• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Silicon and Oxygen Isotopic Composition of Igneous Rocks from the Eastern Manus Basin

    2014-05-06 06:56:59ZHAOHuijingZENGZhigangYINXueboandCHENShuai
    Journal of Ocean University of China 2014年3期

    ZHAO Huijing, ZENG Zhigang, YIN Xuebo and CHEN Shuai

    1) Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2)Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    Silicon and Oxygen Isotopic Composition of Igneous Rocks from the Eastern Manus Basin

    ZHAO Huijing1),2), ZENG Zhigang1),*, YIN Xuebo1), and CHEN Shuai1)

    1) Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P. R. China

    2)Graduate University of Chinese Academy of Sciences, Beijing 100049, P. R. China

    This paper reports silicon and oxygen isotopes of 20 kinds of igneous rocks and their major elements from the eastern Manus Basin. Combining silicon and oxygen isotopic data from other studies, we suppose that both δ30Si and δ18O values increase with the increasing of SiO2content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3ratios and MgO and that between Si/Al and SiO2content indicate that clinopyroxene is the predominant mineral phase in our samples. We suppose that the fractionation of silicon and oxygen isotopes are influenced by mineral fractional crystallization. Probably, it is due to their different silicon and oxygen bridges. In this study, the δ30Simeanvalue= -0.17‰±0.17‰ and δ18Omeanvalue= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, and we propose that these igneous rocks in the eastern Manus Basin are affected by hydrothermal alteration.

    Si isotope; O isotope; igneous rocks; eastern Manus Basin

    1 Introduction

    Silicon, the third most abundant element on the Earth, has three stable isotopes,28Si,29Si and30Si. In nature, silicate (75%) and silica (12%) make up the majority components of the Earth’s crust, which makes silicon a useful element in the geochemical study of the Earth.

    Several previous studies have focused on silicon isotope fractionation during biogenic and non-biogenic amorphous silica precipitation, and have shown significant enrichment of28Si during precipitation of silica and clays (Dinget al., 2005, 2004; Opfergeltet al., 2010; Reynoldset al., 2006). Other studies proposed that there is no significant fractionation of silicon isotopes during magmatic-metamorphic rock-forming processes and the variations of silicon isotope composition are mainly due to isotopic fractionation during precipitation of SiO2and biogeochemical processes (Allemanet al., 2005; De La Rochaet al., 2000; Douthitt, 1982; Georget al., 2006; Georget al., 2007b; Méheutet al., 2009). These differences make silicon isotopes useful in distinguishing magmatic, hydrothermal and sedimentary protoliths of strongly metamorphosed silica-rich rocks (Andreet al., 2006). In some other studies, silicon isotopes are used to characterize the geochemistry of igneous rocks (Georget al., 2007a, 2007b; Savageet al., 2010; Ziegleret al., 2005a, 2005b).

    Savageet al. (2010) proposed that bulk silicate Earth (BSE) is homogeneous with respect to silicon isotopes because there are no significant relationships existing between δ30Si and age, chemistry or locality of rocks (Savageet al., 2010). However, there are many studies showing a heterogeneity of isotopes and trace elements in mid-ocean ridge basalts (MORB), ocean island basalts (OIB) and back-arc basin basalts (BABB) and providing insights into the dynamics of the Earth’s mantle (Albarede and van der Hilst, 2002; Ben Othmanet al., 1989; Hartet al., 1992; Hofmann, 1997; Parket al., 2010; Sintonet al., 2003). Usually, heterogeneity of BSE develops at convergent plate margins so that components in subduction material might contain sediment and hydrothermal-altered oceanic crust (Bercovici and Karato, 2003; Hawkesworthet al., 1993; Schubertet al., 2001; Stein and Hansen, 2008).

    Previous studies about oxygen isotopes displayed that18O variations in submarine basalts are mainly due to low-temperature alteration and hydration (Taylor, 1968), and the higher δ18O value indicates the more extensive alteration (Pineauet al., 1976). Oxygen isotopes might be a useful tool in tracing different types of recycled crustal material in Earth’s mantle. The use of stable isotopes can overcome some limitations when using radiogenic isotopes as tracers of mantle processes (Widom and Farquhar, 2003).

    Meanwhile, Douthitt (1982) noted the positive correlation between δ30Si value of igneous rocks and the silicon content. The similarity between isotopic fractionations of silicon and oxygen have been emphasized, and some studies have indicated that sedimentary processes could result in parallel enrichments between30Si and18O (Douthitt, 1982; Taylor, 1968). Thus, the combination of silicon and oxygen isotopes in the present study would give us new insights into the sources of igneous rocks.

    This paper presents major elements data about 20 igneous rocks from eastern Manus Basin and 20 groups of δ30Si and δ18O data. It helps us to study the relationship among silicon, oxygen isotopes and silica content. It also indicates the characteristics of igneous rocks in our study area.

    2 Geological Setting

    As a quickly-opening back-arc basin (about 10cm yr-1), Manus Basin, which is located in the northeastern Bismarck Sea to the north of Papua New Guinea, is surrounded by Willaumez Rise to the southwest, Manus Island and New Hanover to the north, New Ireland to the east and New Britain to the south (Martinez and Taylor, 1996).

    Numerous studies indicate that the site of northern New Guinea is a consequence of island arc – continent collision rather than a doubly subducted piece of oceanic lithosphere (Dewey and Bird, 1970; Johnson and Molnar, 1972; Pascal, 1979; Whitmoreet al., 1999). The ancient fore-arc crust in the eastern Manus Basin is being stretched between the Djaul and Weitin Transforms, resulting in the volcanism along a series of en echelon, sinuous rifts, including East Manus Rifts (ER), Southern Rifts (SR), Manus Spreading Center (MSC) and Extensional Transform Zone (ETZ) (Fig.1) (Martinea and Taylor, 1995; Sintonet al., 2003).

