• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Hydraulics of a multiple slit-type energy dissipater*

    2014-06-01 12:29:59WUJianhua吳建華YAOLi姚莉MAFei馬飛
    關(guān)鍵詞:馬飛建華

    WU Jian-hua (吳建華), YAO Li (姚莉), MA Fei (馬飛)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    WU Wei-wei (吳偉偉)

    Hydraulic Structures Design Division, Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    Hydraulics of a multiple slit-type energy dissipater*

    WU Jian-hua (吳建華), YAO Li (姚莉), MA Fei (馬飛)

    College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China, E-mail: jhwu@hhu.edu.cn

    WU Wei-wei (吳偉偉)

    Hydraulic Structures Design Division, Hydrochina Huadong Engineering Corporation, Hangzhou 310014, China

    (Received October 12, 2013, Revised January 6, 2014)

    With the constructions of high dam projects in China, the energy dissipation downstream of a dam becomes a serious concern. In this study, a multiple slit-type energy dissipater, with different reduction size slits in the outlet, is developed on the basis of conventional slit-type energy dissipaters, aiming to enhance the energy dissipation through the turbulence and the friction between the different layers of the jet flow and the air entrainment due to the increased surface of the flow to the air. The hydraulic characteristics of the energy dissipater are experimentally investigated by means of three sets of physical models in nine cases, to characterize the geometric parameters with suitable performance. The main concerns are the flow regime, the jet flow trajectory, the energy dissipation, the cavitation characteristics, and the flow choking. The results indicate that the dissipater enjoys a high energy dissipation ratio with suitable hydraulic performance comparing with the conventional slit-type energy dissipaters.

    aerator, cavity length, fin, lateral deflector

    Introduction

    The energy dissipation downstream of a largescale dam is an important issue, especially in the construction of high dam projects of 300 m level in China[1]. The energy dissipaters, like the ski jump or the hydraulic jump, were studied and employed whenever the velocity at the dam foot is in excess of typically 20 m/s because of problems of stilling basins in terms of cavitation, abrasion and uplift[2].

    In recent years, many progresses have been made, as far as practical projects are concerned. Given special geographical conditions downstream of the dam area, a new layout of the stilling basin, namely, the horizontal multiple submerged jets, was designed and successfully used in the Xiangjiaba hydropower project in China, with a higher energy dissipation ratio than the classical hydraulic jump thanks to the effects of shear and friction between multiple jets, as well as the lower velocity near the bottom of the stilling basin[3]. The ski jump hydraulics was discussed systematically in many aspects, such as the flip bucket without and with deflectors[4], the aeration characteristics of ski jump jets[5], some issues about the ski jump design[6], the plunge pool scour of jets[7], and the deflector ski jump hydraulics[8,9]. The findings greatly enriched the hydraulics knowledge of the ski jump and provided some functional principles for energy dissipation designs.

    The slit-type energy dissipater (STED), one of the ski jumps, was investigated and used in different outlets of the release works due to the expansion of the flow in vertical and longitudinal directions[10]. This methodology for energy dissipation was adopted in many hydropower projects in China, such as in the middle outlets of the Shannipo hydropower project with the dam height of 119.40 m in Guizhou province, of the Lizhou project with the dam height of 132.00 m in Sichuan province, and of the Dandahe project with the dam height of 137.00 m in Yunnan province.

    Fig.1 Parameters of the experimental setup

    Similar to the dentated sill on the flip buckets[17], the flow through the STED can be divided into multiple layers in the vertical direction, and the turbulence and the friction between layers could be produced if the multiple slits in the outlet are designed in different sizes, thus, the energy dissipation could be enhanced. This study will be based on this idea. A slit-type energy dissipater with slits of different sizes, called the multiple slit-type energy dissipater (M-STED), is designed in order to enhance the energy dissipation. The hydraulic characteristics are experimentally investigated by means of three sets of physical models in nine cases, including the flow regime, the jet flow trajectory, the energy dissipation, the cavitation performance, and the flow choking.

    1. Experimental setup

    The experiments were conducted in the Highspeed Flow Laboratory, Hohai University, Nanjing, China. The experimental setup consists of a pump, an approach conduit, a large feeding basin, a test model, and a flow return system (Fig.1(a)).

    The feeding basin issues an approach (subscript o) flow of depthhoand average velocityVo, resulting in the approach flow of Froude numberFro=Vo/ (gh)1/2. The water dischargesQare measured with

    o discharge measurement weir instruments downstream of the experimental model. The maximum pump capacity is 400 L/s, and the working head is 1.50 m.

    The test model, made of perspex, is composed of two parts, with pressure flow and with free-surface flow, respectively. The part with pressure flow is 0.65 m long, 0.15 m in width, and 0.19 m high. The part of free-surface flow is 0.55 m long, 0.15 m in width, and 0.30 m high with the M-STED in the outlet. The geometry of the M-STED is shown in Figs.1(b) and 1(c). The channel widthB=0.15 m, which is reduced tob=0.08 m in the edge of the outlet, and the length of the reduction section is fixed asL= 0.1125 m. In the vertical direction of the heightho, the outlet is divided intonlayers with the same heightcand the slit width ofa1ora2for each case. The drop height is fixed ass=0.08 m.

