• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mean Sea Level Changes near Weizhou Island from 1969 to 2010

    2014-05-06 06:56:49ZHENGZhaoyongLIGuangxueTANGChaolianandZHOUXiong
    Journal of Ocean University of China 2014年3期

    ZHENG Zhaoyong, LI Guangxue, TANG Chaolian, and ZHOU Xiong

    1) College of Marine Geosciences, Ocean University of China, Qingdao 266100, P. R. China

    2) South China Sea Branch, State Oceanic Administration (SOA), Guangzhou 510300, P. R. China

    Mean Sea Level Changes near Weizhou Island from 1969 to 2010

    ZHENG Zhaoyong1),2), LI Guangxue1),*, TANG Chaolian2), and ZHOU Xiong2)

    1) College of Marine Geosciences, Ocean University of China, Qingdao 266100, P. R. China

    2) South China Sea Branch, State Oceanic Administration (SOA), Guangzhou 510300, P. R. China

    Tidal data from Weizhou, Zhapo, and Shanwei stations between 1969 and 2010 and from five gauging stations in the western Pacific Ocean provided by PSMSL, and the global mean sea level data recorded between December 1992 and December 2010 by TOPEX and Jason satellites were compiled and analyzed. The results show that the perennial mean sea level near Weizhou Island is 211.7 cm (relative to the water gauge zero), and the relative mean sea level rising rate is 2.2 mm yr-1from 1969 to 2010, which is consistent with the relative mean sea level rising rate recorded at other gauging stations in the western Pacific regions and with the global mean sea level rising rate. The absolute mean sea level rising rate at Weizhou Island is 3.0 mm yr-1from 1993 to 2010, also conforming with the global mean sea level rising rate (3.1±0.4 mm yr-1) during the same time period. The highest annual tide level at Weizhou Island has a rising rate of 4.6 mm yr-1and shows a 20-year quasi-periodic variation from 1966 to 2010. The primary cause of the mean sea level rising is global warming.

    climatology; mean sea level change; global climate change; Weizhou Island

    1 Introduction

    As the world economy grows at a high speed, global warming associated with the increased emission of greenhouse gases around the world results in melting of the polar ice sheets, thermal expansion of sea water, melting of mountain glaciers, and rising of the mean sea level (Weisset al., 2011; Alleyet al., 2005; Rignotet al., 2011; Zuoet al., 2009), which will have a significant impact on economy and environment in coastal areas. Numerous studies show that global mean sea level rising rate was about 1.5±0.5 mm yr-1in the 20th century (Nicholls and Cazenave, 2010; Douglas, 1997; IPCC, 2007) and has been accelerated in recent years. According to Church and White (2011), the sea level rising rates are 1.7±0.2, 1.9±0.4, and 3.2±0.4 mm yr-1from 1900 to 2009, 1961 to 2009, and 1993 to 2009, respectively. The present global mean sea level rising rate is 2.8±1.4 mm yr-1, the highest ever reported by IPCC AR4 (Church and White, 2011; Cazenave and Nerem, 2004; Zhang, 2006; Leulietteet al., 2004; Cabaneset al., 2001).

    Weizhou Island is located in the northeast Beibu Gulf, the South China Sea, and covers an area of 24.74 km2. Built in 1955, the tide gauge station of Weizhou Island has more than 40 years of continuous tidal records. Since 2000, the tidal flood warning level of Weizhou station has been rising remarkably, which has a significant impact on the island economy. Formed in 6.9–1.2 ka BP and distributed over the Leizhou Peninsula, the west coast of Hainan Island, and the Che Islands, Vietnam, the ancient sand bars (Qiet al., 2003) along the Weizhou Island shore are ideal to be used to study Holocene climate and sea level change (Korotkyet al., 1995). Although the sand bars are located in different tectonic units and the ancient coastal elevation was only an estimate, it is believed that it is caused mainly by absolute sea-level changes. Based on 6.55–1.17 ka BP ancient coral reefs of Dengloujiao, Niuet al.(1997) concluded that the ancient sea level was 3–4 m higher than the present-day sea level. Yuet al.(2002) showed that at least four periods of high sea level had occurred in the surrounding of the Leizhou Peninsula since 7.2 ka BP. In Huangliu, Hainan Province (Sunet al., 2009), three levels of continuous Holocene marine-cut terraces, terrace sandbars and reminents of sea erosion hills are present in the coastal area, suggesting the occurrence of at least three high sea level periods. The Holocene high sea level was related to tectonic activities and climate change. The distances from the Weizhou Island to Dengloujiao and Dongfang are about 103 km and 223 km, respectively. These three places are located in three different tectonic zones. The glacial isostatic adjustment (GIA) values for these three locations ((-0.24±0.03)–(-0.23±0.03) mm yr-1) are similar to the modern sea level rising rates (Zhanet al., 2009). It is believed that the Holocene high sea level of this area is mainly caused by global warming. In early August 2010, the environmental changes were examined by us and the tidal data are analyzed in the present study, with the intention to provideaccurate data for the in-depth study of the Holocene climate and sea level changes of the Weizhou Island.