    The eastern Manus Basin is thought to have been located above the subduction zone for more than 40 Ma (Kamenetskyet al., 2001). Rock types in Manus Basin vary from MORB-type to arc-type, including a volcanic suite of basalt, basaltic andesite, dacite and rhyodacite, with prevailing hydrothermal alteration (Binns and Scott, 1993; Mosset al., 2001; Sintonet al., 2003; Taylor and Martinez, 2003; Yang and Scott, 2002).

    Fig.1 Tectonic setting of the Manus Basin behind the New Britain arc-trench system, Papua New Guinea (modified from Martinez and Taylor, 1996). There are three transform faults (Willaumez, WiT; Djaul, DT; Weitin, WT) bound four extensional zones in the Manus Basin. Our study area is marked.

    3 Samples and Analytical Methods

    The samples that we analyzed in this study were dredged from the Manus Basin between 151°39′-152°09′ E and 03°40′-03°47′S at sea water depth ranging from 1400 m to 2100 m (Fig.1) during the ‘KX08-973’ cruise in 2008.

    These dredged samples, including basaltic andesite, andesite and dacite, have a high SiO2content ranging from 54.26% - 66.75%. Both silicon and oxygen isotopes of these samples were analyzed at the Institute of Mineral Resources, Chinese Academy of Geological Sciences (CAGS), with a MAT253EM-type mass spectrometer. Silicon isotopes were analyzed by the SiF4method for δ30Si (Dinget al., 1988) with a precision of ±0.10‰, the isotopic data being reported relative to the NBS-28 standard. Oxygen isotope compositions were determined by the BrF5method with a precision of ±0.20‰, the data being reported relative to the SMOW standard.

    The results of the isotopic ratio analysis of both silicon and oxygen were reported in δ-notation in parts per mil (‰) as follows:

    Table 1 δ30Si and δ18O values (in ‰) and major elements (in wt%) of igneous rocks dredged from the Manus Basin.

    Major elements were analyzed by Sequential X-ray Fluorescence Spectrometer in the Institute of Geology and Geophysics, Chinese Academy of Sciences, with a precision of ±0.20‰. Data of major elements, δ30Si and δ18O, are given in Table 1.

    To better discuss the variations of δ30Si and δ18O in igneous rocks, this paper presents a review of published δ30Si and δ18O data (Table 2) from Douthitt (1982), where δ30SiRQS(‰) values have been converted to δ30SiNBS-28(‰) using the formula δ30SiRQS-NBS-28= -0.28‰ (Molinivelskoet al., 1986).

    4 Results

    From Table 1, the δ30Si values vary from -0.4‰ to 0.2‰ with a mean value δ30Simeanvalue= -0.17‰±0.17‰. The average silicon stable isotope value of samples from Manus Basin is has a significantly large positive magnitude than the mean value δ30Si = -0.4‰±0.2‰ of BSE (bulk silicate earth) as reported by Douthitt (1982). The δ30Simeanvaluein this study is lower than the δ30Si of island-arc basalt (IAB) and mid-ocean ridge basalt (MORB) that range from -0.32‰ to -0.25‰ and -0.33‰ to -0.23‰, respectively, and much lower than the value of ultramafic rocks that varies from -0.39‰ to -0.29‰(Savageet al., 2010). On the other hand, the δ18O values of our samples range from 5.1‰ to 6.9‰, with a mean value δ18Omeanvalue= +6.07‰±0.57‰. Obviously, δ18Omeanvaluein this study is higher than δ18Oalkalicbasalts=+5.8‰±0.5‰ and δ18Otholeiiticbasalts=+5.3‰±0.3‰ from OIB (Harmon and Hoefs, 1995) and δ18Oglass= +5.71‰±0.17‰ from MORB (Itoet al., 1987).

    The SiO2content of our samples varies from 54.26% -66.75%, and that of MgO ranges from 1.26% to 5.87%. In Fig.2, we can see that SiO2content of our samples displays negative correlation with MgO content, and Na2O+K2O content also shows negative correlation with MgO. All above indicate that these rocks are typically intermediate igneous rocks, including basaltic andesite, andesite and dacite (Table 1).

    Fig.2 a) Plot of SiO2(wt%) versus MgO (wt%) of igneous rocks from Manus Basin; b) plot of Na2O+K2O (wt%) versus MgO (wt%) of igneous rocks from Manus Basin.

    5 Discussion

    5.1 The δ30Si and δ18O of Igneous Rock

    In previous studies, some major elements are used to indicate the fractional crystallization of minerals (le Rouxet al., 2002; Peterson and Moore, 1987). In Fig.3a, positive correlation is displayed between CaO and MgO. It means both plagioclase and clinopyroxene crystallization from magma (Peterson and Moore, 1987). Since CaO/ Al2O3ratio is an effective indicator to show the evolution of basalts, a characteristic often connected with crystallization at different pressures (le Roexet al., 1996). And the clinopyroxene fractionation could be invoked by the positive correlation between CaO/Al2O3ratio and MgO content (le Rouxet al., 2002). The positive correlation between CaO/Al2O3and MgO in Fig.3b indicate the crystallization of clinopyroxene. Meanwhile, during magmatic fractionation, the Si/Al ratio of the clinopyroxene increases as the magma becomes progressively more siliceous (Fig.3c)(Kushiro, 1960). Based on Fig.3, we propose that clinopyroxene is the predominant mineral phase in the magma of our study area.

    Fig.3 a) The correlation between CaO and MgO; b) The correlation between CaO/Al2O3and MgO; c) The correlation between Si/Al and SiO2. All samples are igneous rocks from Manus Basin.

    Table 2 δ30Si and δ18O values (in ‰) of igneous rocks from islands of the MIA, seamounts of the MIA, and the volcanic suite of HM (Douthitt, 1982) (MIA: Mariana Island Arc; HM: Hackberry Mountain)

    Based on the data from Douthitt (1982) as cited in Table 2, we calculate the mean value of silicon and oxygen isotopes respectively. For basalts, the mean values are δ30Si= -0.69‰±0.19‰ and δ18O=+6.06‰±0.71‰. For andesite (including basaltic andesite), the average values are δ30Si= -0.60‰±0.31‰ and δ18O=+6.45‰±1.37‰. And for dacite, δ30Si= -0.42‰±0.16‰ and δ18O=+9.00‰±1.58‰ are their mean values.

