• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Combined Action of Uniform Flow and Oscillating Flow Around Marine Riser at Low Keulegan-Carpenter Number

    2014-05-06 06:56:53DENGYueHUANGWeipingandZHAOJingli
    Journal of Ocean University of China 2014年3期

    DENG Yue, HUANG Weiping,, and ZHAO Jingli

    1) Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) Marine Technology Center, Shandong Marine Fisheries Research Institute, Yantai 264006, P. R. China

    Combined Action of Uniform Flow and Oscillating Flow Around Marine Riser at Low Keulegan-Carpenter Number

    DENG Yue1), HUANG Weiping1),*, and ZHAO Jingli2)

    1) Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, P. R. China

    2) Marine Technology Center, Shandong Marine Fisheries Research Institute, Yantai 264006, P. R. China

    With the increase of petroleum and gas production in deep ocean, marine risers of circular cylinder shape are widely used in the offshore oil and gas platform. In order to research the hydrodynamic performance of marine risers, the dynamic mesh technique and User-Defined Function (UDF) are used to simulate the circular cylinder motion. The motion of a transversely oscillating circular cylinder in combination of uniform flow and oscillating flow is simulated. The uniform flow and oscillating flow both are in x direction. SIMPLE algorithm is used to solve the Navier-Stokes equations. The User-Defined Function is used to control the cylinder transverse vibration and the inlet flow. The lift and drag coefficient changing with time and the map of vorticity isolines at different phase angle are obtained. Force time histories are shown for uniform flow at Reynolds number (Re) of 200 and for the combination of uniform and oscillating flows. With the increase of amplitude of oscillating flow in combined flow, the change of lift amplitude is not sensitive to the the change of cylinder oscillating frequency. Lift amplitude increases with the increase of oscillating flow amplitude in the combined flow, but there is no definite periodicity of the lift coefficient. The drag and inertia force coefficients change when the maximum velocity of the oscillating flow increases in the combined flow. The vortex shedding near the circular cylinder shows different characteristics.

    transversely oscillating cylinder; circular cylinder; marine riser; uniform flow; oscillating flow; vorticity isolines

    1 Introduction

    tex is switching. Wang and Zhou (2005) studied a circular cylinder oscillating transversely in still water and in a uniform flow, and verified the conclusion of Lu and Dalton (1996) and Dutschet al.(1998). Meneghini and Bearman (1995) obtained the boundary of lock-in for small amplitudes of oscillations. The ratiof/fsvaried from 0.7 to 1.15 and forA/Dfrom 0.025 to 0.6 in the simulation. Williamson and Roshko (1988) carried out experiments for large amplitudes of oscillation. Anagnostopoulos and Bearaman (1992) conducted experiments on the vortex-induced transverse oscillations of a circular cylinder at low Reynolds number ranging between 90 and 150. The amplitude of the lift force in phase with the circular cylinder velocity was maximum at the lower limit of the lock-in region. Zhao and Chen (2006) reproduced these results by Lagrangian-Eulerian (ALE) method and verified the conclusion of Mendes and Branco (1999). Wan and Turek (2007) investigated the numerical simulation of particulate flows using a new moving mesh method combined with the multigrid fictitious boundary method (FBM) for the implicit treatment of Dirichlet boundary conditions with applications to incompressible flow simulations. Liang and Wan (2009a, b) studied the forced oscillation and vortex-induced motion of circular cylinder in cross flow with low Reynolds number. Singha and Sinhamahapatra (2010) did research about the flow past a

    In recent years, increasingly more and more oil and natural gas exploration and production have shifted to deeper ocean. Marine riser design and constraction remain to be technically challenging in deep sea. More and more pivotal components of circular cylinder shape represented by marine risers are widely used in the offshore oil platform and subsea pipeline systems. Many work focus on the research of circular cylinder in uniform flow and oscillating flow. Many excellent experiments and numerical simulations have been done in the fields of flow around circular cylinder. Guet al.(1994) found that vortexes from one side of the cylinder to the other reach a high degree of concentration of vorticity next to cylinder when the ratiof/fsincreases (fis the oscillating frequency of cylinder,fsis the shedding frequency for the fixed cylinder ). Lu and Dalton (1996) studied the vortex shedding from a transversely oscillating circular cylinder in a uniform flow by numerical solutions. The impact of increasing the amplitude of oscillating cylinder and Reynolds number are shown to lower the value off/fsat which vor-circular cylinder between parallel walls at low Reynolds number. Zhaoet al.(2010) investigated combined steady and oscillatory flow past a circular cylinder by three-dimensional direct numerical simulation. The incompressible Navier-Stokes equations are solved by finite element method. Carmoet al.(2011) performed numerical simulations of the flow around two circular cylinders in tandem arrangements. The Reynolds number was kept constant at 150 for two-dimensional simulations and at 300 for three-dimensional simulations. They found that for the tandem arrangements cylinder lock-in boundaries are wider than those for the isolated cylinder and the maximum displacement amplitudes are greater. Raghavan and Bernitsas (2011) found that Reynolds number has significant effects on the response of an elasticity- mounted cylinder in flow; but they did not consider the combination of uniform and oscillating flow. Fanet al.(2012) simulated the 2D and 3D viscous flow around circular at high Reynolds number and found that the 3D lift coefficient are smaller than the 2D results. Donget al.(2012) investigated the two dimensional flow around a cylinder using Discrete Vortex Method and obtained the wake shapes, lift coefficients and response amplitudes of different mass ratios and reduced velocities.