    2 Data

    The tidal data for this study were extracted from the‘monthly tidal gauging reports’ for the Weizhou (WZU), Zhapo (ZPO) and Shanwei (SWI) gauge stations. The tide level is relative to the water gauge zero. The Weizhou Island gauge is located at the tip of the Nanwan harbor terminal (Fig.1). The tidal gauging data were missing from July to October 1974. To fill up the data gap, the regression equation (Y=8.5538+0.7969X(cm);n=40,R= 0.87) was built by using the annual average tide levels of the Weizhou Island Station (Y) and the nearby Beihai Station (X) from 1969 to 2009. GIA data were obtained from Wanget al.(2010) and Global Mean Sea Level Time Series (GMSL) data, recorded by T/P and Jason satellites, from the University of Colorado (CU) public achievement (http://sealevel.colorado.edu, 2011-rel1 version). GMSL rising rate was calculated using the linear regression with a 60-day moving average, barometric corrections, and GIA adjustment. Tidal data in the western Pacific area (0°–30°N, 100°–180°E) came from PSMSL (http://www.psmsl. org/). Global temperature anomaly statistics were obtained from the web site of the US National Oceanic and Atmospheric Administration (http://www.cdc.noaa.gov), which covers the time period from 1880 to 2010 (the average from 1961 to 1990 is about 0.1℃ higher than the average from 1901 to 2000). Typhoon data were obtained from the ‘Typhoon Yearbooks’ and the ‘Tropical Cyclone Yearbooks’, published by the National Meteorological Center of CMA from 1969 to 2004 and 2005 to 2009, respectively. The tides around the Weizhou Island are diurnal. The Pacific tidal waves transmitted into the South China Sea enter the study area through the mouth of the Beibu Gulf (Zhang, 2009).

    Fig.1 Tide gauge stations. 1, WZU; 2, ZPO; 3, SWI; 4, NAHA; 5, WAKE; 6, KWAJALEIN; 7, MALAKAL; 8, MAJURO.

    3 Trends of Annual Mean Sea Level Change

    This article mainly analyzes the relative sea level (RSL) change recorded at tidal gauging stations. Based on the Global Sea Level Observing System (GLOSS), the mean sea level from 1975 to 1993 is considered as the perennial mean sea level (hereinafter referred to as perennial) (State Oceanic Administration People’s Republic of China, 2011). The perennial mean sea level at Weizhou is 211.7 cm and the mean sea level in 2000 is 217.0 cm, relative to the water gauge zero. The monthly and yearly perennial mean sea levels are listed in Table 1.

    Table 1 The monthly and yearly perennial sea level at Weizhou Island Gauging Station (unit: mm)

    The 1992–2010 global mean sea level data by TOPEX and Jason satellites show the fastest mean sea level rise in the western tropical Pacific region. However, out of 13 tide gauges in the region (0°–30°N, 120°–180°E), most of them do not have complete records of sea level data and only 5 tide gauges with relatively longer data records are selected for the contrast analysis below. Fig.2 shows the annual mean sea level trends at Weizhou, Zhapo, Shanwei and several other tidal gauging stations in the western Pacific from 1969 to 2010. Except for Station MALAKAL, data from all the other stations show that the annual mean sea levels after 1994 are higher than the perennial value. In the past 42 years mean sea level rising rate recorded at Weizhou station is 2.2 mm yr-1(R=0.75) and the primary sea level rise occurs after the 1990’s. This sea level rising trend is consistent with that recorded at other gauging stations in the region between 0°–30°N and 100°–180°E and with the mean sea level rising rate reported by Beckeret al.(2012).

