• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preference of the Herbivorous Marine Teleost Siganus canaliculatus for Different Macroalgae

    2014-05-06 06:57:10YOUCuihongZENGFanguiWANGShuqiandLIYuanyou
    Journal of Ocean University of China 2014年3期

    YOU Cuihong, ZENG Fangui, WANG Shuqi, and LI Yuanyou

    Marine Biology Institute of Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, P. R. China

    Preference of the Herbivorous Marine Teleost Siganus canaliculatus for Different Macroalgae

    YOU Cuihong, ZENG Fangui, WANG Shuqi, and LI Yuanyou*

    Marine Biology Institute of Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, P. R. China

    The decomposition of a large amount of unexploited macroalgal resource along the coast of China often results in heavy environmental pollution. In order to pave a way of using macroalgae as the dietary ingredient of rabbitfishSiganus canaliculatus, one of a few farmed herbivorous marine teleosts in China, its preference (feeding selectivity) for different macroalgae was determined in this study. Seven seaweed species abundantly inhabiting the coast of east Guangdong Province were exposed simultaneously to rabbitfish juveniles in laboratory (multiple-choice feeding) with their content and absolute intake assayed. It was found that the most preferred algae wereUlva prolifera,Gracilaria lemaneiformisandChaetomorpha linum, less preferred algae wereU. pertusaandPorphyra haitanensis, and least preferred ones wereSargassum fusiformeandCorallinasessilis. Such an order did not change when one to four relatively preferred seaweeds were removed. The preferred seaweeds were richer in protein and soluble sugar thus higher in energy than the least preferred. In addition, this fish was found to favor filamentous and flat algae rather than calcified ones. Accordingly, the richness of nutrients and morphological characteristics determined the preference ofS. canaliculatusfor tested macroalgae.

    Siganus canaliculatus; feeding preference; macroalgae; nutrient

    1 Introduction

    Macroalgae are the main foods of herbivorous teleosts; they contain very rich carbohydrate and protein and diverse amino acids, vitamins and minerals (Tolentino-Pablicoet al., 2008). Macroalgal resources along the coast of China are abundant. Eighty four macroalgal species in class Phaeophyceae, Chlorophyceae and Florideophyceae have been documented around Nanao Island, eastern Guangdong Province (Chenet al., 2010); however, only a few of them, for example, red algaePorphyra haitanensisandGracilaria lemaneiformisand brown algaLaminaria japonicaare human consumed or industry used. The unused biomass of these algae decays, causing often serious pollution (Konget al., 2011). Rabbitfish in family Siganidae inhabit widely the coral reefs of Indo-Pacific region (Woodland, 1983), among them,Siganus canaliculatusandS. fuscescensinhabit the coast of Southeast China and are commercially important (Xuet al., 2011; Duet al., 2008; von Westernhagen, 1973). HerbivorousS. canaliculatusfeeding mainly algae and seagrasses is tender in meat and rich in polyunsaturated fatty acids (PUFA) (Liet al., 2008). As a wide practice, farmers feed this fish usually commercial feeds and some fresh macroalgae. The specific feeds are not available forS. canaliculatus; thus limits its farming scale.

    Macroalgal meals have been formulated into the feeds for many fishes such as rainbow trout (Oncorhynchus mykiss) (Güroyet al., 2013), common carp (Cyprinus carpio) (Dileret al., 2007), tilapia (Oreochromis niloticus) (Stadtlanderet al., 2013) and European sea bass (Dicentrarchus labrax) (Valenteet al., 2006). HerbivorousS. canaliculatusshould feed macroalgae with a greater capacity than these carnivorous and omnivorous fish. In our previous investigation, the basic nutritional requirements ofS. canaliculatuson protein and lipid had been determined (Wanget al., 2010). It has been demonstrated early that incorporating dried seaweedGracilaria lemaneiformisinto the diets of rabbitfish is feasible (Xuet al., 2011).

    In this study, we determined the feeding preference ofS. canaliculatusfor different seaweeds abundant around Nanao Island. Our findings may aid to choosing macroalgal species suitable as the ingredient in formulating feed ofS. canaliculatus, and enrich the knowledge of ingestion biology of herbivorous marine teleost.

    2 Materials and Methods

    2.1 Collection of Macroalgae and Fish

    Actively growing and healthy thalli of 7 macroalgalspecies abundant around Nanao Island (23°23′33′′–23°29′11′N, 116°56′24′′–117°08′59′′E), eastern Guangdong Province, China, were collected with their characteristics of taxonomy shown in Table 1. The algae were carefully rinsed with filtered seawater in order to remove all epiphytes and used in feeding trials within 48 h indoor in seawater tanks at Nanao Marine Biology Station (NAMBS) of Shantou University.

    Table 1 The taxonomy and morphological characteristics of 7 seaweed species used in feeding preference assay

    S. canaliculatusjuveniles (body mass around 10–50 g) were captured from the coastal area near NAMBS, and transferred to the laboratory containers with aerated seawater. The fish were kept at 22℃, 32 salinity with constant aeration and natural photoperiod, and acclimated by feedingad libituma mixture of the seven species of fresh seaweeds for two weeks. The preference assays were carried out in 200 L cylindrical tanks equipped with a continuous recirculating seawater system.

    2.2 Laboratory Multiple-Choice Feeding

    Two feeding strategies were taken to determine the preference of rabbitfish for macroalgae (Mantyka and Bellwood, 2007): (1) 7 macroalgae, equal in mass, fed simultaneously; and (2) 1 to 4 relatively preferred species removed (based on the findings of the first strategy).