    There are few papers and research work on combination of uniform flow and oscillating flow so far. But the case of combined flow simulation is more practical. This paper deals with transversely oscillating circular cylinder in the combined uniform flow and oscillating flow at low Reynolds number by the dynamic mesh technique and User-Defined Function (UDF). The uniform flow and oscillating flow both are in thexdirection. Lift coefficient and drag coefficient changing with time have been simulated. The case of fixed cylinder in uniform flow have been simulated to test and verify the model and Strouhal number (fsD/U).

    2 Numerical Computations

    Control equations are the two-dimensional incompressible viscous flow Navier-Stokes equations, the continuity equation and momentum equation in cartesian coordinates being

    whereuis the velocity inxdirection,vthe velocity inydirection,pthe pressure,ρthe density of fluid, andvthe kinematic viscosity coefficient. In this paper,ρ=998.2 kg m-3.

    The key coefficients involved depend on both the Reynolds number Re and the Keulegan-Carpenter numberKC, which are defined as

    whereUmaxis the maximum velocity of the oscillating flow,vis the kinematic fluid viscosity,f0is an oscillating flow frequency andDis the diameter of the cylinder.

    The oscillating flow and the oscillating flow velocity in the numerical simulation are sinusoid and cosinusoid, respectively,

    whereBis the amplitude of the oscillating flow with the velocityU1.

    Thus the Keulegan-Carpenter number can be written as

    The transverse oscillation of the circular cylinder considered in the numerical simulations is also sinusoidal

    whereAdenotes the amplitude of the cylinder motion andfis the oscillating frequency.

    The force components are solved inxandydirections with drag force inxdirection and lift force inydirection. Drag and lift forces are then nondimensionalized as follows:

    whereCdis the drag coefficient,Clis the lift coefficient,Uis the average velocity of flow,FxandFyare forces inxandydirections, respectively.

    An overall view of the calculation region is shown in Fig.1. The diameter of the cylinderDis 0.02 m. The outflow length is 80Dand the width of the domain is 20D. The cylinder is at the center with side boundaries located at 10D. The 10D×10Drange around the circular cylinder is the dynamic mesh, which will move with the cylinder along the interfaces. Fluent13 software is used in the numerical simulation.

    Fig.1 Computational domain for the transversely oscillating cylinder.

    3 Results and Discussion

    3.1 Uniform Flow Around a Fixed Cylinder

    In order to obtain a better mesh to perform numerical simulations of a circular cylinder in a combination of uniform and oscillatory flows at low Reynolds number, three different computational meshes have been obtained for evaluating the Strouhal number (fsD/U).

    #cvperimeteris the number of control volumes on the cylinder perimeter and #cvtotalis the total number of control volumes employed. Three different meshes are shown in Table 1.

    Table 1 Grids parameters of the three computational meshes

    As the obtained Strouhal number in Table 2, the results of mesh2 and mesh3 have a good agreement with the reference values obtained by Brazaet al.(1986) and Meneghini and Bearman (1995). In order to save computational time, Mesh2 is selected to perform the numerical simulations presented below (Fig.2).

    Table 2 Strouhal number of uniform flow around the fixed cylinder at Re=200

    Fig.2 Grids center of the computational mesh around the circular cylinder of Mesh2.

    3.2 Combined Uniform and Oscillating Flow Around a Transversely Oscillating Cylinder

    Ocean environment is very complex. Both uniform flow and oscillatory flow can be found in deep water. It’s of great practical significance to carry out the research on motion of a circular cylinder in a combination of uniform and oscillatory flow.

    The simulations are carried out for values off/fs, wherefis the frequency of oscillating cylinder andfsis the shedding frequency for the fixed cylinder in uniform flow at Re=200,f/fs=0.85, 1.0, 1.15 and for nondimensional numberA/D=0.2. The frequency of oscillating flowfis 0.0989 (same asfs). Simulations were carried out keepingA/Dconstant and run with different values off/fsand Re. The uniform flow and oscillating flow both are inxdirection.

    3.2.1 Transversely oscillating circular cylinder in uniform flow

    Lift and drag coefficients (Cl,Cd) for the case of a transversely oscillating cylinder at a Reynolds number equal to 200 in uniform flow are shown in Fig.3. It can be found that the time histories of lift and drag coefficient are periodically changing and the amplitude of oscillation remains constant whenf/fs=0.85, 1.0. But, the amplitudes ofClandCddepict a beating phenomenon whenf/fs=1.15. In Fig.3, the amplitudes ofClandCdincrease with the increase of cylinder oscillating frequency. These are the same as in the conclusion of Wang and Zhou (2005).

    Fig.3 Drag and lift coefficient time histories of transversely oscillating cylinder in uniform flow, Re=200,A/D=0.2.