    In fact, in more recent study, the average silicon isotopic value for each rock type group is more precise and becomes heavier as the samples become more evolved with the results: δ30Sibasalt= -0.31‰ ± 0.05‰; δ30Sibasalticandesite= -0.27‰ ± 0.05‰; δ30Siandesite= -0.23‰ ± 0.03‰; δ30Sidacite=-0.19‰ ± 0.04‰ (Savageet al., 2011). Since SiO2increases with the evolution of magma, we can conclude that in the series of basalt-andesite-dacite, both δ30Si and δ18O increase with the increasing of SiO2content. It means that the fractionation of silicon and oxygen isotopes are affected by the content of SiO2(Beucheret al., 2011).

    In this study, δ30Simeanvalue= -0.17‰±0.17‰ and δ18Omeanvalue= +6.07‰±0.57‰, both of them are higher than the value of basalts (see Section 4). It agrees with the previous suggestion that silica content influences the silicon and oxygen isotope fractionation. Since olivine and plagioclase usually co-exist in basalt (Groveet al., 1992), and clinopyroxene is the predominant mineral phase in our samples, we suppose that the fractionation of silicon and oxygen isotopes have a relationship with the mineral fractional crystallization. Ding (1994) had a similar conclusion that the δ30Si value of quartz-feldspar-mica in granite decreases along with the oxygen isotope variation. Perhaps,30Si and18O are easily to be fractionated from clinopyroxene than from olivine because of their differentsilicon and oxygen bridges.

    5.2 The Information from δ30Si and δ18O in Manus Basin

    It has been long known that back-arc lavas are likely to be influenced by H2O and other components derived from the adjacent subducting slab (Kelleyet al., 2006; Langmuiret al., 2006; Pearceet al., 1994; Pearce and Stern, 2006; Taylor and Martinez, 2003), and so does the Manus Basin (Sintonet al., 2003). Normally, two major sources of back-arc magma are: 1) mantle peridotite, and 2) subduction-related crustal material containing in fluids and/or melts derived from the subducting slab (Kamenetskyet al., 2001).

    The result δ30Simeanvalue= -0.17‰±0.17‰ in this study is higher than the mean value of BSE (δ30Simeanvalue= -0.29‰± 0.08‰) (Savageet al., 2010), and higher than either δ30Siandesite=-0.23‰±0.03‰ or δ30Sidacite=-0.19‰± 0.04‰. The result δ18Omeanvalue= +6.07‰±0.57‰ in this study is also higher than mantle values (δ18O=+5.5‰± 0.7‰) (Matteyet al., 1994). Considering the prevailing hydrothermal alteration in Manus Basin (Binns and Scott, 1993; Mosset al., 2001; Sintonet al., 2003; Taylor and Martinez, 2003; Yang and Scott, 2002), the higher δ18O value indicates the more extensive alteration (Pineauet al., 1976). We propose that both the higher δ30Si and δ18O of our samples suggest the contamination by a source affected by hydrothermal alteration. It means that the igneous rocks in Manus Basin are contaminated by hydrothermal fluid, and hydrothermal alteration makes rocks enriced in30Si and18O.

    6 Conclusion

    In this study, the igneous rocks from Manus Basin are intermediate rocks including basaltic andesite, andesite and dacite. Combining silicon and oxygen isotope data from other studies, we suppose that both δ30Si and δ18O increase with the increasing of SiO2content. It means that the fractionation of silicon and oxygen isotopes are affected by the silica content. The positive correlation between CaO/Al2O3ratios and MgO, and that between Si/Al and SiO2content indicate that clinopyroxene is crystallized in these igneous rocks. We suppose that the fractionation of silicon and oxygen isotopes has a relationship with the mineral fractional crystallization. Probably, due to their different silicon and oxygen bridges,30Si and18O are easier to be fractionated from clinopyroxene than from olivine.

    Since the values δ30Simeanvalue= -0.17‰±0.17‰ and δ18Omeanvalue= +6.07‰±0.57‰ are higher than normal δ30Si and δ18O values of mantle, we propose that these igneous rocks in Manus Basin are affected by hydrothermal alteration.

    Acknowledgements

    This work was supported by the National Key Basic Research Program of China (Grant No. 2013CB429700), National Natural Science Foundation of China (Grant Nos. 40976027, 40830849 and 40906029), and Shandong Province Natural Science Foundation for Distinguished Young Scholars (Grant No. JQ200913).

    Albarede, F., and van der Hilst, R. D., 2002. Zoned mantle convection. Geochimica et Cosmochimica Acta, 66 (15A): A12.

    Alleman, L. Y., Cardinal, D., Cocquyt, C., Plisnier, P. D., Descy, J. P., Kimirei, I., Sinyinza, D., and André, L., 2005. Silicon isotopic fractionation in Lake Tanganyika and its main tributaries. Journal of Great Lakes Research, 31 (4): 509-519.

    Andre, L., Cardinal, D., Alleman, L., and Moorbath, S., 2006. Silicon isotopes in ~3.8 Ga West Greenland rocks as clues to the Eoarchaean supracrustal Si cycle. Earth and Planetary Science Letters, 245 (1-2): 162-173.

    Ben Othman, D., White, W. M., and Patchett, J., 1989. The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 94 (1-2): 1-21.

    Bercovici, D., and Karato, S. I., 2003. Whole-mantle convection and the transition-zone water filter. Nature, 425 (6953): 39-44.

    Beucher, C. P., Brzezinski, M. A., and Jones, J. L., 2011. Mechanisms controlling silicon isotope distribution in the Eastern Equatorial Pacific. Geochimica et Cosmochimica Acta, 75 (15): 4286-4294.

    Binns, R. A., and Scott, S. D., 1993. Actively forming polymetallic sulfide deposits associated with felsic volcanic rocks in the eastern Manus Backarc Basin, Papua New Guinea. Economic Geology, 88: 2226-2236.