    For the first strategy, four experimental groups, the large-size fish group, 3 individuals 40.97 g in average each; the small-size fish group, 8 individuals 11.36 g in average each; and 2 controls, without fish, were set in order to determine the autogenic change of algal mass. Each group had 4 replicates. Macroalgae large enough forad libitumfeeding and in equal mass were gently blotted, weighed, randomly tied on iron wire, 65 cm in length, at approximately 8 cm intervals, and suspended 0.3 m above the bottom of tanks. Algal pieces torn off by fish were carefully collected. Remaining part of 7 seaweeds were collected, separately, blot dried and reweighed 1.5 h later to determine the mass loss each species. The trial was run for 4 consecutive days.

    As algal availability changes seasonally, absence of the preferred macroalgae may force fish to adopt a different feeding pattern. For the second strategy, 1 to 4 relatively preferred seaweeds were removed to determine whether such a removing influences the preference of fish. Six groups and corresponding controls (without fish) were set up, which included 7 seaweeds exposed simultaneously (Group 1); most preferredU. proliferaandG. lemaneiformisremoved, respectively (Groups 2 and 3);U. proliferaandG. lemaneiformisremoved (Group 4);U. prolifera,G. lemaneiformisandC. linumremoved (Group 5); andP. haitanensis,S. fusiformeandC. sessilisexposed (Group 6), 8 fish, 8.19 ± 1.26 g in average each. Each group was replicated 6 times. The condition was identical to that of the first strategy. The trial was run for 6 consecutive days.

    2.3 Determination of Macroalgal Biochemical Composition

    Fresh thalli of each seaweed species were carefully cleaned with filtered seawater, divided into 3 portions and analyzed for biochemical composition as described previously (Xuet al., 2011; Liet al., 2008). Dry biomass was determined after air dried at 105℃ overnight. Crude protein content was expressed as 6.25 times of total nitrogen content determined with Kjeldahl method. Crude lipid content was measured with Soxhlet’s extraction. Ash content was determined by combusting in a muffle furnace at 550℃ for 16 h to constant weight. Crude fiber (insoluble dietary fiber, IDF) was determined according to Chinese Standard GB/6434-2006 (Caiet al., 2009; Taoet al., 2001). The total carbohydrate was calculated by subtracting crude protein, lipid, fiber and ash from dry biomass. Total soluble sugar content was measured with phenol-sulphuric acid colorimetry method described early (Zhouet al., 2012). Energy was measured in a digital display thermal meter (XRA-1A, Shanghai Changji Geological instruments Co, Ltd, China) as described early (Zhang, 2007).

    2.4 Determination of Food Consumption and Absolute Intake of Nutrients

    Food consumption of each seaweed species byS. canaliculatus(wet massin) in multiple-choice feeding experiment was calculated with the formula

    whereTiandTf, respectively, corresponded to the initial and final wet mass of seaweed during the 1.5 h feeding period, andCiandCfcorresponded, to the initial and final mass of the same species in control. The absolute intake of nutrients from seaweed by small-size fish in thefirst feeding strategy was calculated with formula

    2.5 Statistical Analysis

    All data were presented as mean ± SEM (n= 3, 4 or 6). One-way ANOVA in combination with Tukey’s test was used to find the difference among groups withOrigin7.0 (OriginLab, Northampton, MA). The correlation between preference of rabbitfish and biochemical composition of seaweeds, and preference of rabbitfish and nutrient intake from each seaweed was analyzed with Bivariate correlation (Pearson) implemented inSPSS19.0 (IBM, USA), and expressed inR-squared (R2). The significance was accepted whenP< 0.05.

    3 Results

    3.1 Feeding Preference of Rabbitfish for 7 Seaweeds Offered Simultaneously

    Fig.1 Feeding preference of S. canaliculatus for different macroalgae. Seven macroalgal species were offered simultaneously to rabbitfish for 1.5 h, and food consumption in (a) small-size fish and (b) large-size fish was measured for 4 consecutive days. Data are mean ± SEM (n = 4), Bars without sharing a common letter indicate a significant difference (one-way ANOVA, Tukey’s test, P < 0.05).

    Fig.2 Feeding preference of S. canaliculatus for macroalgae when 1–4 relatively preferred algae were removed. (a) through (f) correspond to Groups 1–6. Data are mean ± SEM (n = 6). Bars without sharing a common letter indicate a significant difference (one-way ANOVA, Tukey’s test, P < 0.05).

    When 7 species of seaweeds were offered simultaneously, rabbitfish exhibited constantly a highest preferenceforU. prolifera, which was followed byG. lemaneiformis,C. linum,U. pertusa,P. haitanensis,S. fusiformeandC. sessilisin order, being independent of fish size (Figs.1a, b). According to the feeding selectivity order and consumed mass for seaweeds as shown in Figs.1 and 2, we regardedU. prolifera,G. lemaneiformisandC. linumas the most preferred algae,U. pertusaandP. haitanensisas the less preferred algae,S. fusiformeandC. sessilisasas the least preferred algae.

    3.2 Feeding Preference of Rabbitfish When 1–4 Relatively Preferred Seaweeds Were Removed

    The preference degree of rabbitfish for seaweeds was further supported by findings in removing assays. When 7 seaweeds were offered simultaneously (Fig.2a), the fish displayed a similar preference order as shown in Fig.1 although with a certain degree of variation, which may due to the limiting number of fish. Moreover, after 1–4 relatively preferred seaweeds were removed, the preference order of fish for these seaweeds did not changed (Figs.2b–f). WhenU. prolifera,G. lemaneiformisor both were removed, rabbitfish tended to consume more of the remaining preferred algae (Figs.2b–d). However, when all the 3 most preferred algae were removed, fish had to consume a small amount (about 3 g) of less preferredU. pertusadue to hungriness (Fig.2e). Similarly, whenU. pertusawas also removed, fish was forced to consume a smaller amount ofP. haltanensls(Fig.2f). In all case, fish little consumed the least preferred algae,S. fusiformeandC. sessilisas.

