• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of Sulfate Chitosan Derivatives on Nonalcoholic Fatty Liver Disease

    2014-05-06 06:57:12YUMingmingWANGYuanhongJIANGTingfuandLVZhihua
    Journal of Ocean University of China 2014年3期

    YU Mingming, WANG Yuanhong, JIANG Tingfu, and LV Zhihua

    Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience Glycotechnolygy, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China

    Effects of Sulfate Chitosan Derivatives on Nonalcoholic Fatty Liver Disease

    YU Mingming, WANG Yuanhong, JIANG Tingfu, and LV Zhihua*

    Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience Glycotechnolygy, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

    NAFLD; sulfate chitosan derivatives; histological analysis; hepatocyte cells; rats

    1 Introduction

    Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of abnormal liver dysfunction in the clinical setting. NAFLD involves a wide spectrum of liver disease, ranging from fatty liver alone to steatohepatitis, steatonecrosis, and nonalcoholic steatohepatitis (NASH) (Matteoniet al., 1999; Maet al., 2007). The overall prevalence of NAFLD is estimated to be 20%-30% in the general population (D Kimet al., 2012), and it has become the most common cause of chronic liver disease and liver transplantation in western countries (Nakaoet al., 2006).

    The metabolism involved in the induction and progression of NAFLD is very complex. Although obesity, insulin resistance, diabetes, and hypertriglyceridemia are often associated with NAFLD, the pathogenesis of NAFLD and its progression to fibrosis are still unclear (Mastertonet al., 2010; Pettaet al., 2009). The treatments for NAFLD currently focuses on decreasing metabolic risk factors, with therapy mainly targeting lifestyle adaptations such as gradual weight loss by diet and exercise (Mattaret al., 2005; Rafiq and Younossi, 2008). However, there is no single intervention that has convincingly improved liver histology.

    Chitin is the second-most abundant biopolymer in nature, widely distributed in the shell of crustaceans, the cuticles of insects, and the cell walls of fungi. Chitosan is a non-toxic, biocompatible polymer that has found a number of applications in drug delivery including that of an absorption enhancer of hydrophilic macromolecular drugs (Kimet al., 2008; Kumar, 2000). Chitosan derivatives have been developed to overcome chitosan’s limited solubility and effectiveness as an absorption enhancer at neutral pH values such as those found in the intestinal tract (Khor and Lim, 2003). Chitin can be synthesized to get sulfate chitosan derivatives (β-(1, 4) polyglycosamine-3-O-sulfate-6-O-sulfate-6′-O-carboxyl-methyl ether sodium, Fig.1) by molecular modification. Sulfate chitosan derivatives have been synthesized by our lab as anti-atherosclerotic drug candidate in clinic study in China. Previous studies showed that sulfate chitosan derivatives have good effect on alcoholic fatty liver (YUet al., 2010). However, the potential therapeutic effect of sulfate chitosan derivatives on NAFLD has not been studied.

    The aim of this study is to examine the therapeutic effect of the sulfate chitosan derivatives synthesized by our lab and to investigate the possible mechanisms of sulfate chitosan derivatives in the prevention of steatohepatitis.

    Fig.1 Chemical structure of sulfate chitosan derivatives.

    2 Materials and Methods

    2.1 Cell Culture and Fat-Overloading Induction of L-02

    Human hepatocytes (L-02) (China Cell Culture Center, Shanghai, China) were grown in RPMI 1640 culture medium containing 10% fetal bovine serum in a humidified atmosphere of 5% CO2at 37℃ until the cells reached 90% confluence (Wanget al., 2010). Before each experiment, human hepatocytes were cultured in RPMI culture medium for cell cycle synchronization (Jinet al., 2009). After cell cycle synchronization, the human hepatocytes (L-02) were divided into six groups, which were the control group, model group, positive drug group, and treatment groups (low-dose group, middle-dose group, and high-dose group) (n=6), and each group had 2×105cells. The control group was cultured in RPMI culture medium containing 10% fetal bovine serum, and the others were cultured in RPMI culture medium containing 50% fetal bovine serum for 24 h to induce fat-overloading of cells. In the next 24 h, all groups were cultured in RPMI culture medium containing 10% fetal bovine serum, the positive drug group received silymarin (20 μg mL-1) (Madaus AG), and the treatment groups were treated with sulfate chitosan derivatives (5, 25, and 100 μg mL-1) (Key Laboratory of Marine Drugs, Ocean University of China). The cells from each group were stained with Oil Red O for microscopic photography. For the triglyceride (TG) assay, cultured cells were scraped in PBS, and then centrifuged at 3000 r min-1for 10 min (Taylor and Harker, 2006). Supernatants were subsequently collected for TG content assay.

    2.2 Rat Model of NAFLD

    Male Wistar rats (180 - 220 g, from Lukang Pharmaceutical Group Co. Ltd. of Shandong, China) were maintained under controlled temperature conditions of 20℃with a 12-hour light/dark cycle and free access to normal chow and water. Our studies were carried out following the guidelines of the Qingdao Committee for care and use of laboratory animals. The rats were orally fed 10mLkg-1high fat emulsion once per day for 5 weeks to induce NAFLD (Zouet al., 2006). The high fat emulsion composition contains lard 25%, cholesterol 10%, sodium cholate 3%, propylthiouracide 0.4%, propanediol 20%, polysorbate 80 25%, distilled water 16.6% (Denget al. 2009; G?beleet al., 2011; Unoet al., 2008).