    De La Rocha, C. L., Brzezinski, M. A., and DeNiro, M. J., 2000. A first look at the distribution of the stable isotopes of silicon in natural waters. Geochimica et Cosmochimica Acta, 64 (14): 2467-2477.

    Dewey, J. F., and Bird, J. M., 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75 (14): 2625-2647.

    Ding, T. P., Jiang, S., Wan, D., and Li, Y., 1994. Silicon Isotope Geochemistry. Geological Publishing House, Beijing, 30-31. (in Chinese).

    Ding, T. P., Ma, G. R., Shui, M. X., Wan, D. F., and Li, R. H., 2005. Silicon isotope study on rice plants from the Zhejiang province, China. Chemical Geology, 218 (1-2): 41-50.

    Ding, T. P., Wan, D., Li, J., Jiang, S., Song, H., Li, Y., and Liu, Z., 1988. The analytical method of silicon isotopes and its geological application. Mineral Deposits, 7: 90-96.

    Ding, T. P., Wan, D., Wang, C., and Zhang, F., 2004. Silicon isotope compositions of dissolved silicon and suspended matter in the Yangtze River, China. Geochimica et Cosmochimica Acta, 68 (2): 205-216.

    Douthitt, C. B., 1982. The geochemistry of the stable isotopes of silicon. Geochimica et Cosmochimica Acta, 46 (8): 1449-1458.

    Georg, R. B., Halliday, A. N., Schauble, E. A., and Reynolds, B. C., 2007a. Silicon in the Earth’s core. Nature, 447 (7148): 1102-1106.

    Georg, R. B., Reynolds, B. C., Frank, M., and Halliday, A. N., 2006. Mechanisms controlling the silicon isotopic composi-tions of river waters. Earth and Planetary Science Letters, 249 (3-4): 290-306.

    Georg, R. B., Reynolds, B. C., West, A. J., Burton, K. W., and Halliday, A. N., 2007b. Silicon isotope variations accompanying basalt weathering in Iceland. Earth and Planetary Science Letters, 261 (3-4): 476-490.

    Grove, T. L., Kinzler, R. J., and Bryan, W. B., 1992. Fractionation of mid-ocean ridge basalt (MORB), In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. Geophysical Monograph Series. AGU, Washington, DC, 281-310.

    Harmon, R. S., and Hoefs, J., 1995. Oxygen isotope heterogeneity of the mantle deduced from global δ18O systematics of basalts from different geotectonic settings. Contributions to Mineralogy and Petrology, 120: 95-114.

    Hart, S. R., Hauri, E. H., Oschmann, L. A., and Whitehead, J. A., 1992. Mantle plumes and entrainment: Isotopic evidence. Science, 256 (5056): 517-520.

    Hawkesworth, C. J., Gallagher, K., Hergt, J. M., and McDermott, F., 1993. Mantle and slab contributions in arc magmas. Annual Review of Earth and Planetary Sciences, 21: 175-204.

    Hofmann, A. W., 1997. Mantle geochemistry: The message from oceanic volcanism. Nature, 385 (6613): 219-229.

    Ito, E., White, W. M., and G?pel, C., 1987. The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 62 (3-4): 157-176.

    Johnson, T., and Molnar, P., 1972. Focal mechanisms and plate tectonics of the southwest Pacific. Journal of Geophysical Research, 77: 5000-5031.

    Kamenetsky, V. S., Binns, R. A., Gemmell, J. B., Crawford, A. J., Mernagh, T. P., Maas, R., and Steele, D., 2001. Parental basaltic melts and fluids in eastern Manus Backarc Basin: Implications for hydrothermal mineralisation. Earth and Planetary Science Letters, 184 (3-4): 685-702.

    Kelley, K. A., Planck, T., Grove, T. L., Stolper, E. M., Newman, S., and Hauri, E. H., 2006. Mantle melting as a function of water content beneath back-arc basins. Journal of Geophysical Research, 111: B09208.

    Kushiro, I., 1960. Si-Al relation in clinopyroxenes from igneous rocks. American Journal of Science, 258 (8):548-554.

    Langmuir, C., Bezos, A., Escrig, S., and Parman, S., 2006. Hydrous mantle melting at ridges and back-arc basins. Goldschmidt Conference Abstracts, A341.

    le Roex, A. P., Frey, F. A., and Richardson, S. H., 1996. Petrogenesis of lavas from the Amar Valley and Narrowgate region of the famous Valley, 36°–37°N on the Mid-Atlantic Ridge. Contributions to Mineralogy and Petrology, 124 (2): 167-184.

    le Roux, P., le Roex, A., and Schilling, J. G., 2002. Crystallization processes beneath the southern Mid-Atlantic Ridge (40°–55°S), evidence for high-pressure initiation of crystallization. Contributions to Mineralogy and Petrology, 142 (5): 582-602.

    Méheut, M., Lazzeri, M., Balan, E., and Mauri, F., 2009. Structural control over equilibrium silicon and oxygen isotopic fractionation: A first-principles density-functional theory study. Chemical Geology, 258 (1-2): 28-37.

    Martinez, F., and Taylor, B., 1996. Backarc spreading, rifting, and microplate rotation, between transform faults in the Manus Basin. Marine Geophysical Researches, 18 (2-4): 203-224.

    Mattey, D., Lowry, D., and Macpherson, C., 1994. Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128 (3-4): 231-241.

    Molinivelsko, C., Mayeda, T. K., and Clayton, R. N., 1986. Isotopic composition of silicon in meteorites. Geochimica et Cosmochimica Acta, 50 (12): 2719-2726.

    Moss, R., Scott, S. D., and Binns, R. A., 2001. Gold content of eastern Manus Basin volcanic rocks: Implications for enrichment in associated hydrothermal precipitates. Economic Geology, 96: 91-107.

    Opfergelt, S., Cardinal, D., André, L., Delvigne, C., Bremond, L., and Delvaux, B., 2010. Variations of δ30Si and Ge/Si with weathering and biogenic input in tropical basaltic ash soils under monoculture. Geochimica et Cosmochimica Acta, 74 (1): 225-240.