    3.2.2 Transversely Oscillating Circular Cylinder in a Combination of Uniform Flow and Oscillating Flow

    In Fig.4 and Table 3, the case of transversely oscillat-ing cylinder in a combination of uniform flow and oscillatory flow is shown, for uniform flow Re=200 and for oscillating flow Re=15,KC=0.38; the parameters Re andKCof the oscillating flow are very small. The change of lift coefficient (Cl) is not obvious; it behaves similarly to those shown in Fig.3. The amplitudes of lift also increase with the increase of cylinder oscillating frequency. In Table 3, the drag coefficients (Cd) and inertia force coefficients (Cm) increase with the increase of frequency ratio in lock-in region (f/fs=0.85,f/fs=1.0), but decrease when the frequency ratio increases to 1.15, which is outside the lock-in region.

    In Fig.5, for the case with a cylinder in combined flow (uniform flow Re=200 and oscillating flow Re=100,KC=2.51). The amplitude of lift coefficient (Cl) is larger than for a uniform flow (in Fig.3) and for a combination of uniform flow and oscillatory flow with small Re andKC(Fig.4). Amplitudes of lift have no obvious increase with the increase of cylinder oscillating frequency. These phenomena have not been found for the cases in Figs.3 and 4. Comparing Fig.5 with Figs.3 and 4, the periodicity of the lift coefficient only can be found in one case (Fig.5b). There is no obvious periodicity inf/fs=0.85, 1.15 (Figs.5a, c). From Table 4, it can be seen easily that the value of drag coefficients (Cd) and inertia force coefficients (Cm) are very close in the three frequency ratios. TheCdandCmof the frequency ratio equal to 1.0 are larger than the others. Comparing Table 3 with Table 4, the value ofCdandCmdecrease when the maximum velocity of the oscillating flow (Umax) increases in a combined flow.

    In order to more clearly show the results of the above, a summary is listed in Table 5.

    Fig.4 Lift coefficient time histories of transversely oscillating cylinder in a combination of uniform flow and oscillating flow, A/D=0.2. For uniform flow Re=200; for oscillating flow Re=15, KC=0.38.

    Fig.5 Lift coefficient time histories of transversely oscillating cylinder in a combination of uniform flow and oscillating flow, A/D=0.2. For uniform flow Re=200; for oscillating flow Re=100, KC=2.51.

    Table 3 Cdand Cmof transversely oscillating cylinder in a combination of uniform flow and oscillatory flow, A/D=0.2. For uniform flow Re=200, for oscillating flow Re=15, KC=0.38

    Table 4 Cdand Cmof transversely oscillating cylinder in a combination of uniform flow and oscillatory flow, A/D=0.2. For uniform flow Re=200; for oscillating flow Re=100, KC=2.51

    Table 5 Summary for transversely oscillating cylinder in uniform flow and for a combination of uniform flow and oscillatory flow, A/D=0.2

    Fig.6 Vorticity isolines at uniform flow for Re=200, A/D=0.2, and phase angle φ=3π/2. (a) f/fs=0.85; (b) f/fs=1.0; (c) f/fs=1.15.

    Fig.7 Vorticity isolines in a combination of uniform flow and oscillating flow, phase angle φ=3π/2. (a) Re=200, A/D=0.2, f/fs=1.0; (b) Uniform flow, Re=200, f/fs=1.0. Oscillating flow Re=15, KC=0.38; (c) Uniform flow Re=200, f/fs=1.0. Oscillating flow, Re=100, KC=2.51.

    In Fig.6, vorticity isolines for transversely oscillating cylinder in uniform flow are shown with Re=200,A/D= 0.2, and phase angleφ=3π/2,f/fsvarying from 0.85 to 1.15. We can see that the length of upper vortex near the cylinder decreases whenf/fsvaries from 0.85 to 1.0, butthe upper vortex still plays a dominant role. However, the length of upper vortex is equal to that of lower vortex whenf/fs=1.15, and the lower vortex plays the same dominant role as with the upper vortex. If we increase the ratiof/fsto 1.2, the lower vortex will play a dominant role. So vortex switching occurs. These results also prove the conclusion of Wang and Zhou (2005) and Lu and Dalton (1996).

    Fig.7a is for a transversely oscillating cylinder in uniform flow with Re=200,A/D=0.2 andf/fs=1.0. Fig.7b is for a transversely oscillating cylinder subjected to a combination of uniform and oscillatory flow. For the uniform flow, Reynolds number is Re=200, whereas for the oscillating flow, Re=15,KC=0.38,A/D=0.2 andf/fs=1.0. Fig.7c is also for the case with a transversely oscillating cylinder in a combination of uniform and oscillatory flow. Differences between Fig.7b and Fig.7c is due to the oscillating flow parameters: Re=100,KC=2.51. We can see that the diameter of upper and lower vortices near the cylinder decreases when the amplitude of oscillating flow increases. In numerical simulation, the uniform flow Re is consistently higher than that of the oscillating flow Re.

    In Fig.8, the vortex shedding is 2S mode (Williamson and Roshko, 1988). But the vortex shedding hardly belong to one known mode (2S, 2P, P+S,etc.) in Fig.9. In the simulation, the Reynolds number of the uniform flow is always larger than that of the dynamic oscillating flow.