    2.3 Pre-Treatment and Treatments

    Rats were randomly divided into four groups (10 rats per group). Rats in the control group were fed normal chow; rats in the model group received physiological saline (2 mL kg-1) with high fat emulsion; rats in the positive drug group received silymarin (20 mL kg-1) with high fat emulsion; rats in the pretreatment group received sulfate chitosan derivatives (100 mg kg-1) with fed high fat emulsion for five weeks.

    Rats were randomly divided into six groups (10 rats per group). Rats in five groups were orally fed high fat emulsion for five weeks to induce NAFLD. Over the same period, the rats in the control group were fed normal chow. After five weeks, rats in all groups were fed normal chow for three weeks. Over the same period, rats in model group received physiological saline (2 mL kg-1); rats in positive drug group received silymarin (20 mg kg-1); rats in the treatment groups (low-dose, middle-dose, and high-dose group) received sulfate chitosan derivatives (25, 50, and 100 mg kg-1) by intragastric administration for three weeks.

    After experiment, the rats were sacrificed by decapitation. Serum samples were collected for chemical assay and the livers were fixed in 10% formalin for histological analysis.

    2.4 Histology Analysis

    The formalin-fixed livers from rats were processed according to the routine techniques, and 5 μm thick paraffin sections were stained with hematoxylin and eosin for histological analysis (Tevaret al., 2011; Rosselliet al., 2009).

    2.5 Samples Analysis

    Serum total cholesterol (TC), triglyceride (TG), highdensity lipoprotein (HDL-C), low-density lipoprotein (LDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and liver homogenate malondialdehyde (MDA) were assayed by commercial analysis kits (Jiancheng Institute of Biotechnology, Nanjing, China). Serum leptin (LEP) and tumor necrosis factor alpha (TNF-α) were determined by enzyme-linked immunosorbent assay (R&D Systems, United States) (Ohet al., 2011; Mancoet al., 2007).

    2.6 Statistical Analysis

    All measured values were shown as means or means ± standard error of the mean (SEM). Data was analyzed by one-way analysis of variance andP< 0.05 was considered statistically significant.

    3 Results

    3.1 Effects of Sulfate Chitosan Derivatives on Fatoverloading in Hepatocytes

    Fig.2 Effect of treatment with sulfate chitosan derivatives on fat-overloading hepatocytes. Oil Red O stained cells: Control group shows few droplets; model group shows significant amount of fat droplets (red in figure) compared to control group; Positive drug group shows less fat droplets than model group; Low-dose group (5 μg mL-1sulfate chitosan derivatives) shows less fat droplets than model group; Middle-dose group (25 μg mL-1sulfate chitosan derivatives) shows less fat droplets than low-dose group; High-dose group (100 μg mL-1sulfate chitosan derivatives) shows similar amount of fat droplets to control group (original magnification, ×100).

    Fig.3 Comparison of triglyceride (TG) level in hepatocytes treated with saline and different doses of sulfate chitosan derivatives. Positive drug group received silymarin (20 mg kg-1); low-dose, middle-dose, and high-dose groups received sulfate chitosan derivatives 25, 50, and 100 mg kg-1(n=10).

    The fat-overloading model that can be well-represented by the cell characteristic of NAFLD was successfully established by treating hepatocytes with 50% fetal bovine serum in 24 h. As shown from the Oil Red O staining, there was a significant increase in neutral fat droplets within hepatocytes in the 50% fetal bovine serum-treated hepatocytes (model group) compared to the cells cultured with 10% fetal bovine serum (control group); and there was a marked decrease in neutral fat droplets within the sulfate chitosan derivative treated hepatocytes (treatment group) compared to the cells in the model group (Fig.2). The amount of triglycerides (TG) increased significantly in model group compared with control group (P< 0.05), while the level of TG dropped significantly in three-dose treatment groups (5, 25, and 100 μgmL-1sulfate chitosan derivatives) compared with model group indicating dose dependency (Fig.3).

    3.2 Effects of Pre-Treatment Effects of Sulfate Chitosan Derivatives on NAFLD Induced by High Fat Emulsion in Rats

    3.2.1 Liver index

    Liver index is the ratio between liver weight and body weight. The liver index of rats in model increased significantly compared with rats in control group, and there was a significantly decrease in liver index in sulfate chitosan derivatives treated (treatment group) compared with model group (Table 1).

    Table 1 Values of liver index in groups (n =10)

    3.2.2 Histology of liver samples

    Steatosis affected numerous hepatocytes causing diffuse ballooning and inflammatory cell infiltration in model group. The presence of diffuse ballooning and inflammatory infiltrate were significantly reduced by sulfate chitosan derivatives compared to model group (Fig.3). Rats that received sulfate chitosan derivatives have less fat droplets than those that received silymarin (positive drug) (Fig.4).

    3.2.3 Serum biochemical parameters

    The levels of serum TC, ALT, MDA, and LEP were significantly raised in the rats fed with HFD emulsion (treatment group) compared to the control group (Fig.5). The levels of serum TC, ALT, MDA, and LEP were significantly decreased in the pre-treatment group that received sulfate chitosan derivatives compared to the model group (Fig.5).

    Fig.4 Hematoxylin and eosin-stained liver sections from control group, model group, positive drug group, and treatment group (Original magnification × 400).

    Fig.5 Results of TC (A), ALT (B), MDA (C) and LEP (D) detection from rats fed normal chow (control group), rats fed high fat emulsion (model group), rats fed high fat emulsion and received silymarin (positive-drug group), and rats fed high fat emulsion and received sulfate chitosan derivatives (treatment group, 100 mg kg-1) (n=10). Compared with the control group, *P < 0.05; **P < 0.01. Compared with model group, △P< 0.05; △△P < 0.01.