    Table 1 Case names, outlet geometry, and symbols

    Fig.2 Flow regimes of (a-d) for M00,o=Fr1.286, 2.405, 2.921, 3.174, (e-h) for M14,o=Fr1.071, 2.394, 2.949, 3.919, and (i-l) for M24,o=Fr1.345, 2.374, 2.976, 3.254

    The origin of the coordinate system (x,y) is at the tailwater channel bottom below the M-STED end (Fig.1(a)). The maximum (subscript M) elevationyMof the upper jet trajectory and its positionxMare measured with a level instrument. The impact points of both the upperx1and lowerxmjet trajectories onto the tailwater channel are determined visually from the channel side, by extending the jet trajectory.

    The test program includes three sets of physical models in nine cases, located with their ends atx=0, they are characterized by the different slit sizes and slit heights in the total height ofho=0.19 m. The case names, their geometry, and symbols are listed in Table 1.

    2. Experimental results and discussions

    2.1Jet trajectory

    Figure 2 shows the images of the flow regimes for three sets of the M-STEDs, including M00, oneslit-type (i.e., STED), M14,a2=0.0175 m, and M24,a2=0 m, with different approach flow Froude numbers. The jet trajectories are specially observed and analyzed in terms of the relative maximum elevationYMof the upper jet trajectory and its distanceXM, and the relative impact points of both the upperX1and lowerXmjet trajectories onto the tailwater channel.

    Fig.3 Variation of YM=(yM-s)/hoagainst Frofor different slit sizes

    Fig.4 Variation of XM=xM/hoagainst Frofor different slit sizes

    Figures 3 and 4 are the variations ofYM=(yM-s)/hoandXM=xM/hoagainstFrofor different slit sizes, respectively. The relative maximum elevationYMmainly depends onFro, whereas the effect of geometry is small for the different type M-STEDs. From Fig.3, we have

    The coefficient of determination is 0.824 forMY. The relative distanceMX, however, is related to the geometries of the M-STEDs, as well as tooFr. The differences of MXfor the different geometries are significant, and the distance of the M-STED with2=a0 m is the largest, followed by that of the M-STED witha2=0.0175 m, that of the STED for the sameFrois the smallest, due to the effects of the outlet area on the flow. The large outlet area supports to the largeXM. Using the data of Fig.4, the best fits are

    respectively, and the corresponding coefficients of regression are 0.921, 0.809 and 0.939 for the three type structures and experimental conditions mentioned above. Those results could be also seen from Fig.2.

    Fig.5 Variation of X1=x1/hoagainst Frofor different slitsizes

    Fig.6 Variation of Xm=xm/hoagainst Frofor different slit sizes

    Figures 5 and 6 are the variations ofX1=x1/hoandXm=xm/hoagainstFrofor different slit sizes, respectively. For the geometries with different slit sizes, the same trends can be seen for eitherX1orXm. In terms of the relative distances, the M-STED is the first witha2=0 m, followed by the M-STED witha2=0.0175 m, and the STED at the sameFro.It implies that increasing area of the outlet makes the jet flow go a larger distance. The case M24 with a large outlet area produces a larger distance than the case M14 or M00. Moreover, the slit number has also the effect with respect to this distance, and the case M24 with =n12 results in a larger distance than the case M21 with =n4 although they have the same area of the outlet. The relative distance1Xincreases withoFras

    and the corresponding coefficients of regression are 0.900, 0.722, and 0.978, respectively. Similarly,mXcan be expressed as

    and their coefficients of regression are 0.827, 0.738, and 0.988.

    2.2Energy dissipation

    Figures 7 and 8 show the variations ofηagainstFrofor different slit numbersnata2=0.0175 m and 0 m, respectively. Firstly, the energy dissipation ratioηincreases with the increasing approach flow Froude numberFrofor the M-STED of differentnora2. Secondly, the energy dissipater withn=12 has a largerηthan the one withn=4. Lastly, there are slight differences for different slit sizes whena2≤0.0175 m. It could be concluded that, from the results of Figs.7 and 8, it is the slit numbernthat directly causes the effects of the energy dissipation.

    Fig.7 Variation of η againstoFr for different slit numbers n at2=a0.0175 m

    Fig.8 Variation of η againstoFr for different slit numbers n at2=a0 m

    Fig.9 Comparison of η between multiple slits (=12)n and single slit

    Figure 9 is the comparison ofηbetween the energy dissipaters with the multiple slits (=12)nand the single slit. It could be clearly seen that, the MSTED with2=a0 m has a slightly larger energy dissipation than one with2=a0.0175 m, and as compared to the conventional STED, the energy dissipation ratio of the M-STED presented in this study is increased significantly. For cases M24 and M00 (listed in Table 1), the best fits are

    respectively, according to the data of Fig.9, and in Eqs.(11) and (12), subscripts M24 and M00 stand for the case names (see Table 1). Those two equations are valid under the conditions of this study. Meanwhile, the effects ofut>0 on the energy dissipation are not considered because relative comparisons are only conducted in the present work.

