久久久久蜜桃| 亚洲欧美清纯卡通| 日本免费在线观看一区| 国产在视频线精品| 肉色欧美久久久久久久蜜桃| 国产精品熟女久久久久浪| 国产熟女欧美一区二区| 国产精品久久久久成人av| 99视频精品全部免费 在线| 大片免费播放器 马上看| 岛国毛片在线播放| 久久精品久久精品一区二区三区| 欧美激情极品国产一区二区三区 | 国产午夜精品一二区理论片| 多毛熟女@视频| 青春草视频在线免费观看| 爱豆传媒免费全集在线观看| 一级爰片在线观看| 一级片'在线观看视频| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| av片东京热男人的天堂| 少妇精品久久久久久久| 五月玫瑰六月丁香| 国产日韩欧美在线精品| 九色成人免费人妻av| 有码 亚洲区| 亚洲欧美色中文字幕在线| 一本色道久久久久久精品综合| 精品亚洲成a人片在线观看| 色婷婷av一区二区三区视频| 国产亚洲精品第一综合不卡 | 人妻 亚洲 视频| 久久人人爽人人爽人人片va| 成人综合一区亚洲| √禁漫天堂资源中文www| 日韩电影二区| 91久久精品国产一区二区三区| 久久精品aⅴ一区二区三区四区 | 亚洲精品av麻豆狂野| 国产一区二区三区综合在线观看 | 免费女性裸体啪啪无遮挡网站| 最近手机中文字幕大全| 男女下面插进去视频免费观看 | 制服诱惑二区| 亚洲国产欧美日韩在线播放| 亚洲欧美成人综合另类久久久| 自线自在国产av| 亚洲美女视频黄频| 久久久国产欧美日韩av| 久久人人爽人人爽人人片va| 午夜视频国产福利| 免费大片18禁| 精品酒店卫生间| 久久韩国三级中文字幕| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 插逼视频在线观看| 国内精品宾馆在线| 日韩一本色道免费dvd| 欧美xxxx性猛交bbbb| 亚洲av国产av综合av卡| 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 纯流量卡能插随身wifi吗| 欧美bdsm另类| 丁香六月天网| 九色成人免费人妻av| 午夜免费观看性视频| 精品一区在线观看国产| 久久精品国产亚洲av涩爱| 高清不卡的av网站| 九九在线视频观看精品| 美女国产高潮福利片在线看| 国产黄色免费在线视频| 飞空精品影院首页| 99热网站在线观看| av在线老鸭窝| 欧美另类一区| 久久久久精品人妻al黑| 王馨瑶露胸无遮挡在线观看| 制服丝袜香蕉在线| 亚洲五月色婷婷综合| 亚洲精品久久久久久婷婷小说| 久久精品久久久久久久性| av免费观看日本| 高清毛片免费看| 美女国产视频在线观看| 国产色婷婷99| 亚洲av电影在线观看一区二区三区| 在线精品无人区一区二区三| 国产精品久久久久久av不卡| 国产有黄有色有爽视频| 亚洲欧美中文字幕日韩二区| 永久网站在线| 午夜福利影视在线免费观看| 九草在线视频观看| 色哟哟·www| 成年av动漫网址| 国产免费一级a男人的天堂| 丝袜美足系列| 国产探花极品一区二区| 亚洲综合色惰| 国产精品国产三级国产专区5o| 亚洲欧美一区二区三区黑人 | 伊人久久国产一区二区| 亚洲一码二码三码区别大吗| 亚洲国产精品一区三区| 精品一区二区三卡| 少妇人妻久久综合中文| 亚洲av综合色区一区| 男的添女的下面高潮视频| av卡一久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产有黄有色有爽视频| 亚洲,一卡二卡三卡| 国产精品人妻久久久久久| 国产成人精品婷婷| 涩涩av久久男人的天堂| av免费观看日本| 在线观看www视频免费| 亚洲第一区二区三区不卡| 嫩草影院入口| 成人午夜精彩视频在线观看| xxx大片免费视频| 91成人精品电影| www.