    3.3 Therapeutic Effects of Sulfate Chitosan Derivatives on NAFLD Induced by High Fat Emulsion in Rats

    3.3.1 Histology of liver samples

    Steatosis affected hepatocytes, with diffuse ballooning and inflammatory cell infiltration in model group. Larger number of hepatocytes were affected by steatosis with diffuse ballooning and inflammoatory cell infiltration in the model group compared to the control group. The presence of diffuse ballooning and inflammatory infiltrate was markedly reduced by sulfate chitosan derivatives. There were notably fewer fat-droplets in rats that received high-dose sulfate chitosan derivatives (Fig.6).

    3.3.2 Serum biochemical parameters

    As shown in Fig.7, the levels of serum TC, TG, LDL, AST, ALT, and MDA were significantly raised, while that of HDL was significantly reduced in model group compared to control group. The levels of serum TC, TG, AST, and MDA were significantly lowered in treatment groups that received sulfate chitosan derivatives, and those of LDL and ALT were significantly lowered in both middle-dose and high-dose groups compared to the model group. The level of HDL was significantly raised in high-dose group compared to the model group.

    The levels of serum LEP and TNF-α were significantly raised in model group (Fig.8). The levels of serum LEPand TNF-α were significantly lowered in the treatment groups that received sulfate chitosan derivatives.

    Fig.6 Hematoxylin and eosin-stained liver sections from control group, model group, positive drug group, and treatment groups (Low-dose, middle-dose, and high-dose group) (Original magnification × 400).

    Fig.7 Levels of TC (A), TG (B), LDL (C), HDL (D), AST (E), ALT (F), and MDA (G) detected from rats in control group, model group, and positive-drug group that received silymarin; low-dose, middle-dose, and high-dose groups received sulfate chitosan derivatives (n=10). *P < 0.05; **P < 0.01. Compared with model group, △P< 0.05; △△P < 0.01.

    Fig.8 Levels of LEP (A) and TNF-α (B) detected from rats in control group, model group, positive-drug group treated with silymarin; low-dose, middle-dose, and high dose groups treated with sulfate chitosan derivatives (n=10). Compared to the control group, *P < 0.05; **P < 0.01. Compared with model group, △P< 0.05; △△P < 0.01.

    4 Discussion

    In this study, a new rat model of NAFLD was successfully established by feeding rats with high-fat emulsion (Denget al., 2009; G?beleet al., 2011; Unoet al., 2008). NAFLD model reproduced several typical hepatic lesion of NAFLD, such as steatosis, hyperlipidemia, and inflammation. In this model, the changes in ALT, AST, MDA, LEP, and TNF-α showed similar patterns in patients with NAFLD (Mancoet al., 2007). The rat model of NAFLD was used to explore the preventive effect of sulfate chitosan derivatives therapy on NAFLD. The results of liver histology and serum parameter assay demonstrated that pre-treatment and treatment with sulfate chitosan derivatives markedly improved hepatic steatosis, hepatocyte ballooning, and hyperinsulinemia. Some studies show that increased triglycerides (TG) is associated with NAFLD (Fabbriniet al., 2010). Our results indicate that sulfate chitosan derivatives can significantly lower the level of TG in L02 cells with fat-overloading and rats with NAFLD.

    The alanine aminotransferase (ALT) and aspartate aminotransferase (AST) are makers of hepatic steatosis or hepatic dysfunction related to liver fat accumulation(Ohet al., 2011; Clarket al., 2003). The proinf l ammatory and prof i brogenic effects of the aldehyde end products of lipid peroxidation (MDA and 4-hydroxynonenol) can account for all of the typical histologic features observed in NAFLD (Browning and Horton, 2004). Our findings also reveal that treatment with sulfate chitosan derivatives significantly improves liver function as demonstrated by the observed reduction in ALT, AST and MDA in rats with NAFLD.

    Leptin (LEP) and TNF-α as adipokines have a strong association with histologic features of NAFLD, and TNF-α overexpression will induce inflammation and fibrosis (Zouet al., 2006; Mancoet al., 2007). Leptin known as a long-term energy store factor plays a key role in the progression of fibrogenesis and carcinogenesis in NASH (Kitadeet al., 2006). Our results show that sulfate chitosan derivatives can significantly reduce the levels of serum TNF-α and leptin to improve liver function.

    In conclusion, the rat model of NAFLD has been successfully established in this study. By using this model, we demonstrate that sulfate chitosan derivatives have a therapeutic effect on NAFLD. The results also suggest that the therapeutic effect might be activated by exerting the influence on ALT, MDA, or adipokines. The sulfate chitosan derivatives have good therapeutic effect on NAFLD rats and have low toxicity, which can make it a drug candidate in further studies.

    Acknowledgements

    This work is supported by the National High Technology Research and Development Program of China (863 Program 2006AA090401).

    Browning, J. D., and Horton, J. D., 2004. Molecular mediators of hepatic steatosis and liver injury. Journal of Clinical Investigation, 114 (2): 147-152.

    Clark, J. M., Brancati, F. L., and Diehl, A. M., 2003. The prevalence and etiology of elevated aminotransferase levels in the United States. The American Journal of Gastroenterology, 98 (5): 960-967.

    Deng, Z. B., Liu, Y., Liu, C., Xiang, X., Wang, J., Cheng, Z., Shah, S. V., Zhang, S., Zhang, L., Zhuang, X., Michalek, S., Grizzle, W. E., and Zhang, H. G., 2009. Immature myeloid cells induced by a high-fat diet contribute to liver inflammation. Hepatology, 50 (5): 1412-1420.