    Furthermore, it could be noticed that, those two lines expressed by Eqs.(11) and (12) have approximately the same interval at the differentFro, and the increments are 4.34% forFro=2.0 and 4.84% forFro=3.0, respectively, which means that the MSTED remarkably enhances the energy dissipation ratioηcomparing with the conventional STED.

    2.3Cavitation characteristics

    The vacuum model experiments were conducted in a vacuum tank in order to investigate the cavitation performance of the M-STED. The incipient cavitation numberiσfor each case is measured by means of the 8-channel cavitation noise measurement instrument (TST-1202). The measurement system consists of a hydrophone, an amplifier and filter, a collector and a computer[19].

    Table 2 Incipient cavitation numbers

    The background noise of the flow is measured when the water head is low, and 0.25 m-head is chosen in this study. It is reasonable that the noise is considered as the background because there is no cavitation of the flow in this situation. The flow noise is measured in the interval of 0.20 m water head increment. The incipient cavitation occurs and is determined when the measured noise of the flow is about 10 dB larger than the background noise, and the working head is recorded as the critical condition of the occurrence of cavitation.

    Fig.10 Process of flow choking (M12)

    Table 2 is the data of the incipient cavitation numberiσfor all the cases, in which iσis expressed as

    whereopand oVare the pressure and the velocity in the measured section, located at 0.15 m before the reduction section of the M-STED,vpis the saturated steam pressure at the measured temperature of the water, and =ρ1 000 kg/m3, is the density of the water. It could be noticed that, from Table 2, the series of cases M2i(=1-4)ihas the minimum incipient cavitation numbers among those three sets of models,while the values of the conventional STED, such as M00, is the biggest. In fact, those results are produced because the pressureopof cases M2iin the measured section is the least due to the existence of multiple slits. Meanwhile, the slit number induces a slight increase of the incipient cavitation number for the same set of model.

    2.4Flow choking

    In a supercritical chute flow, any obstructions may cause a flow breakdown[20]. The M-STEDs are, therefore, specially studied in this regard. Figure 10 demonstrates the whole process of the flow choking (M12), and a typical process includes four states, i.e., the appearance, the formation, the development and the disappearance (see Figs.10 (a) to 10(d)). Here, the second state, namely, the formation, is defined as the flow choking for the M-STED, and in this state, the recirculation just reaches the pressure flow edge and fills the surface on the flow.

    Fig.11 Variation of Froagainst n at2=a0.0175 m for flow choking

    The experimental observations show that the flow choking is dominated by the structural forms, as well as the approach Froude numberFro, and there are three results from the present study. For the first set of cases, i.e., each of M11-M14, there are all four states of the flow choking of the appearance, the formation, the development and the disappearance. Figure 11 is the variation of the choking Froude numberFroagainst the slit numbernat2=a0.0175. Clearly,Frodecreases with the increase ofn, which means that the slit number tends to reduce the choking Froude number.

    For cases M21-M24, there are no phenomena of the flow choking, which may be related to the slit size of the M-STED. The flow can pass smoothly through the M-STED when2ais small or equal to zero so that the flow choking would disappear.

    For a kind of absolute geometry, i.e., the case M00, there is one slit in the outlet. Table 3 is the comparison of the flow choking Froude number for cases M14 and M00, in which subscripts 1, 2, 3, and 4 of the Froude number stand for the four states of the appearance, the formation, the development and the disappearance, respectively. It is noticed that in all cases listed in Table 3, the choking Froude number of the case M14 is significantly less than that of the case M00. It demonstrates that the multiple slits can decrease the choking Froude number and even eliminate the phenomena of the flow choking, like the cases M21-M24.

    Table 3 Comparison of flow choking Froude number

    3. Conclusion

    In this study, a multiple slit-type energy dissipater is developed, and the hydraulic characteristics, including the flow regime, the jet flow trajectory, the energy dissipation, the cavitation characteristics, and the flow choking, are experimentally investigated by means of three sets of physical models in nine cases. The results show that the energy dissipater presented in this study enjoys a suitable hydraulic performance, and the energy dissipation ratio is increased by about 5% comparing with the conventional slit-type energy dissipaters thanks to the effects of the turbulence and the friction between the different layers of the jet flow and the increased air entrainment.

    [1] LIAN J. J., YANG M. Hydrodynamics for high dam[M]. Beijing, China: China Water Power Press, 2008(in Chinese).

    [2] VISCHER D. L., HAGER W. H. Energy dissipators[M]. Rotterdam: A. A. Balkema, 1995.