    Fig.3 shows the trend in monthly mean sea level changes at the Weizhou Island Station (relative to the annual mean sea level in 1993) and the global mean sea level change anomaly (ΔMSL) with a 60-day moving average, barometric correction, and GIA adjustment from December 1992 to December 2010. Note that the mean sea level changes display clear signals of annual, semiannual and monthly variations (Zhanet al., 2003; Shiet al., 2008; Yuet al., 2009; Shenet al., 2010; Wonget al., 2003), and are closely correlated with ENSO events (Yuanet al., 2009; Ronget al., 2008, 2009). Dinget al.(2001) indicated that during an El Nino event, the tropical Pacific trade winds blew from west to east and drove ocean water eastward, causing a relatively high sea level in the eastern tropical Pacific and a relatively low sealevel in the western tropical Pacific and South China Sea. During a La Ni?a event, however, an opposite situation occurred. Typically, an ENSO event occurs every 2 to 3 years. In order to properly compare the present calculations with previous results, moving average of 13, 18, 26 months are applied to the monthly average series in Fig.3. As shown in Table 2, the relative sea level rising rate at the Weizhou Island Station is 2.8 mm yr-1(n=18,R=0.59) from 1993 to 2010. The rate increases to 3.0 mm yr-1after the GIA adjustment is applied, which is close to the global mean sea level rising rate (3.1±0.4 mm yr-1) obtained from satellite measurements in the same time period. It should be pointed out that using data from different satellites and different data processing methods can yield a variation of 0.1–0.2 mm yr-1in the calculations of global mean sea level rising rate based on the satellite measurements in the past 18 years. For example, a rate of 3.1 ±0.4 mm yr-1was given by CU, of 3.2±0.4 mm yr-1by U.S. National Oceanic and Atmospheric Administration (NOAA), of 3.25±0.6 mm yr-1by the Archiving, Validation and Interpretation of Satellite Oceanographic (AVISO), and of 3.2±0.4 mm yr-1by Commonwealth Scientific and Industrial Research Organization (CSIRO) (data above were from http://sealevel.colorado.edu) (Tabel 3).

    Fig.2 Trends of the mean sea level recorded at various tidal gauging stations from 1969 to 2010 (b is the rising rate (mm yr-1) and R is the correlation coefficient).

    Fig.3 The comparisons of (a) sea level at the Weizhou Island station; (b) the global mean sea level (applications of the 60-day moving average, barometric correction and GIA adjustment) from December 1992 to December 2010.

    Table 2 The RSL rising rate (b) and the MSL rising rate (b’) after the GIA adjustment at Weizhou from December 1992 to December 2010 (unit: mm yr-1)

    Table 3 Global Mean Sea Level (GMSL) rates

    Using the global mean sea level changes from 1880 to 2006 (IPCC, 2007) and the ΔMSL data (Fig.4), the average global mean sea level rising rate from 1969 to 2010 is calculated to be 2.3 mm yr-1, close to the RSL rising rate at Weizhou Island (Fig.2), which shows that the sea level changes in Weizhou Island have a good response to the global sea level changes.

    Fig.4 Change of the global sea level (IPCC AR4).

    4 Changes of Annual Highest Tide Levels

    Fig.5 shows the annual highest tide levels at the Weizhou Island Station from 1966 to 2010. The data clearly display an up to 0.6 m variation range and an ascending trend with a rate of 4.6 mm yr-1(n=45,R=0.38, confidence level=0.01) during this period. In the figure a 20-year quasi-period of tide level changes can also be identified. Typhoon No.8609 landed in Hepu of the Guangxi Zhuang Autonomous Region at 22:00 on July 20, 1986. Moving toward the NW, it brought SW wind and SW waves to the Beibu Gulf. The comcidence between the astronomical tide and the storm conditions resulted in great water accumulation in the Nanwan harbor and the Weizhou Island Station recorded the extremely high tide level of 5.12 m at 16:57 on July 21, 1986 (Fig.5).

    Fig.5 Annual highest tide level at Weizhou from 1969 to 2010 (b is the rising rate (mm yr-1) and R is the correlation coefficient).

    5 The Influence and Future Trends of Seal Level Rise

    According to the investigations in the past 10 years, the direct impact of the mean sea level rise at Weizhou Island is evaluated by the number of days that sea level exceeds the flood warning level in the coastal area. Fig.5 shows that from 1986 to 1992 the number is 16 d or about 2.3 d per year on average, whereas it increases to 41 d or about 5.1 d per year from 2003 to 2010. In 2008, the number of days that sea level exceeds the flood warning level is 10 d, a maximum since 1986.

    There is a 2 km long recreational beach with a 10° slope in the middle of the Weizhou Island’s west coast, along which is the well-grown shelter-forest. With the rapid economic development in the last 20 years, huge amount of sand was mined on Weizhou Island (Fig.6). The waves with a height of ≥3.8 m appeared 13 times from June to October in nearly 10 years. On July 17, 2010, Typhoon‘Conson’ moved into the Beibu Gulf with the low atmospheric pressure of 970 hPa and the maximum wind speed of 33 m s-1at the center. The maximum wave height of 5.2 m was recorded at Weizhou Island and the beach was submerged. Storm surges and coastal waves aggravated coastal erosion, which is clearly displayed in Fig.6.