    3.3 Feed Preference and Nutrient Content of Macroalgae

    As shown in Table 2, the nutrient content varied dramatically among seven seaweeds. The varied nutrient included crude protein, fiber and ash, carbohydrate, soluble sugar and energy. The content of crude lipid was not significantly different among species (P> 0.05). It was noteworthy that the protein content in the most preferred 3 algae (U. prolifera, G. lemaneiformis, C. linum) and less preferred 2 algae (U. pertusaandP. haitanensis) was significantly higher than that in the least preferred 2 algae (S. fusiformeandC. sessilisas) (P< 0.05). The content of soluble sugar in the most preferred 3 seaweeds was significantly higher than that in the least preferred 2 algae (P< 0.05). Moreover, the 5 most and less preferred seaweeds had a lower value of energyvsprotein proportion (E/P) than the 2 least preferred seaweeds (P < 0.05).

    Table 2 Nutrient content of seven seaweed species used in the feeding preference trials

    3.4 Feed Preference and Nutrient Intake from Macroalgae

    The nutrient intake from 7 seaweeds by small-size fish was shown in Fig.3. The intake of nutrients, except crude lipid and fiber, from the 3 most preferred seaweeds was significantly higher than that from the 2 least preferred species. Such a difference was not found between the 3 most preferred seaweeds and 2 less preferred ones (P> 0.05).

    A significant positive correlation was detected between food consumption and the intake of dry matter (R2= 0.922,P= 0.003), protein (R2= 0.842,P= 0.018), total carbohydrate (R2= 0.859,P= 0.013), soluble sugar (R2= 0.818,P= 0.024), ash (R2= 0.973,P= 0) and energy (R2= 0.817,P= 0.025).

    4 Discussion

    The preference of siganids for macroalgae has been documented early (e.g., von Westernhagen, 1973, 1974; Paulet al., 1990; Pillanset al., 2004; Lundberget al., 2004; Capperet al., 2006; Mantyka and Bellwood, 2007; Fox, 2012). It has been shown that siganids feed a wide range of macroalgae and have a distinct preference associating with algal morphological characteristics and defensive chemicals. Such a preference also associates with their specific feeding behavior, oral jaw morphology and nutrient assimilation.S. canaliculatusinhabiting different places prefers non-calcified seaweeds, for example, green algaUlvasp. (von Westernhagen, 1973) and brown algaSargassumsp. (Mantyka and Bellwood, 2007), but rejects red algaeGalaxaurasp. andAmphiroasp. (Mantyka and Bellwood, 2007); however, whether such a selection associates with the nutrient of macroalgae is less understood.

    Fig.3 Absolute intake of nutrients by S. canaliculatus. Seven seaweeds were offered to small-size fish for four days. (a), dry matter; (b), crude protein; (c), crude lipid; (d), crude fiber; (e), total carbohydrate; (f), total soluble sugar; (g), crude ash; (h), energy. Data are mean ± SEM (n = 4), which without sharing a common letter above bars indicate significant differences (one-way ANOVA, Tukey’s test, P < 0.05).

    In this study, we found thatS. canaliculatuspreferred green algaeU. proliferaandC. linum, and red algaG.lemaneiformismore than brown algaS. fusiformeand calcified red algaC. sessilis, which was contrary to the documented early (Mantyka and Bellwood, 2007). Such a discrepancy may be attributed to the difference in the ontogenetic stage of fish. The juveniles were used in this study; while adults were used early (Mantyka and Bellwood, 2007). The young fish we used should have not developed the hindgut fermentation ability, which is critical for digesting mannitol and laminarin rich in brown algae (Whiteet al., 2010). When 1–4 relatively preferred species were removed,S. canaliculatusswitched to feed the next preferred ones but neverS. fusiforme(Fig.2), being similar to the preference when 7 seaweeds were offered simultaneously (Fig.1). This finding indicated that the preference for specific seaweeds ofS. canaliculatusis determined genetically.

    The correlation between food choice and macroalgal nutrients has seldom been demonstrated in marine herbivorous fish (Pillanset al., 2004). It is believed that herbivorous fish species prefer the macroalgae with high nutrient content than those with low nutrients (Horn and Neighbors, 1984). The content of protein, carbohydrate, fiber, soluble sugar and energy varied among 7 seaweeds used in this study. The preference ofS. canaliculatusfor macroalgae was closely but not significantly related to the content of protein and soluble sugar and E/P value of seaweeds (Table 2); however, such a preference significantly and positively correlated with the intake of drymatter, protein, soluble sugar, carbohydrate and energy from macroalgae (Fig.3), meeting the requirement of protein and energy of juvenile fish. It has been shown that nitrogen (protein) is a limiting factor of growth of many herbivores (Fenchel and Jorgensen, 1977) including some marine herbivorous fish species (Mattson, 1980; Choat and Clements, 1998; Raubenheimeret al., 2005). However, a correlation was not observed between the preference ofS. fuscescens(a close relative ofS. canaliculatus) and macroalgal nutrient including protein content (Pillanset al., 2004). The discrepancy between Pillans’s findings and ours may be attributed to the difference of seaweeds used. When energy and protein were considered together, the feeding preference was found to be negatively and weakly relative with the value of energyvsprotein proportion (E/P ratio) (Table 2), agreeing with the optimal foraging theory stating as herbivores maximize their intake of the most energetic and nutrient feeds (Hughes, 1980).

    Although red algaP. haitanensispossesses the highest energy and content of protein and low E/P ratio among 7 algae tested, it was not highly selected byS. canaliculatus. In fact, many factors such as algal morphology and defensive chemicals and others play roles in determining the feeding selectivity of fish (von Westernhagen, 1973, 1974; Pillanset al., 2004; Mantyka and Bellwood, 2007). Tolentino-Pablicoet al. (2008) demonstrated that physical structure,i.e., toughness and resistance, seem to affect algal consumption by rabbitfish. The present study showed that the rabbitfishS. canaliculatusdid not like calcified (C. sessilis) seaweeds, less liked the sheet-like (U. pertusa), but most like the brittle branched (G. lemaneiformis) and the filamentous (U. proliferaandC. linum) as these seaweeds have a large surface area for digestion. The membranousP. haitanensishas a sheet texture and a relatively strong breaking tenacity, which may deter rabbitfish from grazing. Therefore, algal structural features have a direct effect on the macroalgal selectivity of fish.