    Fig.8 Vorticity isolines at uniform flow with Re=200, A/D=0.2 and f/fs=1.0.

    Fig.9 Vorticity isolines in a combination of uniform flow and oscillating flow with A/D=0.2, f/fs=1.0. For uniform flow, Re=200; for oscillating flow Re=100, KC=2.51.

    4 Conclusions

    1) The amplitudes of lift coefficient increase with the increase of cylinder oscillating frequency in uniform flow (Re=200) and combined flow (oscillating flow, Re=15,KC=0.38). But the amplitudes of lift coefficient have no obvious raise with the increase of cylinder oscillating frequency in combined flow (oscillating flow, Re=100,KC=2.51). The amplitudes of lift coefficient increase with the increase of oscillating flow amplitude in combined flow, but there is no definite periodicity. Obvious periodicity of lift coefficient can only be observed forf/fs=1.0 (Fig.5b), but not forf/fs=0.85 and 1.15 (Figs.5a, c).

    2) Drag coefficient and inertia force coefficient increase with the increase of frequency ratio in lock-in region (f/fs=0.85,f/fs=1.0), but decrease when the frequency ratio increase to 1.15, which is out of the lock-in region. Furthermore, the values of drag coefficient and inertia force coefficient decrease when the maximum velocity of the oscillating flow (Umax) increase in combined flow.

    3) The lengths of upper and lower vortices near the cylinder decrease when the amplitude of the oscillating flow increases in combined flow. The vortex shedding also show a special mode. The Reynolds number of the uniform flow is always larger than that of the dynamic oscillating flow in this paper.

    Acknowledgements

    The authors would like to thank Professor Shan Huang and Professor Atilla Incecik at the University of Strathclyde in UK. They offered much help and guidance when the authors studied there. This study was supported financially by the Natural Science Foundation of China (No. 51079136/51179179/51239008).

    Anagnostopoulos, P., and Bearaman, P. W., 1992. Response characteristics of a vortex-excited cylinder at low Reynolds number. Journal of Fluids and Structures, 7: 39-50.

    Braza, M., Chassaing, P., and Haminh, H., 1986. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165: 79-130.

    Carmo, B. S., Sherwin, S. J., Bearman, P. W., and Willden, R. H. J., 2011. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number. Journal of Fluids and Structures, 27 (4): 503-522, DOI: 10.1016/j. jfluidstructs.2011.04.003.

    Dong, J., Zong, Z., Li, Z. R., Sun, L., and Chen, W., 2012. Numerical simulation of flow around a cylinder of two degrees of freedom motion using the discrete vortex method. Journal of Ship Mechanics, 16 (1-2): 9-20.

    Dutsch, H., Durst, F., Becker, S., and Lienhart, H., 1998. Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. Journal of Fluid Mechanics, 360: 249-271.

    Fan, J. J., Tang, Y. G., Zhang, R. Y., and Shao, W. D., 2012. Numerical simulation of viscous flow around circular cylinder at high Reynolds numbers and forced oscillating at large ratio of amplitude. Chinese Journal of Hydrodynamics, 27 (1): 24-32, DOI: 10.3969/j.issn1000-4874.2012.01.004.

    Gu, W., Chyu, C., and Rockwell, D., 1994. Timing of vortex formation from an oscillating. Physics of Fluids, 6: 3677-3682, DOI: 10.1063/1.868424.

    Liang, L. W., and Wan, D. C., 2009a. Numerical analysis of vortex induced motion of a 2D circular cylinder in cross-flow with low Reynold numbers. Sciencepaper Online, 2: 1754-1764.

    Liang, L. W., and Wan, D. C., 2009b. Numerical investigation of a forced oscillating cylinder in a cross flows with low Reynolds number. The Ocean Engineering, 27 (4): 45-53.

    Lu, X. Y., and Dalton, C., 1996. Calculation of the timing of vortex formation from an oscillating cylinder. Journal of Fluids and Structures, 10: 527-541.

    Mendes, P. A., and Branco, F. A., 1999. Analysis of fluid-

    structure interaction by an Arbitrary Lagrangian-Eulerian finite element formulation. International Journal for Numerical Methods in Fluids, 30: 897-919.

    Meneghini, J. R., and Bearman, P. W., 1995. Numerical simulation of high amplitude oscillatory flow about a circular cylinder. Journal of Fluids and Structures, 9: 435-455.

    Raghavan, K., and Bernitsas, M. M., 2011. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering, 38 (5): 719-731, DOI: 10.1016/j.oceaneng.2010.09. 003.

    Singha, S., and Sinhamahapatra, K. P., 2010. Flow past a circular cylinder between parallel walls at low Reynolds numbers. Ocean Engineering, 37 (8): 757-769, DOI: 10.1016/j.oceaneng. 2010.02.012.

    Wan, D. C., and Turek, S., 2007. Fictitious boundary and moving mesh methods for the numerical simulation of rigid particulate flows. Journal of Computational Physics, 222 (1): 28-56, DOI:10.1016/j.jcp.2006.06.002.

    Wang, Z. D., and Zhou, L. H., 2005. Numerical simulation of circular cylinder oscillating transversely in a uniform stream. Journal of Hydrodynamics, 20: 146-151.