色视频.com| 精品亚洲乱码少妇综合久久| 欧美人与性动交α欧美精品济南到 | 国产一区二区在线观看日韩| 午夜福利视频在线观看免费| 婷婷成人精品国产| 观看美女的网站| 男人添女人高潮全过程视频| 国产成人一区二区在线| 一级片'在线观看视频| 成人综合一区亚洲| 久久久国产一区二区| 在线观看免费视频网站a站| 九色成人免费人妻av| 亚洲精品久久成人aⅴ小说| 爱豆传媒免费全集在线观看| 免费日韩欧美在线观看| 国产精品不卡视频一区二区| 日韩不卡一区二区三区视频在线| 久久久久久久精品精品| 国产色婷婷99| 亚洲综合色网址| 国产日韩欧美在线精品| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 国产成人91sexporn| 新久久久久国产一级毛片| 日韩大片免费观看网站| 国产精品久久久av美女十八| 各种免费的搞黄视频| 男女午夜视频在线观看 | 日韩免费高清中文字幕av| 波野结衣二区三区在线| 色视频在线一区二区三区| 青春草视频在线免费观看| xxx大片免费视频| 黄色视频在线播放观看不卡| 色网站视频免费| av国产久精品久网站免费入址| 亚洲经典国产精华液单| 日日摸夜夜添夜夜爱| 久久久久久久久久久免费av| 黄色毛片三级朝国网站| 久久久国产精品麻豆| 久久99热这里只频精品6学生| www.av在线官网国产| 国精品久久久久久国模美| 午夜福利,免费看| 亚洲情色 制服丝袜| 亚洲性久久影院| 成人漫画全彩无遮挡| 深夜精品福利| 成人漫画全彩无遮挡| 久久亚洲国产成人精品v| 精品一区在线观看国产| 午夜福利,免费看| 免费观看性生交大片5| 岛国毛片在线播放| 18禁在线无遮挡免费观看视频| 久久女婷五月综合色啪小说| 男男h啪啪无遮挡| 亚洲精华国产精华液的使用体验| 国产国拍精品亚洲av在线观看| 日韩一区二区视频免费看| 国产亚洲欧美精品永久| 国产成人精品一,二区| 国产成人91sexporn| videos熟女内射| 国产成人91sexporn| 久久人人97超碰香蕉20202| 如日韩欧美国产精品一区二区三区| 天堂俺去俺来也www色官网| 男的添女的下面高潮视频| 春色校园在线视频观看| 国产有黄有色有爽视频| 亚洲国产最新在线播放| 中文字幕另类日韩欧美亚洲嫩草| 亚洲av免费高清在线观看| 伊人亚洲综合成人网| 一级黄片播放器| 日本色播在线视频| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| 夜夜爽夜夜爽视频| 欧美少妇被猛烈插入视频| 一个人免费看片子| 777米奇影视久久| 久久久精品免费免费高清| 国产精品人妻久久久影院| 国产日韩欧美在线精品| 久久人人爽人人爽人人片va| 精品一品国产午夜福利视频| www.熟女人妻精品国产 | 男女高潮啪啪啪动态图| 日韩电影二区| 久久综合国产亚洲精品| 在线天堂中文资源库| 一级毛片我不卡| 伊人亚洲综合成人网| 国产精品一二三区在线看| 午夜日本视频在线| 97精品久久久久久久久久精品| 国产精品 国内视频| 久久久久精品性色| 纵有疾风起免费观看全集完整版| av国产久精品久网站免费入址| 女性生殖器流出的白浆| 久久韩国三级中文字幕| 欧美日韩综合久久久久久| 一级毛片我不卡| 亚洲一码二码三码区别大吗| 亚洲国产色片| 一级片免费观看大全| 亚洲精品第二区| 亚洲熟女精品中文字幕| 成年av动漫网址| 色吧在线观看| 亚洲三级黄色毛片| 久久ye,这里只有精品| 国产成人一区二区在线| 国产综合精华液| 成年人免费黄色播放视频| 精品一区在线观看国产| 深夜精品福利| 久久 成人 亚洲| 欧美日韩综合久久久久久| 中文字幕精品免费在线观看视频 | 美国免费a级毛片| 亚洲av日韩在线播放| 青春草国产在线视频| 视频区图区小说| 日韩视频在线欧美| 国产精品女同一区二区软件| 国产在线免费精品| 9191精品国产免费久久| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到 | 熟女电影av网| 少妇猛男粗大的猛烈进出视频| 你懂的网址亚洲精品在线观看| 人妻人人澡人人爽人人| 寂寞人妻少妇视频99o| 久久精品夜色国产| 成人手机av| 飞空精品影院首页| 国产精品秋霞免费鲁丝片| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 考比视频在线观看| 亚洲欧洲日产国产| 日韩成人伦理影院| 久久精品久久精品一区二区三区| 伦理电影大哥的女人| videossex国产| 香蕉丝袜av| 国产精品熟女久久久久浪| 一级片免费观看大全| 青春草国产在线视频| 黄片无遮挡物在线观看| 国产精品久久久久久久久免| 欧美日韩精品成人综合77777| 国产精品久久久久久久久免| 最黄视频免费看| 亚洲美女搞黄在线观看| 日韩不卡一区二区三区视频在线| 国产深夜福利视频在线观看|