    In conclusions,S. canaliculatusprefersU. prolifera,G. lemaneiformisandC. linummost,U. pertusaandP. haitanensisless, andS. fusiformeandC.sessilisleast. Such a preference associates with algal nutrient and morphology. Rabbitfish prefers the macroalgae with rich protein, soluble sugar and energy and filamentous, flat and non-calcified thalli. These findings should aid to formulating rabbitfish feeds with seaweeds.

    Acknowledgements

    We thank Prof. Douglas R. Tocher of University of Stirling and Prof. Wei Chiju of Shantou University for revising the manuscript. This work was financially supported by grants from National Natural Science Foundation of China (No. 41276179), National Science and Technology Support Plan Project (No. 2012BAC07B05), Team Project of Natural Science Foundation of Guangdong Province (S2011030005257), Producing, Teaching and Research Cooperation Projects of Guangdong Province and Ministry of Education (No. 2011B090400039).

    Cai, C., Yao, B., Shen, W. R., and He, P. M., 2009. Determination and analysis of nutrition compositions in Enteromorpha clathrata. Journal of Shanghai Ocean University, 18 (2): 155-159 (in Chinese with English abstract).

    Capper, A., Tibbetts, I. R., O’Neil, J. M., and Shaw, G. R., 2006. Feeding preference and deterrence in rabbitfish Siganus fuscescens for the cyanobacterium Lyngbya majuscula in Moreton Bay, south-east Queeensland, Australia. Journal of Fish Biology, 68: 1589-1609.

    Chen, W. Z., Liu, T., Du, H., Cao, H. B., Wang, L. G., and Ma, Q. T., 2010. Diversity of macrophytes of the Nanao Island of Guangdong province. In: Proceedings of the 2ndAcademic Conference on Algae Diversity and Classification in China, Taiyuan, 2.

    Choat, J. H., and Clements, K. D., 1998. Vertebrate herbivores in marine and terrestrial environments: A nutritional ecology perspective. Annual Review of Ecology and Systematics, 29: 375-403.

    Diler, I., Tekinay, A., Güroy, D., Güroy, B., and Soyuturk, M., 2007. Effects of Ulva rigida on the growth, feed intake and body composition of common carp, Cyprinus carpio. Journal of Biological Sciences, 7: 305-308.

    Du, Y. B., Li, Y. Y., Zhen, Y. J., Hu, C. B., Liu, W. H., Chen, W. Z., and Sun, Z. W., 2008. Toxic effects in Siganus oramin by dietary exposure to 4-tertoctylphenol. Bulletin of Environmental Contamination and Toxicology, 80 (6): 534-538.

    Fenchel, T. M., and Jorgenson, B. B., 1977. Detritus food chains of aquatic ecosystems: The role of bacteria. Advances in Microbial Ecology, 1: 1-58.

    Fox, R. J., 2012. The trophic and spatial ecology of rabbitfishes (Perciformes, Siganidae) on coral reefs. PhD thesis, James Cook University.

    Güroy, B., Ergün, S., Merrifield, D. L., and Güroy, D., 2013. Effect of autoclaved Ulva meal on growth performance, nutrient utilization and fatty acid profile of rainbow trout, Oncorhynchus mykiss. Aquaculture International, 21: 605-615.

    Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J., and Waaland, J. R., 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology, 38: 277-294.

    Horn, M. H., and Neighbors, M. A., 1984. Protein and nitrogen assimilation as a factor in predicting the seasonal macroalgal diet of the monkeyface prickleback. Transactions of the American Fisheries Society, 113: 388-396.

    Hughes, R. N., 1980. Optimal foraging theory in the marine context. Oceanography and Marine Biology Annual Review, 18: 423-481.

    Kong, F., Mao, Y. X., Cui, F. J., Zhang, X. K., and Gao, Z., 2011. Morphology and molecular identification of Ulva forming green tides in Qindao, China. Journal of Ocean University of China, 10 (1): 73-79.

    Li, Y. Y., Hu, C. B., Zhen, Y. J., Xia, X. A., Xu, W. J., Wang, S. Q., Chen, W. Z., Sun, Z. W., and Huang, J. H., 2008. The effects of dietary fatty acids on liver fatty acid composition and Δ6-desaturase expression differ with ambient salinities in Siganus canaliculatus. Comparative Biochemistry and Physiology, 151B: 183-190.

    Lundberg, B., Ogorek, R., Galil, B. S., and Goren, M., 2004. Dietary choices of siganid fish at Shiqmona reef, Israel. Israel Journal of Zoology, 50: 39-53.

    Mantyka, C. S., and Bellwood, D. R., 2007. Macroalgal grazingselectivity among herbivorous coral reef fishes. Marine Ecology Progress Series, 352: 177-185.

    Mattson Jr., W. J., 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11: 119-161.

    Paul, V. J., Nelson, S. G., and Sanger, H. R., 1990. Feeding preferences of adult and juvenile rabbitfish Siganus argenteus in relation to chemical defenses of tropical seaweeds. Marine Ecology Progress Series, 60: 23-34.

    Pillans, R. D., Franklin, C. E., and Tibbetts, I. R., 2004. Food choice in Siganus fuscescens: Influence of macrophyte nutrient content and availability. Journal of Fish Biology, 64: 297-309.

    Raubenheimer, D., Zemke-White, W. L., Phillips, R, J., and Clements, K. D., 2005. Algal macronutrients and food selection by the omnivorous marine fish Girella Tricuspidata. Ecology, 86 (10): 2601-2610.