    Fabbrini, E., Mohammed, B. S., Korenblat, K. M., Magkos, F., McCrea, J., Patterson, B. W., and Klein, S., 2010. Effect of fenofibrate and niacin on intrahepatic triglyceride content, very low-density lipoprotein kinetics, and insulin action in obese subjects with nonalcoholic fatty liver disease. The Journal of Clinical Endocrinology and Metabolism, 95 (6): 2727-2735.

    G?bele, E., Dostert, K., Dorn, C., Patsenker, E., Stickel, F., and Hellerbrand, C., 2011. A new model of interactive effects of alcohol and high-fat diet on hepatic fibrosis. Alcoholism, Clinical and Experimental Research, 35 (7): 1361-1367.

    Jin, X., Yang, Y., Chen, K., Lv, Z., Zheng, L., Liu, Y., Chen, S., Yu, C., Jiang, X., Zhang, C., and Li, Y., 2009. HDMCP uncouples yeast mitochondrial respiration and alleviates steatosis in L02 and hepG2 cells by decreasing ATP and H2O2 levels: A novel mechanism for NAFLD. Journal of Hepatology, 50 (5): 1019-1028.

    Khor, E., and Lim, L. Y., 2003. Implantable applications of chitin and chitosan. Biomaterials, 24 (13): 2339-2349.

    Kim, D., Choi, S. Y., Park, E. H., Lee, W., Kang, J. H., Kim, W.,

    Kim, Y. J., Yoon, J. H., Jeong, S. H., Lee, D. H., Lee, H., Larson, J., Therneau, T. M., and Kim, W. R., 2012. Nonalcoholic fatty liver disease is associated with coronary artery calcification. Hepatology, 56 (2): 605-613.

    Kim, I., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., and Cho, C. S., 2008. Chitosan and its derivatives for tissue engineering applications. Biotechnology Advances, 26 (1): 1-21.

    Kitade, M., Yoshiji, H., Kojima, H., Ikenaka, Y., Noguchi, R., Kaji, K., Yoshii, J., Yanase, K., Namisaki, T., Asada, K., Yamazaki, M., Tsujimoto, T., Akahane, T., Uemura, M., and Fukui, H., 2006. Leptin-mediated neovascularization is a prerequisite for progression of nonalcoholic steatohepatitis in rats. Hepatology, 44 (4): 983-991.

    Kumar, R., 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers, 46 (1): 1-27.

    Ma, X., Hua, J., Mohamood, A. R., Hamad, A. R. A., Ravi, R., and Li, Z., 2007. A high-fat diet and regulatory t cells influence susceptibility to endotoxin-induced liver injury. Hepatology, 46 (5): 1519-1529.

    Manco, M., Marcellini, M., Giannone, G., and Nobili, V., 2007. Correlation of serum TNF-alpha levels and histologic liver injury scores in pediatric nonalcoholic fatty liver disease. American Journal of Clinical Pathology, 127 (6): 954-960.

    Masterton, G. S., Plevris, J. N., and Hayes, P. C., 2010. Review article: Omega-3 fatty acids - a promising novel therapy for non-alcoholic fatty liver disease. Alimentary Pharmacology and Therapeutics, 31 (7): 679-692.

    Mattar, S. G., Velcu, L. M., Rabinovitz, M., Demetris, A. J., Krasinskas, A. M., Barinas-Mitchell, E., Eid, G. M., Ramanathan, R., Taylor, D. S., and Schauer, P. R., 2005. Surgically-induced weight loss significantly improves nonalcoholic fatty liver disease and the metabolic syndrome. Transactions of the Meeting of the American Surgical Association, 123: 304-314.

    Matteoni, C., Younossi, Z., Gramlich, T., Boparai, N., Liu, Y., and Mccullough, A., 1999. Nonalcoholic fatty liver disease: A spectrum of clinical and pathological severity. Gastroenterology, 116 (6): 1413-1419.

    Nakao, Y., Yoshida, S., Matsunaga, S., Shindoh, N., Terada, Y., Nagai, K., Yamashita, J. K., Ganesan, A., van Soest, R. W. M., and Fusetani, N., 2006. Azumamides A–E: Histone deacetylase inhibitory cyclic tetrapeptides from the marine sponge mycale izuensis. Angewandte Chemie, 118 (45): 7715-7719.

    Oh, E., Kim, T. H., Sohn, Y. W., Kim, Y. S., Oh, Y. R., Cho, E. Y., Shim, S. Y., Shin, S. R., Han, A. L., Yoon, S. J., and Kim, H. C., 2011. Association of serum alanine aminotransferase and Γ-glutamyltransferase levels within the reference range with metabolic syndrome and nonalcoholic fatty liver disease. The Korean Journal of Hepatology, 17 (1): 27-36.

    Petta, S., Muratore, C., and Craxì, A., 2009. Non-alcoholic fatty liver disease pathogenesis: The present and the future. Digestive and Liver Disease, 41 (9): 615-625.

    Rafiq, N., and Younossi, Z. M., 2008. Effects of weight loss on nonalcoholic fatty liver disease. Seminars in Liver Disease, 28 (4): 427-433.

    Rosselli, M. S., Burgue?o, A. L., Carabelli, J., Schuman, M., Pirola, C. J., and Sookoian, S., 2009. Losartan reduces liver expression of plasminogen activator inhibitor-1 (PAI-1) in a high fat-induced rat nonalcoholic fatty liver disease model. Atherosclerosis, 206 (1): 119-126.