    Park, S. H., Lee, S. M., Kamenov, G. D., Kwon, S. T., and Lee, K. Y., 2010. Tracing the origin of subduction components beneath the South East rift in the Manus Basin, Papua New Guinea. Chemical Geology, 269 (3-4): 339-349.

    Pascal, G., 1979. Seismotectonics of the Papua New Guinea-Solomon Islands region. Tectonophysics, 57: 7-34.

    Pearce, J. A., Ernewein, M., Bloomer, S. H., Parson, L. M., Murton, B. J., and Johnson, L. E., 1994. Geochemistry of Lau Basin volcanic rocks: Influence of ridge segmentation and arc proximity. Geological Society, London, Special Publications, 81 (1): 53-75.

    Pearce, J. A., and Stern, R. J., 2006. Origin of back-arc basin magmas: Trace element and isotope perspectives. In: Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. Christie, M., Fisher, R., Lee, S. M., and Givens, S. eds., Geophysical Monograph Series, American Geophysical Union, Washington, 63-86.

    Peterson, D. W., and Moore, R. B., 1987. Geologic history and evolution of geologic concepts, island of Hawaii. Volcanism in Hawaii, 1350: 149-189.

    Pineau, F., Javoy, M., Hawkins, J. W., and Craig, H., 1976. Oxygen isotope variations in marginal basin and ocean-ridge basalts. Earth and Planetary Science Letters, 28 (3): 299-307.

    Reynolds, B. C., Frank, M., and Halliday, A. N., 2006. Silicon isotope fractionation during nutrient utilization in the North Pacific. Earth and Planetary Science Letters, 244 (1-2): 431-443.

    Savage, P. S., Georg, R. B., Armytage, R. M. G., Williams, H. M., and Halliday, A. N., 2010. Silicon isotope homogeneity in the mantle. Earth and Planetary Science Letters, 295 (1-2): 139-146.

    Savage, P. S., Georg, R. B., Williams, H. M., Burton, K. W., and Halliday, A. N., 2011. Silicon isotope fractionation during magmatic differentiation. Geochimica et Cosmochimica Acta, 75 (20): 6124-6139.

    Schubert, G., Turcotte, D. L., and Olson, P., 2001. Mantle Convection in the Earth and Planets. Cambridge University Press, Cambridge, 940pp.

    Sinton, J. M., Ford, L. L., Chappell, B., and McCulloch, M. T., 2003. Magma genesis and mantle heterogeneity in the Manus Backarc Basin, Papua New Guinea. Journal of Petrology, 44: 159-195.

    Stein, C., and Hansen, U., 2008. Plate motions and the viscosity structure of the mantle - Insights from numerical modelling. Earth and Planetary Science Letters, 272 (1-2): 29-40.

    Taylor, B., and Martinez, F., 2003. Corrigendum to ‘Back-arc basin basalt systematics’. Earth and Planetary Science Letters, 214 (3-4): 679-679.

    Taylor, H. P., 1968. The oxygen isotope geochemistry of igneous rocks. Contributions to Mineralogy and Petrology, 19 (1): 1-71.

    Whitmore, G. P., Crook, K. A. W., and Johnson, D. P., 1999. Sedimentation in a complex convergent margin: The PapuaNew Guinea collision zone of the western Solomon Sea. Marine Geology, 157 (1-2): 19-45.

    Widom, E., and Farquhar, J., 2003. Oxygen isotope signatures in olivines from S?o Miguel (Azores) basalts: Implications for crustal and mantle processes. Chemical Geology, 193: 237-255.

    Yang, K., and Scott, S. D., 2002. Magmatic degassing of volatiles and ore metals into a hydrothermal system on the modern sea floor of the Eastern Manus Back-Arc Basin, Western Pacific. Economic Geology, 97: 1079-1100.

    Ziegler, K., Chadwick, O. A., Brzezinski, M. A., and Kelly, E. F., 2005a. Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochimica et Cosmochimica Acta, 69 (19): 4597-4610.

    Ziegler, K., Chadwick, O. A., White, A. F., and Brzezinski, M. A., 2005b. δ30Si systematics in a granitic saprolite, Puerto Rico. Geological Society of America, 33: 817-820.

    (Edited by Ji Dechun)

    (Received November 2, 2012; revised April 9, 2013; accepted May 4, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82898525