    Stadtlander, T., Khalil, W. K. B., Focken, U., and Becker, K., 2013. Effects of low and medium levels of red alga Nori (Porphyra yezoensis Ueda) in the diets on growth, feed utilization and metabolism in intensively fed Nile tilapia, Oreochromis niloticus (L.). Aquaculture Nutrition, 19: 64-73.

    Tao, P., Xu, Q. L., Yao, J. G., and Gao, X., 2001. An analysis of nutrient components of thirteen kinds of seaweeds for food in Dalian coastline. Journal of Liaoning Normal University (Natural Science Edition), 24 (4): 406-410 (in Chinese with English abstract).

    Tolentino-Pablico, G., Bailly, N., Froese, R., and Elloran, C., 2008. Seaweeds preferred by herbivorous fishes. Journal of Applied Phycology, 20: 933-938.

    Valente, L. M. P., Gouveia, A., Rema, P., Matos, J., Gomes, E. F., and Pinto, I. S., 2006. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 252: 85-91.

    von Westernhagen, H., 1973. The natural food of the rabbitfish Siganus oranim and S. striolata. Marine Biology, 22: 367-370.

    von Westernhagen, H., 1974. Food preferences in cultured rabbitfishes (Siganidae). Aquaculture, 3: 109-117.

    Wang, S. Q., Xu, S. D., Wu, Q. Y., Zhang, L., Zhang, T., You, C. H., Zhen, H. P., and Li, Y. Y., 2010. Optimal levels of protein and lipid in diets for rabbitfish Siganus canaliculatus juvenile. Marine Science, 34 (11): 18-22 (in Chinese with English abstract).

    White, W. L., Coveny, A. H., Robertson, J., and Clements, K. D., 2010. Utilisation of mannitol by temperate marine herbivorous fishes. Journal of Experimental Marine Biology and Ecology, 391 (1-2): 50-56.

    Woodland, D. J., 1983. Zoogeography of the Siganidae (Pisces): An interpretation of distribution and richness patterns. Bulletin of Marine Science, 33: 713-717.

    Xu, S. D., Zhang, L., Wu, Q. Y., Liu, X. B., Wang, S. Q., You, C. H., and Li, Y. Y., 2011. Evaluation of dried seaweed Gracilaria lemaneiformis as an ingredient in diets for teleost fish Siganus canaliculatus. Aquaculture International, 19: 1007-1018.

    Zhou, Z., and Zhou, N., 2012. Determination of total sugar in Ren-dong garlic by phenol-sulfuric acid method. Food Research and Development, 33 (6): 137-142 (in Chinese with English abstract).

    Zhang, L. Y., 2007. Feed Analysis and Quality Inspection Technology. China Agricultural University Press, Beijing, 435pp.

    (Edited by Qiu Yantao)

    (Received December 1, 2013; revised December 27, 2013; accepted January 18, 2014)

    ? Ocean University of China, Science Press and Spring-Verlag Berlin Heidelberg 2014