    Taylor, S., and Harker, A., 2006. Modification of the ultrafiltration technique to overcome solubility and non-specific binding challenges associated with the measurement of plasma protein binding of corticosteroids. Journal of Pharmaceutical and Biomedical Analysis, 41 (1): 299-303.

    Tevar, A. D., Clarke, C. N., Schuster, R., Wang, J., Edwards, M., J., and Lentsch, A. B., 2011. The effect of hepatic ischemia reperfusion injury in a murine model of nonalcoholic steatohepatitis. The Journal of Surgical Research, 169 (1): e7- 14.

    Uno, M., Kurita, S., Misu, H., Ando, H., Ota, T., Matsuzawa-Nagata, N., Kita, Y., Nabemoto, S., Akahori, H., Zen, Y., Nakanuma, Y., Kaneko, S., and Takamura, T., 2008. Tranilast, an antifibrogenic agent, ameliorates a dietary rat model of nonalcoholic steatohepatitis. Hepatology, 48 (1): 109-118.

    Wang, H., Chan, P. K., Pan, S. Y., Kwon, K. H., Ye, Y., Chu, J. H., Fong, W. F., Tsui, W. M. S., and Yu, Z. L., 2010. ERp57 is up-regulated in free fatty acids-induced steatotic L-02 cells and human nonalcoholic fatty livers. Journal of Cellular Biochemistry, 110 (6): 1447-1456.

    Yu, C., Lv, Z., Wang, Y., and Jiang, T., 2010. Study on the therapeutic effect of sulfated chitosan derivative on experimental fatty liver in rats. Periodical of Ocean University of China, 40 (5): 27-32.

    Zou, Y., Li, J., Lu, C., Wang, J., Ge, J., Huang, Y., Zhang, L., and Wang, Y., 2006. High-fat emulsion-induced rat model of nonalcoholic steatohepatitis. Life Sciences, 79 (11): 1100-1107.

    (Edited by Ji Dechun)

    (Received October 8, 2013; revised March 25, 2014; accepted April 7, 2014)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-82032064