    [3] DENG Jun, XU Wei-lin and ZHANG Jian-min et al. A new layout of stilling basin-horizontal multiple submerged jets[J]. Science in China Series E-Technological Sciences, 2009, 39(1): 29-38(in Chinese).

    [4] JUON R., HAGER W. H. Flip bucket without and with deflectors[J]. Journal of Hydraulic Engineering, ASCE, 2000, 126(11): 837-845.

    [5] SCHMOCHER L., PFISTER M. and HAGER W. H. et al. Aeration characteristics of ski jump jets[J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(1): 90-97.

    [6] SAVIC L., KUZMANOVIC V. and MILOVANOVIC B. Ski jump design[J]. Water Management, 2010, 163(10): 523-527.

    [7] PAGLIARA S., AMIDEI M. and HAGER W. H. Hydraulics of 3D plunge pool scour[J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(9): 1275-1284.

    [8] STEINER R., HELLER V. and HAGER W. H. et al. Deflector ski jump hydraulics[J]. Journal of HydraulicEngineering, ASCE, 2008, 134(5): 562-571.

    [9] LUCAS J., HAGER W. H. and BOES R. M. Deflector effect on chute flow[J]. Journal of Hydraulic Engineering, ASCE, 2013, 139(4): 444-449.

    [10] HUANG Qiu-jun, WU Jian-hua. Research on contraction energy dissipaters[J]. Journal of Hohai University (Natural Sciences), 2008, 36(2): 219-223(in Chinese).

    [11] LI Gui-fen, LIU Qing-chao. Numerical computation of slit-type supercritical flows[J]. Journal of Hydroelectric Engineering, 1990, (1): 7-15(in Chinese).

    [12] ZHANG Yan-fa, WU Wen-ping. Experimental researches on the flow profile and the nappe trajectory distance for slit-type bucket[J]. Journal of Hydraulic Engineering, 1989, 20(5): 14-21(in Chinese).

    [13] YANG S. L. Discussion of the hydraulic calculation method of flow from contraction type flip bucket of high dam[J]. Water Power, 1989, (7): 48-51(in Chinese).

    [14] LIU Ya-kun, NI Han-gen. Abrupt deflected supercritical water flow in sloped channels[J]. Journal of Hydrodynamics, 2006, 20(3): 293-298.

    [15] LIU Shi-he, QU Bo. Experimental investigation on the section configuration of jumping nappe[J]. Engineering Journal of Wuhan University (Eigineering Edition), 2004, 37(5): 1-4(in Chinese).

    [16] WU Jian-hua, MA Fei and YAO Li. Hydraulic characteristics of slit-type energy dissipaters[J]. Journal of Hydrodynamics, 2012, 24(6): 883-887.

    [17] PUTTON V. C., MARSON C. and FIOROTTO V. et al. Supercritical flow over a dentated sill[J]. Journal of Hydraulic Engineering, ASCE, 2009, 135(9): 1019-1026.

    [18] CHAUDHRY M. H. Open-channel flow[M]. Englewood Cliffs, New Jersey: Prentice Hall, 1993.

    [19] WU Jian-hua, WU Wei-wei and RUAN Shi-ping. On necessity of placing an aerator in the bottom discharge tunnel at the Longtan Hydropower Station[J]. Journal of Hydrodynamics, 2006, 18(6): 698-701.

    [20] STEINER R., HELLER V. and HAGER W. H. et al. Deflector ski jump hydraulics[J]. Journal of Hydraulic Engineering, ASCE, 2008, 134(5): 562-571.

    10.1016/S1001-6058(14)60010-X

    * Project supported by the National Natural Science Foundation of China (Grant No. 51179056).