    Williamson, C. H. K., and Roshko, A., 1988. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2: 355-381.

    Zhao, L., and Chen, B., 2006. Two-dimensional FEM model of vortex-induced vibration of a circular cylinder. Ocean Technology, 25: 117-121.

    Zhao, M., Cheng, L., and An, H. W., 2010. Three-dimensional numerical simulation of flow around a circular cylinder under combined steady and oscillatory flow. Journal of Hydrodynamics, 22 (5): 144-149, DOI: 10.1016/S1001-6058(09)60184-0.

    (Edited by Xie Jun)

    (Received December 31, 2012; revised February 1, 2013; accepted April 15, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-66781850

    E-mail: wphuang@ouc.edu.cn

    99热国产这里只有精品6| 国产高清videossex| 桃色一区二区三区在线观看| 99riav亚洲国产免费| videosex国产| 十八禁网站免费在线| 一区二区日韩欧美中文字幕| 成人三级黄色视频| 久久欧美精品欧美久久欧美| 成人av一区二区三区在线看| 国产精品亚洲一级av第二区| av免费在线观看网站| 无限看片的www在线观看| 中文字幕高清在线视频| 一级毛片精品| 国产激情欧美一区二区| 久久国产精品人妻蜜桃| 国产成人啪精品午夜网站| e午夜精品久久久久久久| 人人妻人人澡人人看| 亚洲一卡2卡3卡4卡5卡精品中文| 久久精品亚洲av国产电影网| 免费搜索国产男女视频| 国产成人精品在线电影| 亚洲av美国av| 欧美黄色片欧美黄色片| 免费av毛片视频| 亚洲成av片中文字幕在线观看| 久久中文看片网| 男女做爰动态图高潮gif福利片 | 欧美另类亚洲清纯唯美| 久久久久久亚洲精品国产蜜桃av| 午夜老司机福利片| 日韩有码中文字幕| 国产国语露脸激情在线看| 久9热在线精品视频| 欧美成狂野欧美在线观看| 免费看a级黄色片| 黄色成人免费大全| 欧美激情久久久久久爽电影 | 午夜91福利影院| 日日摸夜夜添夜夜添小说| xxxhd国产人妻xxx| 日日夜夜操网爽| 99国产精品99久久久久| 亚洲av片天天在线观看| 国产成人精品久久二区二区免费| 日日摸夜夜添夜夜添小说| 99国产精品99久久久久| 真人做人爱边吃奶动态| 久久久久久久久免费视频了| 久久人人爽av亚洲精品天堂| 啦啦啦在线免费观看视频4| 看免费av毛片| 日日摸夜夜添夜夜添小说| 丁香六月欧美| 久久久久久久久中文| 好看av亚洲va欧美ⅴa在| 久久精品国产综合久久久| 亚洲自偷自拍图片 自拍| 日韩国内少妇激情av| 两性午夜刺激爽爽歪歪视频在线观看 | 女人高潮潮喷娇喘18禁视频| 欧美日韩黄片免| 老汉色∧v一级毛片| 精品电影一区二区在线| 亚洲精品国产区一区二| 每晚都被弄得嗷嗷叫到高潮| 999精品在线视频| 色哟哟哟哟哟哟| 老司机靠b影院| 不卡一级毛片| 大型黄色视频在线免费观看| 国产男靠女视频免费网站| 好男人电影高清在线观看| 国产高清视频在线播放一区| 神马国产精品三级电影在线观看 | 亚洲av成人不卡在线观看播放网| 91成人精品电影| 大型黄色视频在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲 国产 在线| 久久国产乱子伦精品免费另类| 在线视频色国产色| 欧美日本亚洲视频在线播放| 日韩精品免费视频一区二区三区| 国产免费av片在线观看野外av| 亚洲成av片中文字幕在线观看| 久久久久久久午夜电影 | 制服人妻中文乱码| 日日夜夜操网爽| 无限看片的www在线观看| 亚洲专区字幕在线| 亚洲欧美精品综合一区二区三区| 999精品在线视频| 亚洲精品在线观看二区| 国产三级在线视频| 午夜a级毛片| 中文字幕人妻丝袜一区二区| 一区二区日韩欧美中文字幕| 日韩欧美一区二区三区在线观看| 他把我摸到了高潮在线观看| 午夜福利,免费看| 欧美日本中文国产一区发布| 久久中文看片网| 99在线人妻在线中文字幕| av有码第一页| 黄色视频,在线免费观看| 天堂中文最新版在线下载| 老鸭窝网址在线观看| 久久性视频一级片| 午夜老司机福利片| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品久久午夜乱码| 国产成+人综合+亚洲专区| 成年版毛片免费区| 国产亚洲av高清不卡| 成人国产一区最新在线观看| 