    E-mail: lvzhihua@ouc.edu.cn

    国内精品久久久久久久电影| av女优亚洲男人天堂| 一二三四社区在线视频社区8| ponron亚洲| 欧美不卡视频在线免费观看| 成人精品一区二区免费| 亚洲国产中文字幕在线视频| xxxwww97欧美| 亚洲精品影视一区二区三区av| 色播亚洲综合网| 床上黄色一级片| 国产精品日韩av在线免费观看| 99久久精品热视频| 亚洲激情在线av| 草草在线视频免费看| 婷婷精品国产亚洲av在线| 岛国在线观看网站| 亚洲无线观看免费| xxxwww97欧美| 亚洲欧美日韩高清专用| 最近在线观看免费完整版| avwww免费| 熟女电影av网| 亚洲av不卡在线观看| 国产真实乱freesex| 亚洲aⅴ乱码一区二区在线播放| 免费电影在线观看免费观看| 欧美在线黄色| 国产午夜精品久久久久久一区二区三区 | av福利片在线观看| 欧美日本视频| 精品一区二区三区av网在线观看| 亚洲第一欧美日韩一区二区三区| 免费观看的影片在线观看| 啪啪无遮挡十八禁网站| 亚洲性夜色夜夜综合| 精品乱码久久久久久99久播| 久久中文看片网| 少妇人妻一区二区三区视频| 国产99白浆流出| 国产精品1区2区在线观看.| 香蕉久久夜色| 日日摸夜夜添夜夜添小说| 亚洲不卡免费看| 午夜激情福利司机影院| 国产欧美日韩一区二区精品| 成人无遮挡网站| 欧美一区二区亚洲| 88av欧美| 午夜免费观看网址| 国产真实伦视频高清在线观看 | 国产麻豆成人av免费视频| 成人午夜高清在线视频| 国产精品爽爽va在线观看网站| 亚洲,欧美精品.| 日本 av在线| 日韩人妻高清精品专区| 成人国产综合亚洲| 亚洲欧美日韩东京热| 欧美日本视频| 免费看光身美女| 中文字幕高清在线视频| 亚洲人成网站高清观看| 日韩欧美国产在线观看| 人妻久久中文字幕网| 99精品久久久久人妻精品| 国产成人影院久久av| 日本成人三级电影网站| 国内久久婷婷六月综合欲色啪| 日本撒尿小便嘘嘘汇集6| 国产日本99.免费观看| 操出白浆在线播放| 国产亚洲精品久久久com| 日韩高清综合在线| 女人十人毛片免费观看3o分钟| 丰满乱子伦码专区| 日韩欧美三级三区| 热99在线观看视频| 国产一区在线观看成人免费| 国产av在哪里看| 婷婷精品国产亚洲av在线| 国产三级中文精品| 免费在线观看影片大全网站| 神马国产精品三级电影在线观看| 亚洲一区二区三区色噜噜| 不卡一级毛片| 欧美日韩黄片免| av在线蜜桃| 99视频精品全部免费 在线| 国产毛片a区久久久久| 亚洲成av人片在线播放无| 亚洲av中文字字幕乱码综合| 精品国内亚洲2022精品成人| 91九色精品人成在线观看| 国产伦精品一区二区三区四那| 日韩国内少妇激情av| 最近最新中文字幕大全电影3| 国产在线精品亚洲第一网站| www国产在线视频色| 99久久精品国产亚洲精品| 欧洲精品卡2卡3卡4卡5卡区| 婷婷丁香在线五月| 级片在线观看| 色尼玛亚洲综合影院| 色尼玛亚洲综合影院| 国内久久婷婷六月综合欲色啪| 午夜福利成人在线免费观看| 中出人妻视频一区二区| 亚洲一区高清亚洲精品| 99久久精品国产亚洲精品| 非洲黑人性xxxx精品又粗又长| 久久久久性生活片| 狂野欧美白嫩少妇大欣赏| 最近在线观看免费完整版| 女警被强在线播放| 成人性生交大片免费视频hd| 成人性生交大片免费视频hd| 毛片女人毛片| 精品欧美国产一区二区三| 亚洲成人久久爱视频| 国产麻豆成人av免费视频| 国产69精品久久久久777片| www国产在线视频色| 亚洲国产精品久久男人天堂| 欧洲精品卡2卡3卡4卡5卡区| 亚洲天堂国产精品一区在线| 国产色爽女视频免费观看| 国产在视频线在精品| 精品一区二区三区av网在线观看| 99久久九九国产精品国产免费| 全区人妻精品视频| 国产午夜精品久久久久久一区二区三区 | 久久天躁狠狠躁夜夜2o2o| 国产成人aa在线观看| 少妇的丰满在线观看| 色尼玛亚洲综合影院| 国产亚洲精品av在线| 成人特级黄色片久久久久久久| 精品人妻1区二区| 国产欧美日韩一区二区三| 午夜福利免费观看在线| 欧美成人性av电影在线观看| 免费观看的影片在线观看| 桃色一区二区三区在线观看| 欧美另类亚洲清纯唯美| 9191精品国产免费久久| 九九在线视频观看精品| 日韩精品青青久久久久久| 亚洲电影在线观看av| 可以在线观看毛片的网站| aaaaa片日本免费| 欧美一区二区亚洲| 久久这里只有精品中国| 两个人的视频大全免费| 天堂网av新在线| bbb黄色大片| 国产一区二区三区在线臀色熟女| 午夜a级毛片| 又粗又爽又猛毛片免费看| 亚洲 欧美 日韩 在线 免费| 免费av不卡在线播放| 在线天堂最新版资源| avwww免费| 乱人视频在线观看| 男插女下体视频免费在线播放| 国产成人啪精品午夜网站| 人人妻人人看人人澡| 99久久久亚洲精品蜜臀av| 国产男靠女视频免费网站| 国产一区二区在线av高清观看| 嫩草影院入口| 美女高潮的动态| 一本精品99久久精品77| 欧美乱色亚洲激情| 99国产极品粉嫩在线观看| 亚洲精品粉嫩美女一区| 亚洲精华国产精华精| 精品午夜福利视频在线观看一区| 国产成人a区在线观看| 99久久九九国产精品国产免费| 国产精品亚洲一级av第二区| 12—13女人毛片做爰片一| 中文字幕人成人乱码亚洲影| 99热只有精品国产| 欧美日韩中文字幕国产精品一区二区三区| 男女视频在线观看网站免费| 女人十人毛片免费观看3o分钟| 黄片大片在线免费观看| 熟女人妻精品中文字幕| 国产日本99.