    Biography: WU Jian-hua (1958-), Male, Ph. D., Professor

    WU Jian-hua,

    E-mail: jhwu@hhu.edu.cn

    猜你喜歡
    馬飛建華
    倒立奇奇
    故事作文·低年級(2018年11期)2018-11-19 17:25:58
    Air entrainment of hydraulic jump aeration basin *
    米沙在書里
    可怕的事
    Energy dissipation of slot-type flip buckets *
    Standing wave at dropshaft inlets*
    變變變
    阿嗚想做貓
    A new design of ski-jump-step spillway*
    91麻豆精品激情在线观看国产| 女性生殖器流出的白浆| 免费人成视频x8x8入口观看| 在线av久久热| 老司机深夜福利视频在线观看| 自线自在国产av| 长腿黑丝高跟| 好男人在线观看高清免费视频 | 欧美黑人精品巨大| а√天堂www在线а√下载| 中文字幕精品亚洲无线码一区 | 久久婷婷人人爽人人干人人爱| 日本a在线网址| e午夜精品久久久久久久| 看片在线看免费视频| 身体一侧抽搐| 久久中文看片网| 久久亚洲真实| 中文在线观看免费www的网站 | 久久99热这里只有精品18| 亚洲七黄色美女视频| 久久久久久亚洲精品国产蜜桃av| 亚洲av中文字字幕乱码综合 | 两人在一起打扑克的视频| 亚洲av中文字字幕乱码综合 | 欧美成人免费av一区二区三区| 欧美日本视频| 精华霜和精华液先用哪个| 日韩欧美免费精品| 精品午夜福利视频在线观看一区| 美女国产高潮福利片在线看| 国产精品久久久人人做人人爽| 精品国产乱码久久久久久男人| 人人妻人人澡人人看| 国产精品一区二区免费欧美| 每晚都被弄得嗷嗷叫到高潮| 久久香蕉国产精品| 桃色一区二区三区在线观看| 757午夜福利合集在线观看| 成人三级黄色视频| 老鸭窝网址在线观看| 成人三级做爰电影| 一级a爱视频在线免费观看| 亚洲片人在线观看| 男人的好看免费观看在线视频 | 亚洲三区欧美一区| 国产黄a三级三级三级人| 后天国语完整版免费观看| 观看免费一级毛片| 午夜福利高清视频| 国产一区二区激情短视频| 欧美日韩福利视频一区二区| 热re99久久国产66热| 欧美一区二区精品小视频在线| 亚洲av成人av| x7x7x7水蜜桃| 好看av亚洲va欧美ⅴa在| 男女午夜视频在线观看| 久久久久久久精品吃奶| 国产片内射在线| 一级a爱视频在线免费观看| 久热这里只有精品99| 一个人观看的视频www高清免费观看 | 一边摸一边做爽爽视频免费| 长腿黑丝高跟| 欧美丝袜亚洲另类 | 亚洲 欧美一区二区三区| 亚洲成人久久性| 黄色视频不卡| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 久久青草综合色| 麻豆久久精品国产亚洲av| 亚洲精品美女久久久久99蜜臀| 欧美乱妇无乱码| 50天的宝宝边吃奶边哭怎么回事| 好男人电影高清在线观看| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久亚洲精品国产蜜桃av| 亚洲专区国产一区二区| 亚洲,欧美精品.| 国产精华一区二区三区| 一级毛片女人18水好多| 动漫黄色视频在线观看| 成人亚洲精品一区在线观看| 中出人妻视频一区二区| 亚洲成人免费电影在线观看| 国产av不卡久久| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 美女大奶头视频| cao死你这个sao货| 亚洲国产精品久久男人天堂| 欧美日韩黄片免| 国产午夜精品久久久久久| 国产麻豆成人av免费视频| 人人妻人人看人人澡| 女人高潮潮喷娇喘18禁视频| 亚洲国产精品成人综合色| 法律面前人人平等表现在哪些方面| 国产精品98久久久久久宅男小说| 长腿黑丝高跟| 可以免费在线观看a视频的电影网站| 757午夜福利合集在线观看| 久热这里只有精品99| 18禁裸乳无遮挡免费网站照片 | 久久精品aⅴ一区二区三区四区| 中国美女看黄片| 天堂影院成人在线观看| 久久精品人妻少妇| 两个人视频免费观看高清| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 哪里可以看免费的av片| www国产在线视频色| 老熟妇乱子伦视频在线观看| 免费在线观看完整版高清| 久久香蕉激情| 久久精品国产综合久久久| 欧美av亚洲av综合av国产av| 99riav亚洲国产免费| 免费在线观看日本一区| 美女大奶头视频| 中亚洲国语对白在线视频| xxx96com| 韩国精品一区二区三区| 中亚洲国语对白在线视频| 色综合欧美亚洲国产小说| 国产精品野战在线观看| 