精品久久久久久,| 少妇被粗大的猛进出69影院| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区黑人| 麻豆av在线久日| 麻豆国产av国片精品| www国产在线视频色| 精品一区二区三区av网在线观看| 国产伦一二天堂av在线观看| 国产视频一区二区在线看| 天天躁夜夜躁狠狠躁躁| 丁香欧美五月| 中文字幕人妻丝袜一区二区| 大陆偷拍与自拍| 在线观看免费日韩欧美大片| 热99re8久久精品国产| 麻豆一二三区av精品| 久久久久精品国产欧美久久久| 在线观看免费高清a一片| 欧美不卡视频在线免费观看 | 999久久久国产精品视频| 国产又爽黄色视频| www.999成人在线观看| 一夜夜www| 久久性视频一级片| 在线av久久热| 人人澡人人妻人| 成年版毛片免费区| 午夜视频精品福利| 久久精品aⅴ一区二区三区四区| videosex国产| 最近最新免费中文字幕在线| 午夜老司机福利片| 国产精品一区二区在线不卡| 又黄又粗又硬又大视频| 中文亚洲av片在线观看爽| 真人做人爱边吃奶动态| 男女床上黄色一级片免费看| a级片在线免费高清观看视频| 欧美激情极品国产一区二区三区| 国产人伦9x9x在线观看| 美女扒开内裤让男人捅视频| 啦啦啦在线免费观看视频4| 女性被躁到高潮视频| 悠悠久久av| 一区福利在线观看| 日韩三级视频一区二区三区| 男女下面插进去视频免费观看| 欧美乱妇无乱码| 成年女人毛片免费观看观看9| 精品一区二区三区av网在线观看| 国产精品乱码一区二三区的特点 | 麻豆久久精品国产亚洲av | 狂野欧美激情性xxxx| 午夜免费鲁丝| 手机成人av网站| 99国产极品粉嫩在线观看| 日韩精品免费视频一区二区三区| 成人亚洲精品一区在线观看| 18禁裸乳无遮挡免费网站照片 | 又黄又粗又硬又大视频| 国产精品亚洲一级av第二区| 色在线成人网| 亚洲熟妇中文字幕五十中出 | 男男h啪啪无遮挡| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av香蕉五月| 免费高清视频大片| 久久久久久久午夜电影 | 热99国产精品久久久久久7| 天堂俺去俺来也www色官网| 亚洲全国av大片| 1024香蕉在线观看| 叶爱在线成人免费视频播放| 久久精品亚洲av国产电影网| 性欧美人与动物交配| 91精品国产国语对白视频| 少妇 在线观看| 精品国产一区二区三区四区第35| 啦啦啦 在线观看视频| 高清毛片免费观看视频网站 | 国产1区2区3区精品| 水蜜桃什么品种好| 久久国产乱子伦精品免费另类| 天堂√8在线中文| 交换朋友夫妻互换小说| 在线av久久热| 看片在线看免费视频| 亚洲熟女毛片儿| 国产又爽黄色视频| 久久香蕉国产精品| 久久性视频一级片| 精品久久蜜臀av无| netflix在线观看网站| 每晚都被弄得嗷嗷叫到高潮| 国产精品国产av在线观看| 久久久精品欧美日韩精品| 午夜精品久久久久久毛片777| 午夜久久久在线观看| 丝袜美足系列| 国产无遮挡羞羞视频在线观看| 亚洲片人在线观看| videosex国产| 欧美成狂野欧美在线观看| av天堂久久9| netflix在线观看网站| 三上悠亚av全集在线观看| a级片在线免费高清观看视频| cao死你这个sao货| 两人在一起打扑克的视频| 看免费av毛片| 日本黄色视频三级网站网址| 两个人免费观看高清视频| 久久人妻熟女aⅴ| 精品国产一区二区久久| 我的亚洲天堂| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 99国产综合亚洲精品| 99热国产这里只有精品6| 久久午夜综合久久蜜桃| a级毛片黄视频| 亚洲九九香蕉| 又大又爽又粗| av网站在线播放免费| 亚洲一区二区三区不卡视频| 91字幕亚洲| 岛国视频午夜一区免费看| 久久久久久久精品吃奶| 欧美一级毛片孕妇| 看片在线看免费视频| 动漫黄色视频在线观看| 一a级毛片在线观看| 亚洲性夜色夜夜综合| 精品熟女少妇八av免费久了| 久久国产精品人妻蜜桃| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成人免费av在线播放| 久久中文字幕人妻熟女| 在线观看免费午夜福利视频| 天堂影院成人在线观看| 久久精品亚洲熟妇少妇任你| 亚洲精品在线观看二区| 99热只有精品国产| 亚洲人成电影观看| www.