免费观看| 日本在线视频免费播放| 午夜精品一区二区三区免费看| 中文字幕高清在线视频| 国产探花极品一区二区| 一进一出抽搐gif免费好疼| 免费av毛片视频| 有码 亚洲区| 成人午夜高清在线视频| 欧美xxxx黑人xx丫x性爽| 桃色一区二区三区在线观看| 99热这里只有精品一区| 精品久久久久久久久久免费视频| 18+在线观看网站| 亚洲国产高清在线一区二区三| 国产精品99久久99久久久不卡| 日本成人三级电影网站| 久久久久国产精品人妻aⅴ院| 欧美精品啪啪一区二区三区| 亚洲无线观看免费| a级一级毛片免费在线观看| 人人妻人人看人人澡| av专区在线播放| 久久久久精品国产欧美久久久| 国产精品 欧美亚洲| 久久草成人影院| 成年免费大片在线观看| 亚洲国产色片| 久久午夜亚洲精品久久| 欧美成人a在线观看| 免费看美女性在线毛片视频| 18禁在线播放成人免费| 18禁美女被吸乳视频| 狠狠狠狠99中文字幕| 亚洲欧美一区二区三区黑人| 最近视频中文字幕2019在线8| 一个人免费在线观看的高清视频| 哪里可以看免费的av片| 亚洲熟妇中文字幕五十中出| 深夜精品福利| 色综合亚洲欧美另类图片| 听说在线观看完整版免费高清| 一区二区三区免费毛片| 中出人妻视频一区二区| 久久精品国产综合久久久| 精品不卡国产一区二区三区| 女人高潮潮喷娇喘18禁视频| 丰满的人妻完整版| 女生性感内裤真人,穿戴方法视频| 久久天躁狠狠躁夜夜2o2o| 国产69精品久久久久777片| xxx96com| 757午夜福利合集在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 久久久精品欧美日韩精品| 欧美日韩福利视频一区二区| 精品人妻一区二区三区麻豆 | 国产精品 国内视频| 国内精品久久久久久久电影| svipshipincom国产片| 久久精品国产综合久久久| 日本黄大片高清| 男人舔女人下体高潮全视频| 亚洲熟妇熟女久久| 18美女黄网站色大片免费观看| 国内精品久久久久久久电影| 九色国产91popny在线| 久久精品国产综合久久久| 亚洲中文字幕日韩| www日本黄色视频网| 亚洲18禁久久av| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 国产精品1区2区在线观看.| 亚洲美女黄片视频| 久久久国产精品麻豆| 老熟妇仑乱视频hdxx| av中文乱码字幕在线| 少妇的逼好多水| 丝袜美腿在线中文| xxxwww97欧美| 午夜视频国产福利| 伊人久久大香线蕉亚洲五| 欧美一区二区国产精品久久精品| 国产精华一区二区三区| 99久国产av精品| 欧美乱色亚洲激情| 丁香欧美五月| 俄罗斯特黄特色一大片| 最新在线观看一区二区三区| 久久精品国产综合久久久| 又粗又爽又猛毛片免费看| 亚洲精品国产精品久久久不卡| 欧美乱妇无乱码| 高潮久久久久久久久久久不卡| 12—13女人毛片做爰片一| 国产一区二区在线av高清观看| 国产精品美女特级片免费视频播放器| 中出人妻视频一区二区| 欧美日韩精品网址| av欧美777| 久久久久九九精品影院| 日韩欧美国产在线观看| av天堂中文字幕网| 91av网一区二区| 亚洲av一区综合| 精品日产1卡2卡| 亚洲国产精品合色在线| 亚洲精品日韩av片在线观看 | 国产亚洲精品久久久com| svipshipincom国产片| 小说图片视频综合网站| 高清日韩中文字幕在线| 午夜福利在线观看吧| 精品人妻一区二区三区麻豆 | 天堂网av新在线| 日本熟妇午夜| 国内少妇人妻偷人精品xxx网站| 国产高清视频在线观看网站| 国模一区二区三区四区视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 美女黄网站色视频| 九色成人免费人妻av| 欧美色视频一区免费| 日本一本二区三区精品| 成人国产综合亚洲| 日韩 欧美 亚洲 中文字幕| 乱人视频在线观看| 很黄的视频免费| a级一级毛片免费在线观看| 久久精品人妻少妇| 国产一区二区三区在线臀色熟女| 国产成人av教育| 午夜日韩欧美国产| 日韩精品青青久久久久久| 久久久久久久午夜电影| 精品熟女少妇八av免费久了| 真人做人爱边吃奶动态| 又粗又爽又猛毛片免费看| 99国产综合亚洲精品| 很黄的视频免费| 国产亚洲精品一区二区www| 国产午夜精品久久久久久一区二区三区 | 99热精品在线国产| 欧美最新免费一区二区三区 | 看黄色毛片网站| 97碰自拍视频| 日韩欧美免费精品| 亚洲男人的天堂狠狠| 一区二区三区激情视频| АⅤ资源中文在线天堂| 国产精品美女特级片免费视频播放器| 久久人妻av系列| 精品一区二区三区视频在线观看免费| 久久久久久久久久黄片| av女优亚洲男人天堂| 国内精品一区二区在线观看| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 一个人看视频在线观看www免费 | 亚洲一区高清亚洲精品| 色综合婷婷激情| 久久婷婷人人爽人人干人人爱| 99精品久久久久人妻精品| 欧美激情久久久久久爽电影| 国产精品,欧美在线| 非洲黑人性xxxx精品又粗又长| 亚洲va日本ⅴa欧美va伊人久久| 美女黄网站色视频| 久久久国产成人免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子伦精品免费另类| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99热这里只有精品一区| 国产精品久久久久久久电影 | 国产69精品久久久久777片| 老司机深夜福利视频在线观看| 久久婷婷人人爽人人干人人爱| 日韩欧美精品免费久久 | 亚洲人成电影免费在线| 成年女人毛片免费观看观看9| 中文字幕人妻熟人妻熟丝袜美 | 国产乱人视频| 深夜精品福利| 99国产精品一区二区蜜桃av| 国内精品久久久久久久电影| 久久伊人香网站| 亚洲午夜理论影院| 夜夜看夜夜爽夜夜摸| 久久精品国产自在天天线| 国产av在哪里看| 免费电影在线观看免费观看| 成人午夜高清在线视频| 在线免费观看不下载黄p国产 | 国产精品1区2区在线观看.