美女午夜性视频免费| 亚洲成av片中文字幕在线观看| 桃红色精品国产亚洲av| 日日摸夜夜添夜夜添小说| 亚洲美女黄片视频| 色播亚洲综合网| 国产在线精品亚洲第一网站| 国产高清视频在线播放一区| 啪啪无遮挡十八禁网站| 免费在线观看日本一区| 午夜福利欧美成人| 中文字幕人妻熟女乱码| 91九色精品人成在线观看| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 50天的宝宝边吃奶边哭怎么回事| 午夜福利18| 免费人成视频x8x8入口观看| 日韩大尺度精品在线看网址| 色在线成人网| 十八禁人妻一区二区| 成人欧美大片| 亚洲第一av免费看| 十八禁人妻一区二区| 看片在线看免费视频| 亚洲第一av免费看| 久99久视频精品免费| 一本综合久久免费| 国产精品免费一区二区三区在线| 午夜激情福利司机影院| 少妇 在线观看| 久久精品影院6| 性欧美人与动物交配| 国产精品免费视频内射| 欧美性猛交╳xxx乱大交人| √禁漫天堂资源中文www| 色哟哟哟哟哟哟| 俄罗斯特黄特色一大片| 人人澡人人妻人| 亚洲真实伦在线观看| 老鸭窝网址在线观看| 国产激情欧美一区二区| 国产精品久久久av美女十八| 制服诱惑二区| 又黄又爽又免费观看的视频| 欧美日韩中文字幕国产精品一区二区三区| 久久久久精品国产欧美久久久| 久久久久久人人人人人| 麻豆av在线久日| 看片在线看免费视频| 国产又色又爽无遮挡免费看| 午夜精品在线福利| 曰老女人黄片| 嫩草影院精品99| 法律面前人人平等表现在哪些方面| 麻豆久久精品国产亚洲av| 日本免费a在线| 欧美大码av| 神马国产精品三级电影在线观看 | 19禁男女啪啪无遮挡网站| 国产麻豆成人av免费视频| 激情在线观看视频在线高清| 免费高清视频大片| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 免费人成视频x8x8入口观看| 欧美乱码精品一区二区三区| 久久精品影院6| 精品午夜福利视频在线观看一区| 好男人电影高清在线观看| 亚洲黑人精品在线| 啦啦啦韩国在线观看视频| 搡老岳熟女国产| 欧美成狂野欧美在线观看| 欧美乱色亚洲激情| 欧美激情极品国产一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产欧美日韩在线播放| 中国美女看黄片| 国产精品 欧美亚洲| 一进一出抽搐gif免费好疼| 满18在线观看网站| 国产99久久九九免费精品| 午夜免费鲁丝| 欧美亚洲日本最大视频资源| 免费女性裸体啪啪无遮挡网站| 久久久久久久久免费视频了| 日本 av在线| 99久久国产精品久久久| 国产一区二区三区视频了| 国产黄色小视频在线观看| 人人澡人人妻人| 精华霜和精华液先用哪个| 麻豆国产av国片精品| 欧美日韩瑟瑟在线播放| 成在线人永久免费视频| 久久国产精品人妻蜜桃| 日本 av在线| 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片| 亚洲av电影在线进入| 国产片内射在线| 欧美日本亚洲视频在线播放| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 一个人观看的视频www高清免费观看 | 国产伦人伦偷精品视频| 50天的宝宝边吃奶边哭怎么回事| 草草在线视频免费看| 午夜老司机福利片| 每晚都被弄得嗷嗷叫到高潮| 国产精品久久视频播放| 超碰成人久久| 久久中文字幕人妻熟女| 男男h啪啪无遮挡| 午夜福利一区二区在线看| xxxwww97欧美| 亚洲全国av大片| 久久精品91无色码中文字幕| 亚洲专区字幕在线| a级毛片a级免费在线| 观看免费一级毛片| 在线永久观看黄色视频| 国产区一区二久久| 嫩草影视91久久| 大香蕉久久成人网| 国产精品1区2区在线观看.| 叶爱在线成人免费视频播放| 一区二区三区国产精品乱码| АⅤ资源中文在线天堂| 人人澡人人妻人| 国内揄拍国产精品人妻在线 | 中文亚洲av片在线观看爽| 18禁美女被吸乳视频| 久久青草综合色| 国产av一区二区精品久久| 亚洲免费av在线视频| 老司机靠b影院| a级毛片在线看网站| av电影中文网址| 哪里可以看免费的av片| 久久久久久久久免费视频了| 一区福利在线观看| 色综合欧美亚洲国产小说| 日韩欧美国产一区二区入口| 午夜精品久久久久久毛片777| 国产精品一区二区精品视频观看| 亚洲精品中文字幕一二三四区| 真人做人爱边吃奶动态| 国产黄a三级三级三级人| 久久伊人香网站| 免费看a级黄色片| 中文字幕人妻熟女乱码| 免费无遮挡裸体视频| 久久婷婷人人爽人人干人人爱| 欧美丝袜亚洲另类 | 久久人妻av系列| 美女午夜性视频免费| 日韩一卡2卡3卡4卡2021年| 妹子高潮喷水视频| 国产精华一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 成人欧美大片| 