    E-mail: zgzeng@ms.qdio.ac.cn

    99香蕉大伊视频| 精品卡一卡二卡四卡免费| 曰老女人黄片| 一区二区日韩欧美中文字幕| 欧美xxⅹ黑人| 亚洲国产av新网站| 美女福利国产在线| 极品少妇高潮喷水抽搐| 精品久久久久久久毛片微露脸 | 热99国产精品久久久久久7| 亚洲 国产 在线| 国产不卡av网站在线观看| 交换朋友夫妻互换小说| 爱豆传媒免费全集在线观看| 咕卡用的链子| 午夜影院在线不卡| 国产成人精品久久久久久| 亚洲天堂av无毛| 中文字幕最新亚洲高清| 热re99久久精品国产66热6| 另类亚洲欧美激情| 纵有疾风起免费观看全集完整版| 777米奇影视久久| 亚洲欧美清纯卡通| 男女午夜视频在线观看| 51午夜福利影视在线观看| 精品久久久久久电影网| 中文字幕精品免费在线观看视频| 免费黄频网站在线观看国产| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 日韩人妻精品一区2区三区| xxx大片免费视频| 亚洲欧美清纯卡通| 久久国产精品男人的天堂亚洲| 国产精品av久久久久免费| 视频区图区小说| 中文字幕av电影在线播放| 国产成人欧美| 日韩,欧美,国产一区二区三区| 一区二区三区精品91| 成人影院久久| 精品国产超薄肉色丝袜足j| 亚洲精品一二三| 国产黄色免费在线视频| 精品一区二区三区av网在线观看 | 亚洲国产欧美在线一区| www日本在线高清视频| 亚洲国产精品国产精品| 人人妻人人澡人人爽人人夜夜| 在线观看免费午夜福利视频| 欧美日韩国产mv在线观看视频| 国产深夜福利视频在线观看| 性色av乱码一区二区三区2| 国产极品粉嫩免费观看在线| 国产成人精品久久二区二区免费| 亚洲精品国产av蜜桃| 捣出白浆h1v1| 欧美日韩福利视频一区二区| 日日爽夜夜爽网站| 国产精品久久久av美女十八| 黄色一级大片看看| av片东京热男人的天堂| 亚洲午夜精品一区,二区,三区| 欧美97在线视频| 男女免费视频国产| 久久久久精品国产欧美久久久 | 欧美日韩亚洲高清精品| 99国产综合亚洲精品| 性少妇av在线| 国产老妇伦熟女老妇高清| 美女中出高潮动态图| 欧美精品一区二区大全| 欧美少妇被猛烈插入视频| 日韩 亚洲 欧美在线| 两个人免费观看高清视频| 久久久亚洲精品成人影院| 一级毛片电影观看| 国产精品国产三级国产专区5o| 久久亚洲国产成人精品v| 只有这里有精品99| 精品卡一卡二卡四卡免费| 丁香六月天网| 一级片免费观看大全| av一本久久久久| 亚洲精品第二区| 国产91精品成人一区二区三区 | 亚洲黑人精品在线| 9色porny在线观看| 亚洲国产欧美日韩在线播放| 视频区欧美日本亚洲| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 精品国产一区二区三区四区第35| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 婷婷色av中文字幕| 黑丝袜美女国产一区| 国产成人免费观看mmmm| 亚洲专区国产一区二区| 国产欧美亚洲国产| 久久久久国产一级毛片高清牌| 老司机影院成人| 国产主播在线观看一区二区 | av线在线观看网站| 久久久亚洲精品成人影院| 亚洲av电影在线观看一区二区三区| 亚洲成人免费电影在线观看 | 婷婷色综合www| 巨乳人妻的诱惑在线观看| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 天天躁夜夜躁狠狠躁躁| cao死你这个sao货| 国产精品一区二区在线不卡| 亚洲av在线观看美女高潮| 中文字幕人妻丝袜制服| 亚洲av电影在线观看一区二区三区| 丝袜在线中文字幕| 久久精品人人爽人人爽视色| 成人国产av品久久久| 亚洲伊人久久精品综合| 一本综合久久免费| 考比视频在线观看| 中文字幕人妻熟女乱码| 免费日韩欧美在线观看| 亚洲精品久久成人aⅴ小说| 最新的欧美精品一区二区| 日本av手机在线免费观看| 久久人人97超碰香蕉20202| www.av在线官网国产| 亚洲av成人精品一二三区| 日韩免费高清中文字幕av| 国产淫语在线视频| 69精品国产乱码久久久| 老司机影院成人| 91麻豆精品激情在线观看国产 | 男女国产视频网站| 韩国精品一区二区三区| 麻豆av在线久日| 青青草视频在线视频观看| 91字幕亚洲| 香蕉丝袜av| 少妇的丰满在线观看| 五月天丁香电影| 人妻 亚洲 视频| 欧美成狂野欧美在线观看| 国产99久久九九免费精品| 国产深夜福利视频在线观看| 国产成人精品久久二区二区91| 欧美国产精品一级二级三级| 中文字幕制服av| 少妇裸体淫交视频免费看高清 | 曰老女人黄片| 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 亚洲av综合色区一区| 亚洲人成77777在线视频| 中文精品一卡2卡3卡4更新| 亚洲中文字幕日韩| 肉色欧美久久久久久久蜜桃| 91老司机精品| 男女无遮挡免费网站观看| 两性夫妻黄色片| 中文字幕高清在线视频| 18禁国产床啪视频网站| 桃花免费在线播放| 日韩中文字幕欧美一区二区 | 亚洲国产精品成人久久小说| 国产三级黄色录像| 国产片内射在线| 欧美 亚洲 国产 日韩一| 国产亚洲av片在线观看秒播厂| 欧美在线一区亚洲| 精品少妇内射三级| 尾随美女入室| 啦啦啦在线观看免费高清www| 一级黄片播放器| 欧美激情极品国产一区二区三区| 精品久久蜜臀av无| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av高清一级| 两个人看的免费小视频| 亚洲av在线观看美女高潮| 亚洲国产欧美一区二区综合| 精品久久久精品久久久| 十八禁网站网址无遮挡| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 亚洲一码二码三码区别大吗| 男男h啪啪无遮挡| 精品国产一区二区三区四区第35| 久久久精品国产亚洲av高清涩受| 一级黄色大片毛片| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 新久久久久国产一级毛片| 中国美女看黄片| 精品高清国产在线一区| 宅男免费午夜| 啦啦啦在线观看免费高清www| 