    * Correspondending author. Tel/Fax: 0086-754-86503157

    E-mail: yyli@stu.edu.cn

    中文精品一卡2卡3卡4更新| 欧美精品亚洲一区二区| 1024视频免费在线观看| 人妻一区二区av| 韩国精品一区二区三区 | 欧美成人午夜免费资源| 九色亚洲精品在线播放| 中文字幕亚洲精品专区| 亚洲美女搞黄在线观看| 国产69精品久久久久777片| 日本欧美国产在线视频| 一级毛片 在线播放| 亚洲精品,欧美精品| 99国产综合亚洲精品| 国产有黄有色有爽视频| 久久久久精品人妻al黑| 精品少妇黑人巨大在线播放| 亚洲国产日韩一区二区| 人人妻人人添人人爽欧美一区卜| 久久久久久久国产电影| 老女人水多毛片| 80岁老熟妇乱子伦牲交| 国产精品一区二区在线观看99| av网站免费在线观看视频| 国产日韩欧美在线精品| 日韩免费高清中文字幕av| 国产成人a∨麻豆精品| 亚洲高清免费不卡视频| 大片免费播放器 马上看| 男女国产视频网站| 日日撸夜夜添| 国产欧美日韩综合在线一区二区| 视频区图区小说| 十分钟在线观看高清视频www| 两性夫妻黄色片 | 交换朋友夫妻互换小说| 男女下面插进去视频免费观看 | 99久久综合免费| 国产片内射在线| 十分钟在线观看高清视频www| 成年人免费黄色播放视频| 国产在视频线精品| 一级a做视频免费观看| 我的女老师完整版在线观看| 免费在线观看黄色视频的| 国产精品偷伦视频观看了| 日韩伦理黄色片| 亚洲国产av影院在线观看| 国产精品久久久久久久电影| 好男人视频免费观看在线| 黄片无遮挡物在线观看| 女人被躁到高潮嗷嗷叫费观| 欧美xxxx性猛交bbbb| 日韩免费高清中文字幕av| 啦啦啦中文免费视频观看日本| av播播在线观看一区| av.在线天堂| 国产高清不卡午夜福利| 黄网站色视频无遮挡免费观看| 国产精品女同一区二区软件| 国语对白做爰xxxⅹ性视频网站| 亚洲高清免费不卡视频| 黄色视频在线播放观看不卡| 丝瓜视频免费看黄片| 日韩成人伦理影院| 观看av在线不卡| 亚洲精品久久午夜乱码| 中文字幕制服av| 日本黄色日本黄色录像| 国产极品粉嫩免费观看在线| 爱豆传媒免费全集在线观看| xxxhd国产人妻xxx| 美女福利国产在线| 欧美国产精品一级二级三级| 国产白丝娇喘喷水9色精品| 久久久欧美国产精品| 涩涩av久久男人的天堂| 精品亚洲乱码少妇综合久久| 国产色爽女视频免费观看| 建设人人有责人人尽责人人享有的| 国产精品99久久99久久久不卡 | 伊人亚洲综合成人网| 国产精品 国内视频| 欧美日韩成人在线一区二区| 最近最新中文字幕大全免费视频 | 国产极品粉嫩免费观看在线| 色婷婷av一区二区三区视频| 国产精品欧美亚洲77777| 精品第一国产精品| 亚洲,一卡二卡三卡| 少妇熟女欧美另类| 午夜福利视频在线观看免费| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx在线观看| 国产黄色视频一区二区在线观看| 亚洲性久久影院| 国产极品天堂在线| 国精品久久久久久国模美| 婷婷色av中文字幕| 久久久国产精品麻豆| 最新中文字幕久久久久| 女性被躁到高潮视频| 欧美精品高潮呻吟av久久| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 曰老女人黄片| 亚洲欧洲精品一区二区精品久久久 | 午夜视频国产福利| 尾随美女入室| 波野结衣二区三区在线| 国产有黄有色有爽视频| 久久99热6这里只有精品| 少妇人妻精品综合一区二区| 国产精品一区www在线观看| 狂野欧美激情性bbbbbb| 欧美精品亚洲一区二区| 在线 av 中文字幕| 日韩一区二区三区影片| 成年av动漫网址| 亚洲国产欧美日韩在线播放| 婷婷色av中文字幕| av在线app专区| 成年动漫av网址| 天堂中文最新版在线下载| 十分钟在线观看高清视频www| 18禁在线无遮挡免费观看视频| 男人舔女人的私密视频| 男女免费视频国产| 人人澡人人妻人| 99热这里只有是精品在线观看| 亚洲第一av免费看| 久久久久精品人妻al黑| 亚洲经典国产精华液单| 亚洲激情五月婷婷啪啪| 一区二区av电影网| 又粗又硬又长又爽又黄的视频| a级毛片黄视频| 成年女人在线观看亚洲视频| 国产精品偷伦视频观看了| 亚洲 欧美一区二区三区| 亚洲人成77777在线视频| 最新中文字幕久久久久| 亚洲色图 男人天堂 中文字幕 | 丁香六月天网| 欧美xxxx性猛交bbbb| a级毛片黄视频| 又黄又粗又硬又大视频| 欧美性感艳星| 国产视频首页在线观看| 国精品久久久久久国模美| 18禁在线无遮挡免费观看视频| 春色校园在线视频观看| 免费观看av网站的网址| 晚上一个人看的免费电影| 男女午夜视频在线观看 | 波多野结衣一区麻豆| 日韩三级伦理在线观看| 午夜激情久久久久久久| 日韩,欧美,国产一区二区三区| 亚洲成色77777| 最新的欧美精品一区二区| 两性夫妻黄色片 | 日韩一本色道免费dvd| 伊人亚洲综合成人网| 又大又黄又爽视频免费| 国产欧美另类精品又又久久亚洲欧美| 久久ye,这里只有精品| 黄色毛片三级朝国网站| 国产乱来视频区| tube8黄色片| 亚洲精品美女久久av网站| 欧美bdsm另类| 亚洲欧美成人综合另类久久久| 精品国产国语对白av| 亚洲精品久久成人aⅴ小说| 亚洲精品自拍成人| 9191精品国产免费久久| 久久精品熟女亚洲av麻豆精品| 一区二区三区精品91| 在线观看免费高清a一片| 国产一级毛片在线| 午夜福利乱码中文字幕| 久久鲁丝午夜福利片| 亚洲成av片中文字幕在线观看 | 日本av手机在线免费观看| 一区二区三区四区激情视频| 国产老妇伦熟女老妇高清| 少妇熟女欧美另类| 男女无遮挡免费网站观看| 99国产综合亚洲精品| 国产一区二区三区av在线| 日韩精品有码人妻一区| 寂寞人妻少妇视频99o| 国产极品天堂在线| 日本wwww免费看| 国产日韩一区二区三区精品不卡| 97精品久久久久久久久久精品| 午夜影院在线不卡| 欧美激情国产日韩精品一区| 女性生殖器流出的白浆| 中文欧美无线码| 大码成人一级视频| 