国产黄a三级三级三级人| 91大片在线观看| 啦啦啦免费观看视频1| 在线看三级毛片| 黄色 视频免费看| 在线观看午夜福利视频| 国产精品一区二区精品视频观看| 男女视频在线观看网站免费 | 日韩 欧美 亚洲 中文字幕| 97超级碰碰碰精品色视频在线观看| 老司机靠b影院| 久久久久九九精品影院| 亚洲五月色婷婷综合| а√天堂www在线а√下载| 国产亚洲精品av在线| 啦啦啦 在线观看视频| 日本一本二区三区精品| 久久中文看片网| 国产久久久一区二区三区| av中文乱码字幕在线| 亚洲人成电影免费在线| 日本免费一区二区三区高清不卡| 免费在线观看黄色视频的| 一区二区三区激情视频| 一区二区三区精品91| 国产精品98久久久久久宅男小说| 亚洲五月天丁香| 久久久久国产精品人妻aⅴ院| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合 | 日韩国内少妇激情av| 美女高潮到喷水免费观看| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 精品久久久久久久久久久久久 | 最新在线观看一区二区三区| 久久人人精品亚洲av| bbb黄色大片| 每晚都被弄得嗷嗷叫到高潮| 精品熟女少妇八av免费久了| 国产高清视频在线播放一区| 国产极品粉嫩免费观看在线| 日韩精品青青久久久久久| 麻豆成人午夜福利视频| 一区二区三区高清视频在线| 免费在线观看黄色视频的| 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 成人国产一区最新在线观看| 亚洲欧美激情综合另类| 国产av在哪里看| 热99re8久久精品国产| 12—13女人毛片做爰片一| 国产亚洲av嫩草精品影院| 侵犯人妻中文字幕一二三四区| 欧美黑人巨大hd| 亚洲午夜精品一区,二区,三区| 狠狠狠狠99中文字幕| 熟妇人妻久久中文字幕3abv| а√天堂www在线а√下载| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品久久久久5区| 美国免费a级毛片| 国产精品av久久久久免费| 国产成人精品久久二区二区免费| 嫩草影院精品99| 精品卡一卡二卡四卡免费| 久久久久久久午夜电影| 中文字幕高清在线视频| 久久中文字幕人妻熟女| 天天一区二区日本电影三级| 免费搜索国产男女视频| 亚洲专区国产一区二区| 久久性视频一级片| 亚洲成人久久性| 午夜精品久久久久久毛片777| 丝袜在线中文字幕| 国产麻豆成人av免费视频| 亚洲 国产 在线| 美女 人体艺术 gogo| 亚洲专区中文字幕在线| 日韩一卡2卡3卡4卡2021年| 精品人妻1区二区| 日本撒尿小便嘘嘘汇集6| av中文乱码字幕在线| 免费无遮挡裸体视频| 国产伦人伦偷精品视频| 亚洲av五月六月丁香网| 国产成人影院久久av| 精品不卡国产一区二区三区| 国产色视频综合| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 免费在线观看影片大全网站| 中文字幕精品亚洲无线码一区 | 麻豆成人午夜福利视频| 黄色 视频免费看| 在线观看日韩欧美| 此物有八面人人有两片| 欧美黄色淫秽网站| 男女下面进入的视频免费午夜 | 搡老岳熟女国产| 欧美成人免费av一区二区三区| av在线播放免费不卡| svipshipincom国产片| 亚洲激情在线av| 久久久久久久久免费视频了| 亚洲中文av在线| 国产亚洲精品综合一区在线观看 | 欧美中文日本在线观看视频| 一区福利在线观看| 男女那种视频在线观看| 19禁男女啪啪无遮挡网站| 看黄色毛片网站| 精品久久久久久久毛片微露脸| 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 日韩精品中文字幕看吧| 久久久久国内视频| 亚洲精品中文字幕在线视频| 99热6这里只有精品| av天堂在线播放| 国产精品亚洲av一区麻豆| 美女免费视频网站| 高清在线国产一区| 十八禁网站免费在线| 国产1区2区3区精品| 久久久国产精品麻豆| 中文资源天堂在线| 午夜亚洲福利在线播放| 婷婷精品国产亚洲av| 俺也久久电影网| 亚洲国产欧美日韩在线播放| av片东京热男人的天堂| 国产精品香港三级国产av潘金莲| xxx96com| 亚洲av电影在线进入| 熟妇人妻久久中文字幕3abv| 久久天躁狠狠躁夜夜2o2o| 一区二区三区激情视频| bbb黄色大片| 无遮挡黄片免费观看| 美女扒开内裤让男人捅视频| 精品乱码久久久久久99久播| 国产激情偷乱视频一区二区| 搡老妇女老女人老熟妇| 一级a爱视频在线免费观看| 国产色视频综合| 天天躁夜夜躁狠狠躁躁| 狂野欧美激情性xxxx| 亚洲精品久久成人aⅴ小说| 久久人妻av系列| 国产一区二区激情短视频| 女人爽到高潮嗷嗷叫在线视频| 51午夜福利影视在线观看| 亚洲精品一卡2卡三卡4卡5卡| 