精华液| 777久久人妻少妇嫩草av网站| 亚洲成人精品中文字幕电影 | 久久中文字幕人妻熟女| 一区在线观看完整版| 欧美久久黑人一区二区| 国产精品免费视频内射| 国产高清激情床上av| 狠狠狠狠99中文字幕| 十分钟在线观看高清视频www| 国产亚洲精品综合一区在线观看 | 精品国产超薄肉色丝袜足j| 亚洲成人精品中文字幕电影 | 色精品久久人妻99蜜桃| 最新在线观看一区二区三区| 午夜日韩欧美国产| 韩国精品一区二区三区| 亚洲精品美女久久av网站| 久久久久国内视频| 最新美女视频免费是黄的| 久久香蕉精品热| 亚洲av美国av| 高清毛片免费观看视频网站 | 久久精品亚洲精品国产色婷小说| 国产一区在线观看成人免费| 久久亚洲真实| 丰满人妻熟妇乱又伦精品不卡| 不卡av一区二区三区| 91成人精品电影| 久久99一区二区三区| 正在播放国产对白刺激| 在线观看www视频免费| 国产欧美日韩精品亚洲av| 热99re8久久精品国产| 色综合婷婷激情| 成人av一区二区三区在线看| 日韩三级视频一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品国内亚洲2022精品成人| 自线自在国产av| 91精品三级在线观看| 欧美乱妇无乱码| 两个人看的免费小视频| 丝袜在线中文字幕| 在线天堂中文资源库| 国产精品美女特级片免费视频播放器 | 国产亚洲精品久久久久久毛片| 久久亚洲精品不卡| 国产精品久久视频播放| 国产片内射在线| 中文亚洲av片在线观看爽| 亚洲激情在线av| 男人操女人黄网站| 法律面前人人平等表现在哪些方面| 黄色毛片三级朝国网站| 不卡一级毛片| 国产精品影院久久| 亚洲aⅴ乱码一区二区在线播放 | 成人影院久久| 丰满饥渴人妻一区二区三| 男女床上黄色一级片免费看| 真人一进一出gif抽搐免费| 亚洲欧美日韩高清在线视频| 日本免费一区二区三区高清不卡 | 欧美日韩亚洲综合一区二区三区_| 亚洲第一欧美日韩一区二区三区| 久久精品亚洲熟妇少妇任你| 精品国产一区二区三区四区第35| av超薄肉色丝袜交足视频| 黄色丝袜av网址大全| 亚洲中文字幕日韩| 19禁男女啪啪无遮挡网站| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 亚洲片人在线观看| 亚洲人成电影观看| 日韩大尺度精品在线看网址 | 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 真人一进一出gif抽搐免费| 日韩大尺度精品在线看网址 | 激情视频va一区二区三区| 黄片小视频在线播放| 欧美人与性动交α欧美精品济南到| 国产1区2区3区精品| 成人国产一区最新在线观看| 久久中文字幕人妻熟女| 老司机午夜十八禁免费视频| 亚洲av成人一区二区三| 午夜a级毛片| 黄片大片在线免费观看| av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 一级,二级,三级黄色视频| 长腿黑丝高跟| 欧美日韩一级在线毛片| 久久国产亚洲av麻豆专区| 亚洲成人免费av在线播放| 亚洲七黄色美女视频| www.熟女人妻精品国产| 亚洲精品国产区一区二| 美女高潮到喷水免费观看| 欧美一级毛片孕妇| 精品少妇一区二区三区视频日本电影| 久久精品国产清高在天天线| 国产精品 国内视频| 亚洲精品久久午夜乱码| 免费看a级黄色片| 日韩人妻精品一区2区三区| 制服人妻中文乱码| 久久人人97超碰香蕉20202| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 黄色 视频免费看| 女性生殖器流出的白浆| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 亚洲美女黄片视频| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 国产精品亚洲一级av第二区| 黄色视频不卡| 亚洲欧美激情综合另类| 亚洲自偷自拍图片 自拍| 免费av毛片视频| 午夜精品在线福利| 在线观看免费高清a一片| 天天影视国产精品| 一级片免费观看大全| 亚洲欧美日韩高清在线视频| 最好的美女福利视频网| av超薄肉色丝袜交足视频| 亚洲精品av麻豆狂野| 在线视频色国产色| 久久天躁狠狠躁夜夜2o2o| 久久 成人 亚洲| 在线观看一区二区三区| 久久久久九九精品影院| 亚洲国产欧美网| 丰满的人妻完整版| 一进一出抽搐动态| 国产熟女xx| a级片在线免费高清观看视频| 日本vs欧美在线观看视频| 黑人操中国人逼视频| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| 91老司机精品| 亚洲欧美日韩无卡精品| 国产色视频综合| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 亚洲免费av在线视频| 精品少妇一区二区三区视频日本电影| 天天添夜夜摸| 成人影院久久| 99国产极品粉嫩在线观看| a级毛片在线看网站| 亚洲精品av麻豆狂野| 成人三级黄色视频| 欧美人与性动交α欧美精品济南到| 午夜福利影视在线免费观看| 久热这里只有精品99| 人人妻人人澡人人看| 亚洲午夜精品一区,二区,三区| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产欧美日韩在线播放| 亚洲七黄色美女视频| 精品国内亚洲2022精品成人| 国产高清激情床上av| 老司机午夜十八禁免费视频| 亚洲精品国产区一区二| 久久人妻福利社区极品人妻图片| 亚洲精品国产色婷婷电影| av天堂在线播放| 嫁个100分男人电影在线观看| 日韩国内少妇激情av| 国产免费现黄频在线看| 国产人伦9x9x在线观看| 欧美乱妇无乱码| 丁香六月欧美| avwww免费| 亚洲欧美激情综合另类| 少妇 在线观看| 