久久女婷五月综合色啪小说| 久久午夜综合久久蜜桃| 男人添女人高潮全过程视频| 欧美日韩视频精品一区| a级毛片黄视频| 捣出白浆h1v1| 成人影院久久| 国产成人系列免费观看| 亚洲欧美成人综合另类久久久| 97人妻天天添夜夜摸| 亚洲中文av在线| 欧美中文综合在线视频| 999久久久国产精品视频| 男女下面插进去视频免费观看| 久久精品久久精品一区二区三区| 赤兔流量卡办理| 日韩一卡2卡3卡4卡2021年| 97人妻天天添夜夜摸| 女性生殖器流出的白浆| 91老司机精品| 亚洲人成网站在线观看播放| 成年女人毛片免费观看观看9 | 电影成人av| 日日爽夜夜爽网站| 亚洲第一青青草原| 高清av免费在线| 男人舔女人的私密视频| 久久性视频一级片| 精品福利观看| 日本a在线网址| 亚洲色图综合在线观看| 青春草视频在线免费观看| 精品熟女少妇八av免费久了| 一边摸一边做爽爽视频免费| 精品福利永久在线观看| 婷婷色综合www| av天堂久久9| 十八禁高潮呻吟视频| 亚洲av国产av综合av卡| 男人爽女人下面视频在线观看| 九草在线视频观看| 亚洲国产精品一区三区| 日韩欧美一区视频在线观看| 操美女的视频在线观看| 欧美成人精品欧美一级黄| 国产成人精品久久二区二区91| 国产成人免费无遮挡视频| avwww免费| 精品久久久久久电影网| 晚上一个人看的免费电影| 亚洲国产欧美一区二区综合| 免费在线观看视频国产中文字幕亚洲 | 久久人人97超碰香蕉20202| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 亚洲男人天堂网一区| 一本色道久久久久久精品综合| 999精品在线视频| 亚洲国产精品一区二区三区在线| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 亚洲伊人久久精品综合| 91字幕亚洲| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 你懂的网址亚洲精品在线观看| av在线播放精品| 午夜福利一区二区在线看| 女人精品久久久久毛片| 久久人人97超碰香蕉20202| 777米奇影视久久| 国产高清视频在线播放一区 | 久久影院123| 国产野战对白在线观看| 国产精品秋霞免费鲁丝片| 久久久久久免费高清国产稀缺| 最近最新中文字幕大全免费视频 | 精品福利永久在线观看| 欧美性长视频在线观看| 国产精品av久久久久免费| 脱女人内裤的视频| 在线精品无人区一区二区三| 精品第一国产精品| 久热这里只有精品99| 亚洲av成人精品一二三区| 国产亚洲一区二区精品| 超色免费av| 亚洲欧美清纯卡通| 人体艺术视频欧美日本| 国产成人精品久久二区二区免费| 国产一区二区激情短视频 | 欧美日韩黄片免| 日韩av不卡免费在线播放| 99国产精品一区二区三区| 国产精品.久久久| 黄片播放在线免费| 人妻一区二区av| 可以免费在线观看a视频的电影网站| 亚洲精品中文字幕在线视频| 成年人黄色毛片网站| 97精品久久久久久久久久精品| 在线看a的网站| 一级毛片我不卡| www.av在线官网国产| 国产一区二区 视频在线| 国产主播在线观看一区二区 | 午夜福利,免费看| 2018国产大陆天天弄谢| 国产精品久久久av美女十八| 亚洲成国产人片在线观看| 天天躁夜夜躁狠狠躁躁| 日本一区二区免费在线视频| 欧美日韩亚洲高清精品| 99精品久久久久人妻精品| 性色av一级| 亚洲精品日韩在线中文字幕| 久久人人爽人人片av| 人成视频在线观看免费观看| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 国产成人精品久久二区二区免费| 久久精品人人爽人人爽视色| 热re99久久国产66热| 看免费成人av毛片| 日本av手机在线免费观看| 欧美激情 高清一区二区三区| 欧美国产精品一级二级三级| 欧美变态另类bdsm刘玥| 激情五月婷婷亚洲| 80岁老熟妇乱子伦牲交| 久久久久精品国产欧美久久久 | 国产欧美亚洲国产| 国精品久久久久久国模美| 国产欧美日韩一区二区三 | xxxhd国产人妻xxx| 成年人免费黄色播放视频| 精品第一国产精品| 男女床上黄色一级片免费看| 久久久久久久精品精品| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀 | 国产精品av久久久久免费| 热re99久久国产66热| 亚洲中文av在线| 中文字幕av电影在线播放| 久久久久精品人妻al黑| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 久久精品久久精品一区二区三区| www.av在线官网国产| 久久精品久久精品一区二区三区| 黄色一级大片看看| 热re99久久国产66热| 性高湖久久久久久久久免费观看| 在线观看免费高清a一片| 看免费成人av毛片| 亚洲精品av麻豆狂野| 老汉色av国产亚洲站长工具| 国产1区2区3区精品| 美女高潮到喷水免费观看| 亚洲精品av麻豆狂野| 日韩,欧美,国产一区二区三区| 午夜免费鲁丝| www.av在线官网国产| 国精品久久久久久国模美| 九草在线视频观看| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 2021少妇久久久久久久久久久| 视频区欧美日本亚洲| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品在线电影| 丰满少妇做爰视频| 国产成人精品久久久久久| 久久精品亚洲熟妇少妇任你| 欧美在线一区亚洲| 亚洲精品成人av观看孕妇| 天天躁夜夜躁狠狠久久av| 少妇 在线观看| 母亲3免费完整高清在线观看| 午夜91福利影院| 夫妻性生交免费视频一级片| 99久久99久久久精品蜜桃| 国产精品一区二区在线观看99| 99久久综合免费| 亚洲人成77777在线视频| 精品国产国语对白av| 成在线人永久免费视频| 精品少妇内射三级| 美女脱内裤让男人舔精品视频| 亚洲精品国产av成人精品| 免费观看人在逋| 美国免费a级毛片| 性色av乱码一区二区三区2| www日本在线高清视频| 亚洲国产精品一区二区三区在线| 欧美国产精品va在线观看不卡| 国产福利在线免费观看视频| 97人妻天天添夜夜摸| 亚洲av国产av综合av卡| 