午夜久久久久精精品| 国产蜜桃级精品一区二区三区| 观看免费一级毛片| 90打野战视频偷拍视频| 亚洲午夜精品一区,二区,三区| 十八禁人妻一区二区| 国产精品综合久久久久久久免费| 国产成人欧美在线观看| 1024香蕉在线观看| 麻豆一二三区av精品| 性色av乱码一区二区三区2| 777久久人妻少妇嫩草av网站| 成人手机av| 男人舔奶头视频| 精品日产1卡2卡| 欧美激情 高清一区二区三区| 日日爽夜夜爽网站| 黄频高清免费视频| 黄网站色视频无遮挡免费观看| 欧美日韩福利视频一区二区| 一级a爱片免费观看的视频| 在线播放国产精品三级| 美女高潮到喷水免费观看| 免费在线观看视频国产中文字幕亚洲| 18禁裸乳无遮挡免费网站照片 | 午夜福利视频1000在线观看| 此物有八面人人有两片| 午夜久久久在线观看| 男女床上黄色一级片免费看| 久久久久免费精品人妻一区二区 | 国产免费男女视频| 日韩高清综合在线| 国产精品久久久久久亚洲av鲁大| 法律面前人人平等表现在哪些方面| 国产精品一区二区三区四区久久 | 亚洲精品粉嫩美女一区| 欧美国产精品va在线观看不卡| 中国美女看黄片| 18禁观看日本| 色综合欧美亚洲国产小说| 在线免费观看的www视频| 色播在线永久视频| 久久亚洲真实| 18禁观看日本| 国产激情久久老熟女| 亚洲精品美女久久久久99蜜臀| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久视频播放| 韩国精品一区二区三区| 国产精品 欧美亚洲| 亚洲精品粉嫩美女一区| 日韩精品中文字幕看吧| 久久久国产成人免费| 亚洲国产精品sss在线观看| 最新美女视频免费是黄的| 一个人免费在线观看的高清视频| 777久久人妻少妇嫩草av网站| 欧美人与性动交α欧美精品济南到| 精品久久久久久,| 中文字幕最新亚洲高清| 欧美性猛交黑人性爽| 欧美日韩精品网址| 国产国语露脸激情在线看| av在线播放免费不卡| 一级毛片女人18水好多| 欧美成人性av电影在线观看| 国产一区二区三区视频了| 性欧美人与动物交配| 日韩欧美三级三区| 无限看片的www在线观看| 在线观看免费日韩欧美大片| 男女午夜视频在线观看| 久久午夜综合久久蜜桃| 成在线人永久免费视频| 久久香蕉精品热| 99久久精品国产亚洲精品| 一进一出好大好爽视频| 在线观看舔阴道视频| www.www免费av| av中文乱码字幕在线| 级片在线观看| 国产精品自产拍在线观看55亚洲| 在线观看66精品国产| 久久久精品国产亚洲av高清涩受| 色综合亚洲欧美另类图片| 精品卡一卡二卡四卡免费| 免费看十八禁软件| 最好的美女福利视频网| 国产在线精品亚洲第一网站| 男女之事视频高清在线观看| 999精品在线视频| 特大巨黑吊av在线直播 | 国产伦在线观看视频一区| 国产成人影院久久av| 国产三级在线视频| 久久热在线av| 国产黄色小视频在线观看| 亚洲精品中文字幕在线视频| 色综合欧美亚洲国产小说| 变态另类丝袜制服| 国产精品国产高清国产av| av福利片在线| av欧美777| 亚洲中文日韩欧美视频| www.www免费av| 久久人人精品亚洲av| 国产精品一区二区免费欧美| 18禁美女被吸乳视频| 12—13女人毛片做爰片一| 美女扒开内裤让男人捅视频| 欧美性猛交黑人性爽| 精品少妇一区二区三区视频日本电影| x7x7x7水蜜桃| 亚洲男人天堂网一区| 在线十欧美十亚洲十日本专区| 男人操女人黄网站| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品1区2区在线观看.| 老司机午夜十八禁免费视频| 久久精品国产清高在天天线| 国产免费男女视频| 99精品久久久久人妻精品| 一区二区日韩欧美中文字幕| 色播在线永久视频| 91国产中文字幕| 搡老岳熟女国产| 免费一级毛片在线播放高清视频| 两个人视频免费观看高清| 久久精品人妻少妇| 最新美女视频免费是黄的| 一夜夜www| 日本免费一区二区三区高清不卡| 国产av一区在线观看免费| 免费看美女性在线毛片视频| 麻豆久久精品国产亚洲av| 欧美中文综合在线视频| 听说在线观看完整版免费高清| 国产亚洲精品久久久久久毛片| www国产在线视频色| 久久香蕉国产精品| 久久国产精品影院| 性欧美人与动物交配| 欧美激情极品国产一区二区三区| 变态另类成人亚洲欧美熟女| 国产免费av片在线观看野外av| 亚洲国产日韩欧美精品在线观看 | 亚洲美女黄片视频| 精品国内亚洲2022精品成人| 亚洲五月天丁香| 色在线成人网| 中文字幕av电影在线播放| 欧美成人一区二区免费高清观看 | 国产精品影院久久| 两个人看的免费小视频| 欧美在线一区亚洲| 99国产极品粉嫩在线观看| 夜夜躁狠狠躁天天躁| 亚洲五月天丁香| 久久国产乱子伦精品免费另类| 成人一区二区视频在线观看| 麻豆av在线久日| av中文乱码字幕在线| 亚洲在线自拍视频| 夜夜爽天天搞| 久久久国产欧美日韩av| 啦啦啦韩国在线观看视频|