| 欧美黄色片欧美黄色片| 一级黄片播放器| 少妇熟女aⅴ在线视频| 国产精品,欧美在线| 在线免费观看不下载黄p国产 | 成人午夜高清在线视频| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 一夜夜www| 亚洲国产中文字幕在线视频| 亚洲中文字幕日韩| 免费看美女性在线毛片视频| 中文字幕人妻熟人妻熟丝袜美 | 欧美色视频一区免费| 国产熟女xx| 黄色女人牲交| 在线观看免费午夜福利视频| 99久久精品一区二区三区| 男人舔女人下体高潮全视频| 美女cb高潮喷水在线观看| 啦啦啦观看免费观看视频高清| 97人妻精品一区二区三区麻豆| а√天堂www在线а√下载| 男女那种视频在线观看| 人人妻人人澡欧美一区二区| 欧美成人一区二区免费高清观看| 精品国内亚洲2022精品成人| 亚洲自拍偷在线| 日本一二三区视频观看| 麻豆一二三区av精品| 男女下面进入的视频免费午夜| 18禁黄网站禁片午夜丰满| 久久国产精品影院| 精品久久久久久久毛片微露脸| 精品人妻一区二区三区麻豆 | 久久精品国产综合久久久| 国产精品一及| 欧美色视频一区免费| 色综合站精品国产| 波多野结衣高清作品| 美女cb高潮喷水在线观看| 美女 人体艺术 gogo| 免费观看精品视频网站| 国产精品综合久久久久久久免费| 久久中文看片网| 亚洲av第一区精品v没综合| 狂野欧美激情性xxxx| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 免费观看人在逋| 精品日产1卡2卡| h日本视频在线播放| 久久精品国产亚洲av香蕉五月| 免费搜索国产男女视频| 日本在线视频免费播放| 国产精品一区二区三区四区免费观看 | 日本五十路高清| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 中文字幕高清在线视频| 午夜影院日韩av| 操出白浆在线播放| 老司机在亚洲福利影院| 国产黄a三级三级三级人| 国产精品永久免费网站| 丁香欧美五月| 亚洲人与动物交配视频| 国产精品亚洲一级av第二区| 久久久久久久午夜电影| 在线播放国产精品三级| av中文乱码字幕在线| 免费观看的影片在线观看| 欧美不卡视频在线免费观看| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 美女高潮喷水抽搐中文字幕| 内地一区二区视频在线| 亚洲国产精品sss在线观看| 亚洲成人久久爱视频| 亚洲人成网站在线播放欧美日韩| 一个人免费在线观看电影| 淫妇啪啪啪对白视频| 男女下面进入的视频免费午夜| 日本撒尿小便嘘嘘汇集6| 国产一区二区三区视频了| 香蕉丝袜av| 国产探花在线观看一区二区| 国产精品av视频在线免费观看| 性欧美人与动物交配| 91字幕亚洲| 美女cb高潮喷水在线观看| 一个人看的www免费观看视频| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产精品久久久人人做人人爽| av片东京热男人的天堂| 国产男靠女视频免费网站| 国产亚洲欧美98| 亚洲精品在线观看二区| 国产中年淑女户外野战色| 久久久久亚洲av毛片大全| 国产精品嫩草影院av在线观看 | 亚洲成人中文字幕在线播放| 国产亚洲av嫩草精品影院| 亚洲色图av天堂| 在线观看美女被高潮喷水网站 | 狂野欧美白嫩少妇大欣赏| 动漫黄色视频在线观看| 91久久精品国产一区二区成人 | 午夜福利免费观看在线| 午夜久久久久精精品| 国产不卡一卡二| 中出人妻视频一区二区| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 国产亚洲精品久久久久久毛片| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 我要搜黄色片| 少妇的逼水好多| 国产国拍精品亚洲av在线观看 | 精品国产超薄肉色丝袜足j| 最后的刺客免费高清国语| 精品福利观看| 国产黄色小视频在线观看| 一区二区三区国产精品乱码| 18禁国产床啪视频网站| 色尼玛亚洲综合影院| 少妇丰满av| 蜜桃亚洲精品一区二区三区| 免费看a级黄色片| 国产成人aa在线观看| 91久久精品电影网| 国产精品嫩草影院av在线观看 | 九色成人免费人妻av| xxx96com| 色综合亚洲欧美另类图片| 欧洲精品卡2卡3卡4卡5卡区| 91av网一区二区| av片东京热男人的天堂| 午夜福利高清视频| 午夜福利视频1000在线观看| 白带黄色成豆腐渣| 成人午夜高清在线视频| 免费看光身美女| 欧美黄色片欧美黄色片| 女人被狂操c到高潮| 不卡一级毛片| 叶爱在线成人免费视频播放| 亚洲国产中文字幕在线视频| 老熟妇仑乱视频hdxx| 一夜夜www| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观| 亚洲五月天丁香| a级一级毛片免费在线观看| 国产真人三级小视频在线观看| 桃红色精品国产亚洲av| 国产亚洲精品综合一区在线观看| 中文字幕人成人乱码亚洲影| 午夜精品在线福利| 国产伦在线观看视频一区| 宅男免费午夜| 成人鲁丝片一二三区免费| 黄色日韩在线| 90打野战视频偷拍视频| 国产av一区在线观看免费| 久久久久久人人人人人| а√天堂www在线а√下载| 可以在线观看毛片的网站| 色噜噜av男人的天堂激情| 久久久国产成人免费| 国内精品一区二区在线观看| 狠狠狠狠99中文字幕| 欧美精品啪啪一区二区三区| 日日干狠狠操夜夜爽| 岛国在线观看网站| 日本 欧美在线| 国产精品久久久久久久电影 | 亚洲国产日韩欧美精品在线观看 | 少妇的逼水好多| 90打野战视频偷拍视频| 国产激情偷乱视频一区二区| 露出奶头的视频| 欧美高清成人免费视频www| 久久久久久大精品| 国产午夜精品论理片| 久久6这里有精品| 国产毛片a区久久久久| 国产高清有码在线观看视频| 成人国产综合亚洲| 男女视频在线观看网站免费| 欧美最新免费一区二区三区 | 高清日韩中文字幕在线| xxx96com| 变态另类丝袜制服| 看片在线看免费视频| 噜噜噜噜噜久久久久久91| 国产伦一二天堂av在线观看| 在线观看美女被高潮喷水网站 | 校园春色视频在线观看| 欧美bdsm另类| 日本三级黄在线观看| 免费电影在线观看免费观看| 国产高清三级在线| 麻豆国产97在线/欧美| 真人做人爱边吃奶动态| 国产一区二区三区在线臀色熟女| 国产亚洲精品一区二区www| 精品免费久久久久久久清纯| 亚洲色图av天堂| 男插女下体视频免费在线播放| 1000部很黄的大片| 一进一出抽搐动态| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类 | 熟女少妇亚洲综合色aaa.| 九九久久精品国产亚洲av麻豆| 日本一本二区三区精品| 亚洲av电影在线进入| 日本熟妇午夜| 午夜福利在线观看吧| 亚洲一区二区三区色噜噜| 亚洲欧美激情综合另类| 亚洲成人中文字幕在线播放| 国产精品久久电影中文字幕| 18禁国产床啪视频网站| 啦啦啦观看免费观看视频高清| 午夜福利免费观看在线|