国产一级毛片在线| 亚洲欧美成人综合另类久久久| 国产在线一区二区三区精| 菩萨蛮人人尽说江南好唐韦庄| 丁香六月天网| 成人三级做爰电影| av视频免费观看在线观看| 精品一区在线观看国产| 人人妻人人爽人人添夜夜欢视频| av国产精品久久久久影院| videosex国产| 亚洲av片天天在线观看| 亚洲av电影在线进入| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 国产精品免费视频内射| 久久精品亚洲av国产电影网| 老司机靠b影院| 久久精品久久久久久噜噜老黄| 国产成人欧美| av片东京热男人的天堂| tube8黄色片| 少妇人妻久久综合中文| 天天躁狠狠躁夜夜躁狠狠躁| 操出白浆在线播放| 黑人巨大精品欧美一区二区蜜桃| 国产成人免费观看mmmm| 精品一区二区三卡| 亚洲欧洲精品一区二区精品久久久| kizo精华| 久久国产亚洲av麻豆专区| 国产一区二区三区综合在线观看| 精品卡一卡二卡四卡免费| 夫妻性生交免费视频一级片| 久久精品亚洲熟妇少妇任你| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费观看性视频| 欧美中文综合在线视频| kizo精华| 久久久久久久精品精品| 成人亚洲欧美一区二区av| 中文字幕精品免费在线观看视频| 亚洲激情五月婷婷啪啪| 久久精品久久久久久久性| 又大又黄又爽视频免费| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| 成人午夜精彩视频在线观看| 丰满迷人的少妇在线观看| 香蕉国产在线看| 亚洲 国产 在线| 国产成人欧美在线观看 | 久久国产精品人妻蜜桃| 成年人免费黄色播放视频| 国产成人免费无遮挡视频| 免费观看人在逋| 亚洲国产精品成人久久小说| 国产黄色免费在线视频| 亚洲国产成人一精品久久久| 七月丁香在线播放| 国产精品久久久人人做人人爽| 青春草亚洲视频在线观看| 高清视频免费观看一区二区| 精品卡一卡二卡四卡免费| 51午夜福利影视在线观看| 一级黄片播放器| 国产熟女午夜一区二区三区| 久久久国产欧美日韩av| 欧美另类一区| 在线天堂中文资源库| 91九色精品人成在线观看| 精品免费久久久久久久清纯 | 久久性视频一级片| 韩国精品一区二区三区| 亚洲国产欧美在线一区| 亚洲,欧美,日韩| 热re99久久国产66热| 国产成人精品无人区| 麻豆乱淫一区二区| 精品久久久久久电影网| 午夜福利一区二区在线看| 色视频在线一区二区三区| 夫妻性生交免费视频一级片| 下体分泌物呈黄色| 别揉我奶头~嗯~啊~动态视频 | 欧美xxⅹ黑人| 午夜两性在线视频| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 啦啦啦中文免费视频观看日本| 免费观看人在逋| 久热爱精品视频在线9| 欧美日韩一级在线毛片| 国产在线观看jvid| 人人澡人人妻人| 国产男女超爽视频在线观看| 欧美日韩av久久| 观看av在线不卡| 久久久国产欧美日韩av| 精品第一国产精品| 国产男女超爽视频在线观看| 亚洲欧美日韩另类电影网站| 别揉我奶头~嗯~啊~动态视频 | 国产女主播在线喷水免费视频网站| 国产亚洲av高清不卡| 一区二区av电影网| av欧美777| 黄色a级毛片大全视频| 久久中文字幕一级| 国产精品一区二区精品视频观看| 99热国产这里只有精品6| 搡老岳熟女国产| 天堂8中文在线网| 最近中文字幕2019免费版| 国产精品免费视频内射| 女警被强在线播放| 国产xxxxx性猛交| 精品少妇久久久久久888优播| 叶爱在线成人免费视频播放| 日韩中文字幕欧美一区二区 | 精品人妻在线不人妻| 亚洲 欧美一区二区三区| 国产亚洲精品久久久久5区| 欧美成人午夜精品| 七月丁香在线播放| 1024香蕉在线观看| 精品国产国语对白av| 免费看十八禁软件| 老熟女久久久| 欧美精品av麻豆av| 亚洲av日韩精品久久久久久密 | 欧美激情高清一区二区三区| 一级黄片播放器| 少妇人妻久久综合中文| 国产av一区二区精品久久| 国产成人精品久久二区二区免费| 老鸭窝网址在线观看| 欧美+亚洲+日韩+国产| 美女扒开内裤让男人捅视频| 成人免费观看视频高清| 精品福利观看| 国产一区二区在线观看av| 久久久精品免费免费高清| 国产成人精品久久二区二区免费| 久久久亚洲精品成人影院| 老熟女久久久| 夫妻午夜视频| 夫妻性生交免费视频一级片| 97人妻天天添夜夜摸| 亚洲欧美成人综合另类久久久| 在线观看免费视频网站a站| 午夜福利视频精品| 人成视频在线观看免费观看| 自线自在国产av| 免费久久久久久久精品成人欧美视频| 人人妻人人爽人人添夜夜欢视频| 不卡av一区二区三区| 欧美日韩成人在线一区二区| 国产一区有黄有色的免费视频| 久久影院123| 性色av乱码一区二区三区2| 热re99久久精品国产66热6| 亚洲国产欧美在线一区| 亚洲成av片中文字幕在线观看| 热99国产精品久久久久久7| 91国产中文字幕| 在线观看一区二区三区激情| 亚洲国产精品一区三区| 精品国产乱码久久久久久男人| 丰满饥渴人妻一区二区三| 成人国产av品久久久| 97在线人人人人妻| 国产日韩一区二区三区精品不卡| 人人妻人人澡人人爽人人夜夜| 麻豆乱淫一区二区| 久久久精品国产亚洲av高清涩受| 18禁国产床啪视频网站| 99九九在线精品视频| 欧美精品一区二区免费开放| 巨乳人妻的诱惑在线观看| 在线观看免费高清a一片| 精品福利永久在线观看| 亚洲伊人色综图| 欧美另类一区| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 一级片'在线观看视频| 亚洲国产日韩一区二区| 久热爱精品视频在线9| 国产精品秋霞免费鲁丝片| 欧美黄色片欧美黄色片| 一区二区三区乱码不卡18| 亚洲色图 男人天堂 中文字幕| 国产野战对白在线观看| 啦啦啦中文免费视频观看日本| 国产福利在线免费观看视频| 丝瓜视频免费看黄片| 一级毛片电影观看| 国产亚洲精品久久久久5区| 悠悠久久av| 国产高清videossex| 香蕉丝袜av| 亚洲国产成人一精品久久久| 美女扒开内裤让男人捅视频| 色网站视频免费| 婷婷色av中文字幕| 国产精品欧美亚洲77777| 国产成人精品在线电影| 亚洲精品国产区一区二|