日韩大片免费观看网站| 国产激情久久老熟女| 亚洲综合精品二区| 久久精品夜色国产| 国产精品一二三区在线看| 韩国高清视频一区二区三区| 欧美亚洲日本最大视频资源| 久热这里只有精品99| a级片在线免费高清观看视频| 亚洲色图 男人天堂 中文字幕 | 狠狠精品人妻久久久久久综合| 欧美日韩综合久久久久久| 日本猛色少妇xxxxx猛交久久| 婷婷色av中文字幕| 久久久久国产网址| 日韩制服骚丝袜av| 最后的刺客免费高清国语| 国产又色又爽无遮挡免| 亚洲精品乱久久久久久| 亚洲精品国产av蜜桃| 老司机影院毛片| 欧美少妇被猛烈插入视频| 久久久久久久国产电影| 国产精品 国内视频| 日日摸夜夜添夜夜爱| 丝袜喷水一区| 国产极品粉嫩免费观看在线| 三级国产精品片| 美女脱内裤让男人舔精品视频| 91久久精品国产一区二区三区| 18禁动态无遮挡网站| 日本免费在线观看一区| 青青草视频在线视频观看| 免费黄频网站在线观看国产| 免费在线观看黄色视频的| 99九九在线精品视频| 巨乳人妻的诱惑在线观看| 亚洲熟女精品中文字幕| 一级黄片播放器| 国产熟女欧美一区二区| 欧美精品av麻豆av| 久久狼人影院| 一本色道久久久久久精品综合| 成人二区视频| 亚洲精品久久久久久婷婷小说| av电影中文网址| 久久精品国产亚洲av涩爱| 搡女人真爽免费视频火全软件| 秋霞在线观看毛片| 人成视频在线观看免费观看| 91精品国产国语对白视频| 久久精品aⅴ一区二区三区四区 | 一级毛片电影观看| 国产一区有黄有色的免费视频| 男人操女人黄网站| 国产老妇伦熟女老妇高清| 精品酒店卫生间| 欧美少妇被猛烈插入视频| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 一二三四在线观看免费中文在 | 人人妻人人添人人爽欧美一区卜| av视频免费观看在线观看| 亚洲综合色惰| 欧美 日韩 精品 国产| 1024视频免费在线观看| 成年人午夜在线观看视频| 久久av网站| 九色成人免费人妻av| 中文字幕免费在线视频6| 午夜日本视频在线| 亚洲欧美中文字幕日韩二区| 久久久国产精品麻豆| 丰满迷人的少妇在线观看| 少妇精品久久久久久久| 国产精品一国产av| 国产精品国产三级国产专区5o| 精品国产一区二区三区久久久樱花| 在线观看美女被高潮喷水网站| 巨乳人妻的诱惑在线观看| 国产国语露脸激情在线看| 久久人人爽人人片av| 永久网站在线| 国产在视频线精品| 国产精品.久久久| 少妇的逼好多水| av线在线观看网站| 国产一区二区在线观看日韩| 国产精品久久久久久精品古装| 精品国产一区二区三区久久久樱花| 午夜免费鲁丝| 宅男免费午夜| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 久久久久久久久久成人| 黑人猛操日本美女一级片| 香蕉精品网在线| 成人毛片60女人毛片免费| 午夜福利视频精品| 亚洲精品美女久久久久99蜜臀 | 日韩欧美一区视频在线观看| 精品久久蜜臀av无| 亚洲美女搞黄在线观看| 国产 一区精品| 久久国内精品自在自线图片| www.av在线官网国产| 国产激情久久老熟女| 乱人伦中国视频| 国产 一区精品| 在线免费观看不下载黄p国产| 最近中文字幕2019免费版| 极品少妇高潮喷水抽搐| 国产极品天堂在线| 亚洲国产精品成人久久小说| 在线天堂最新版资源| 久久97久久精品| 久久久欧美国产精品| 自拍欧美九色日韩亚洲蝌蚪91| 九色亚洲精品在线播放| 国产熟女欧美一区二区| 国产精品久久久久久av不卡| 亚洲久久久国产精品| 日韩三级伦理在线观看| 日本91视频免费播放| av福利片在线| 美女视频免费永久观看网站| 视频在线观看一区二区三区| 亚洲欧美日韩另类电影网站| 国产毛片在线视频| 欧美日韩成人在线一区二区| 日韩一区二区三区影片| 日本黄大片高清| 热re99久久国产66热| 九草在线视频观看| 91久久精品国产一区二区三区| 久久婷婷青草| 18禁裸乳无遮挡动漫免费视频| 男人舔女人的私密视频| 国产熟女午夜一区二区三区| 性色avwww在线观看| 精品人妻熟女毛片av久久网站| 午夜激情久久久久久久| 免费少妇av软件| 少妇的丰满在线观看| 久久精品国产亚洲av天美| 最新的欧美精品一区二区| 国产片特级美女逼逼视频| 亚洲经典国产精华液单| 热re99久久国产66热| 亚洲,欧美精品.| 黑人高潮一二区| 国产高清三级在线| 精品人妻在线不人妻| 一级片免费观看大全| 久久99热这里只频精品6学生| 国产亚洲av片在线观看秒播厂| a级毛片黄视频| 大香蕉97超碰在线| 99国产精品免费福利视频| 国产极品粉嫩免费观看在线| 中文乱码字字幕精品一区二区三区| 欧美老熟妇乱子伦牲交| av又黄又爽大尺度在线免费看| 国产爽快片一区二区三区| 日韩人妻精品一区2区三区| 精品国产国语对白av| 国产毛片在线视频| 伦理电影免费视频| 亚洲国产成人一精品久久久| freevideosex欧美| 校园人妻丝袜中文字幕| 午夜福利视频在线观看免费| 男女边摸边吃奶| 久久午夜福利片| 青春草视频在线免费观看| 精品久久久久久电影网| 一边摸一边做爽爽视频免费| 久久国产精品大桥未久av| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 少妇人妻 视频| 最近手机中文字幕大全| 热99久久久久精品小说推荐| 满18在线观看网站| 亚洲一级一片aⅴ在线观看| 老司机影院成人| 国产伦理片在线播放av一区| 亚洲av福利一区| 国产一级毛片在线| 在线天堂最新版资源| 午夜久久久在线观看| 欧美xxxx性猛交bbbb| 波野结衣二区三区在线| 搡老乐熟女国产| 成年av动漫网址| 一级片免费观看大全| 嫩草影院入口| 99re6热这里在线精品视频| 美女国产视频在线观看| 少妇熟女欧美另类| 大香蕉久久成人网| 欧美亚洲日本最大视频资源| 亚洲天堂av无毛| 亚洲国产欧美日韩在线播放| 亚洲欧美成人综合另类久久久| 激情视频va一区二区三区| av播播在线观看一区| 久久99热6这里只有精品| 天堂中文最新版在线下载| 一级毛片我不卡| videosex国产| 