69av精品久久久久久| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 久久久久久亚洲精品国产蜜桃av| 亚洲精品中文字幕在线视频| 久久亚洲真实| av电影中文网址| 亚洲成av片中文字幕在线观看| 成年女人毛片免费观看观看9| 麻豆久久精品国产亚洲av | 看黄色毛片网站| 久久精品国产亚洲av香蕉五月| 国产极品粉嫩免费观看在线| 成年版毛片免费区| 国内毛片毛片毛片毛片毛片| 久久青草综合色| 精品国产一区二区三区四区第35| 很黄的视频免费| 超碰97精品在线观看| 亚洲精华国产精华精| 老司机深夜福利视频在线观看| 久久香蕉国产精品| 日本三级黄在线观看| 久久狼人影院| 最新在线观看一区二区三区| 一进一出抽搐gif免费好疼 | 老司机深夜福利视频在线观看| 国产一区二区在线av高清观看| 国产在线精品亚洲第一网站| 精品一品国产午夜福利视频| 欧美丝袜亚洲另类 | 亚洲九九香蕉| 两个人看的免费小视频| 午夜a级毛片| 人妻久久中文字幕网| 午夜免费成人在线视频| 国产精品美女特级片免费视频播放器 | 日本免费a在线| av国产精品久久久久影院| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 悠悠久久av| 国产成人影院久久av| 精品福利观看| 最近最新中文字幕大全免费视频| 欧美在线黄色| 黄色片一级片一级黄色片| 精品一区二区三区视频在线观看免费 | 亚洲成av片中文字幕在线观看| 精品日产1卡2卡| 久久久久久人人人人人| 色精品久久人妻99蜜桃| 精品久久久精品久久久| 国产免费现黄频在线看| 亚洲欧美日韩高清在线视频| 精品乱码久久久久久99久播| 欧美中文综合在线视频| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 亚洲国产精品合色在线| 日韩三级视频一区二区三区| 精品久久久久久久久久免费视频 | 天堂中文最新版在线下载| 一级毛片高清免费大全| 国产精品一区二区三区四区久久 | 身体一侧抽搐| 亚洲人成电影观看| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 色婷婷久久久亚洲欧美| 中文字幕人妻丝袜制服| 亚洲午夜理论影院| 国产一区二区激情短视频| 黄色a级毛片大全视频| 国产欧美日韩一区二区三| 国产激情久久老熟女| 国产在线观看jvid| aaaaa片日本免费| 黑人巨大精品欧美一区二区蜜桃| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 久久久久久久久久久久大奶| 岛国在线观看网站| 日日干狠狠操夜夜爽| 午夜福利影视在线免费观看| 亚洲狠狠婷婷综合久久图片| 中文字幕高清在线视频| 亚洲中文av在线| 亚洲色图综合在线观看| 老汉色av国产亚洲站长工具| 国产日韩一区二区三区精品不卡| 一进一出好大好爽视频| 在线播放国产精品三级| 久热这里只有精品99| 国产激情久久老熟女| avwww免费| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲| 精品欧美一区二区三区在线| 国产又爽黄色视频| 老司机福利观看| 一a级毛片在线观看| 老司机福利观看| 一a级毛片在线观看| 免费久久久久久久精品成人欧美视频| 搡老岳熟女国产| 婷婷丁香在线五月| 国产不卡一卡二| 日韩欧美在线二视频| 久久狼人影院| 熟女少妇亚洲综合色aaa.| 99re在线观看精品视频| 亚洲精品国产一区二区精华液| 日本 av在线| 国产精品久久电影中文字幕| av在线播放免费不卡| 一级片'在线观看视频| 一a级毛片在线观看| 色尼玛亚洲综合影院| 亚洲精品一二三| 国产在线精品亚洲第一网站| a级片在线免费高清观看视频| 9色porny在线观看| 中文字幕人妻丝袜一区二区| 午夜免费鲁丝| 成年人免费黄色播放视频| 看片在线看免费视频| 90打野战视频偷拍视频| av电影中文网址| 性色av乱码一区二区三区2| 欧美不卡视频在线免费观看 | 精品国产一区二区久久| 国产精品影院久久| 欧美中文日本在线观看视频| 一a级毛片在线观看| 日本三级黄在线观看| 亚洲,欧美精品.| 丁香六月欧美| 午夜福利一区二区在线看| 国产人伦9x9x在线观看| 亚洲,欧美精品.| 日日摸夜夜添夜夜添小说| 亚洲狠狠婷婷综合久久图片| 亚洲自偷自拍图片 自拍| 电影成人av| 亚洲三区欧美一区| 69精品国产乱码久久久| 日韩欧美国产一区二区入口| 国产精品亚洲av一区麻豆| 一级a爱片免费观看的视频| 国产成人啪精品午夜网站| 国产精品免费一区二区三区在线| 国产成人av激情在线播放| 国产免费现黄频在线看| 精品久久久精品久久久| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 一边摸一边抽搐一进一小说| 色哟哟哟哟哟哟| 亚洲欧美激情综合另类| 日韩 欧美 亚洲 中文字幕| 亚洲欧洲精品一区二区精品久久久| 深夜精品福利| 成人精品一区二区免费| 男女之事视频高清在线观看| 国产精品免费视频内射| 欧美人与性动交α欧美精品济南到|