国产精品免费大片| 在线观看人妻少妇| av福利片在线| 99热全是精品| 中文欧美无线码| 黄色 视频免费看| 成人国产麻豆网| 伊人久久国产一区二区| 国产黄色免费在线视频| 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| 亚洲国产成人一精品久久久| 精品一区二区三区四区五区乱码 | 国产女主播在线喷水免费视频网站| 精品福利永久在线观看| 免费观看性生交大片5| 国产在线一区二区三区精| 秋霞伦理黄片| 欧美日韩一区二区视频在线观看视频在线| 亚洲av成人精品一二三区| 9191精品国产免费久久| a级毛片黄视频| 成年女人在线观看亚洲视频| 国产免费一级a男人的天堂| 丝袜人妻中文字幕| 精品久久国产蜜桃| 最近2019中文字幕mv第一页| 午夜福利乱码中文字幕| 91aial.com中文字幕在线观看| 毛片一级片免费看久久久久| 久久久久久久亚洲中文字幕| 香蕉国产在线看| 美女国产高潮福利片在线看| 夫妻性生交免费视频一级片| 两个人看的免费小视频| h视频一区二区三区| 人人妻人人澡人人看| 秋霞在线观看毛片| 免费观看在线日韩| 亚洲 欧美一区二区三区| 又黄又爽又刺激的免费视频.| 欧美人与善性xxx| 国产黄色免费在线视频| 综合色丁香网| 亚洲av在线观看美女高潮| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 国产欧美日韩一区二区三区在线| 中国国产av一级| 97超碰精品成人国产| 七月丁香在线播放| 97精品久久久久久久久久精品| 色网站视频免费| 两个人看的免费小视频| 亚洲精品中文字幕在线视频| 国产精品成人在线| 国产1区2区3区精品| 在线精品无人区一区二区三| 中国国产av一级| 岛国毛片在线播放| 综合色丁香网| 国产有黄有色有爽视频| 亚洲 欧美一区二区三区| 成人免费观看视频高清| 午夜老司机福利剧场| 久久久久久久久久久久大奶| 性色avwww在线观看| 国产又爽黄色视频| 国产麻豆69| 狠狠精品人妻久久久久久综合| 精品国产乱码久久久久久小说| 性色av一级| 满18在线观看网站| 精品久久久精品久久久| 久久久欧美国产精品| 一级片免费观看大全| 九色成人免费人妻av| 欧美成人精品欧美一级黄| 在线天堂最新版资源| 五月玫瑰六月丁香| 黑人巨大精品欧美一区二区蜜桃 | 最新中文字幕久久久久| 中文字幕精品免费在线观看视频 | 亚洲欧洲精品一区二区精品久久久 | 日韩av在线免费看完整版不卡| 免费黄色在线免费观看| freevideosex欧美| 久久精品国产a三级三级三级| 国产男人的电影天堂91| 丝瓜视频免费看黄片| 最新中文字幕久久久久| 在线观看免费视频网站a站| 青青草视频在线视频观看| 99国产综合亚洲精品| av女优亚洲男人天堂| 欧美日韩视频精品一区| 精品一区二区三区视频在线| 全区人妻精品视频| 精品卡一卡二卡四卡免费| 亚洲国产精品国产精品| 波多野结衣一区麻豆| 91精品伊人久久大香线蕉| 国产白丝娇喘喷水9色精品| 狂野欧美激情性xxxx在线观看| 久久人人97超碰香蕉20202| 永久网站在线| 一边亲一边摸免费视频| 久久精品久久久久久久性| 日本免费在线观看一区| 一级毛片我不卡| 女人久久www免费人成看片| 一级毛片电影观看| 成年动漫av网址| 亚洲国产精品专区欧美| 亚洲婷婷狠狠爱综合网| 久久午夜综合久久蜜桃| 宅男免费午夜| 久久99热这里只频精品6学生| 欧美老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 精品久久久久久电影网| 国产一级毛片在线| 五月伊人婷婷丁香| 男人舔女人的私密视频| xxx大片免费视频| 午夜免费男女啪啪视频观看| 精品少妇内射三级| 精品国产露脸久久av麻豆| 亚洲四区av| 亚洲av日韩在线播放| 我要看黄色一级片免费的| 最近最新中文字幕大全免费视频 | 一本—道久久a久久精品蜜桃钙片| 亚洲av在线观看美女高潮| 超色免费av| 免费日韩欧美在线观看| 亚洲人成网站在线观看播放| 一边亲一边摸免费视频| 三级国产精品片| 男女啪啪激烈高潮av片| 国产精品熟女久久久久浪| 成人毛片a级毛片在线播放| 欧美日韩视频高清一区二区三区二| tube8黄色片| 精品一区二区三区四区五区乱码 | 国产爽快片一区二区三区| 亚洲精品色激情综合| 男人添女人高潮全过程视频| 亚洲欧洲日产国产| 夜夜爽夜夜爽视频| 国产亚洲欧美精品永久| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 精品国产一区二区三区四区第35| 看非洲黑人一级黄片| 性色av一级| 日韩av在线免费看完整版不卡| 亚洲国产色片| 国产在线免费精品| 天堂8中文在线网| 国产精品人妻久久久久久| 男女高潮啪啪啪动态图| 97超碰精品成人国产| 久久午夜综合久久蜜桃| 18+在线观看网站| 久久综合国产亚洲精品| 亚洲在久久综合| 视频中文字幕在线观看| 女人久久www免费人成看片| 高清欧美精品videossex| 国产黄色免费在线视频| 国产日韩欧美亚洲二区| 久久久久久久精品精品| 永久网站在线| 99热这里只有是精品在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲精品中文字幕在线视频| 日韩精品有码人妻一区| 在线亚洲精品国产二区图片欧美| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 两性夫妻黄色片 | 一级黄片播放器| 午夜福利网站1000一区二区三区| 2021少妇久久久久久久久久久| 成人免费观看视频高清| 日韩欧美精品免费久久| 在线天堂最新版资源| 男人爽女人下面视频在线观看| 亚洲图色成人| 一级a做视频免费观看| 国产免费现黄频在线看| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 人妻一区二区av| www日本在线高清视频| 一区二区av电影网| 熟女av电影| 老司机影院成人| 亚洲欧洲国产日韩| 日韩在线高清观看一区二区三区| 校园人妻丝袜中文字幕|