    In the fourth assessment report of the intergovernmental panel on climate change (IPCC, 2007) global warming was considered the main reason for global sea level rise. The report also shows that global average temperature has risen by 0.74±0.18℃ from 1906 to 2005. Following this trend the global temperature at the end of the 21st century would be 1.4–3.8℃ higher than that in the period 1980–1999, and the global mean sea level could rise by 20–43 cm under the condition of low to middle CO2emissions (B2). Miller and Douglas (2004) indicated that the increase of sea water volume due to global warming results in the global mean sea level rise. The close relationship between global temperature and global mean sea level was also demonstrated by the high correlation coefficient of 0.801 between global temperature and GMSL based on the data from 1993 to 2010 (Market al., 2007; Zheng, 1996; Rahmstorf, 2007a, b).

    Mean sea level change near Weizhou Island is closely related to the global temperature change. Using the data from 1969 to 2010 a quadratic regression line between annual average tide level at Weizhou Island (RSL, cm) and global temperature anomaly (Δt, ℃) was obtained:

    The correlation coefficient of the regression line is 0.67 and the confidence level is 0.01. The standard deviation (SD) between the reported and measured values is ±3.587, suggesting that the mean sea level rising recorded at the Weizhou Island Station is mainly affected by global warming.

    Wang and Wu (2011) analyzed the global temperature fluctuations due to human activities and natural factors, and projected the trend of future temperature change, based on the NOAA global temperature and global carbon emission data from 1880 to 2009. Their study concluded that 2005 is the warmest year in the past 120 years and that by the end of the 21st century, the annual mean global temperature would be 1.4℃ higher than that between 1961 and 1990, and 2.0℃ higher than pre-industrial temperature (Fig.7). Using Eq. (1) and 1.5 SD as the upper and lower limitations, the mean sea level at Weizhou Island at the end of the 21st century would be 38–48 cm higher than the perennial mean sea level. The calculated results are 5 cm lower than the projected low limit by eight synthesis models (Schaefferet al., 2012) and fairly close to the median value of global mean sea level rise (40–43 cm) projected by Church and White (2011) at the end of the 21st century.

    Fig.6 Coastal erosion in the southwest of Weizhou Island (photos a and b: courtesy of Weizhou Island gauging station taken on February 25, 2011; photos c and d: courtesy of Zheng Zhaoyong taken on November 13, 2012).

    Fig.7 Prediction of global temperature anomalies (GTA) relative to that before industrialisation.

    6 Conclusions

    Based on the tide data at 8 tide gauges in the northern South China and the western Pacific Ocean between 1969 and 2010, and the global mean sea level data recorded by TOPEX and Jason satellites between 1992 and 2010, the sea level change characteristics in Weizhou Island have been analyzed. The results show that the average relative sea level rising rate is 2.2 mm yr-1during the past 42 years, and is mainly related to global warming. The absolute sea level rising rate is 3.0 mm yr-1in the past 18 years, close to the global sea level rising rate of 3.1±0.4 mm yr-1observed by satellites during the same time period. Sea level changes in Weizhou Island have a good correspondence to the global sea level changes. Human activities and storms have induced coastal erosion along the west coast of Weizhou Island, which will be aggravated due to future sea level rise.

    Acknowledgements

    This study was supported by the Youth Ocean Science Foundation of SOA, China (2010208) and the Nationa1 Natural Science Foundation of China (41030856).

    Alley, R., Clark, P., Huybrechts, P., and Joughin, I., 2005. Ice sheet and sea level changes. Science, 310: 456-460, DOI: 10.1126/science.1114613.

    Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and Delcroix, T., 2012. Sea level variations at tropical Pacific islands since 1950. Global and Planetary Change, 80-81: 85-98, DOI: 10.1016/j.gloplacha.2011.09.004.

    Cabanes, C., Cazenave, A., and Leprovost, C., 2001. Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294: 840-842, DOI: 10.1126/science. 1063556.

    Cazenave, A., and Nerem, R. S., 2004. Present-day sea level change: Observations and causes. Reviews of Geophysics, 42, RG3001, DOI: 10.1029/2003RG000139.

    Church, J. A., and White, N. J., 2011. Sea-level rise from the late 19th to the early 21st century. Surveys in Geophysics, 32 (4/5): 585-602, DOI: 10.1007/s10712-011-9119-1.

    Church, J. A., Gregory, J. M., and White, N. J., 2011. Understanding and projecting sea level change. Oceanography, 24 (2): 130-143, DOI: 10.5670/oceanog.2011.33.

    Ding, X. L., Zheng, D. W., Chen, Y. Q., Chao, J., and Li, Z.,2001. Sea level change in Hong Kong from tide gauge measurements of 1954–1999. Journal of Geodesy, 74 (10): 683-689, DOI: 10.1007/s001900000128.

    Douglas, B. C, 1997. Global sea rise: A redetermination. Surveys in Geophysics, 18: 279-292, DOI: 10.1023/A:1006544227856.

    IPCC, 2007. Climate Change 2007: The Physical Science Basis. Solomon, S., et al., eds., Cambrige University Press, 996pp.

    Korotky, A. M., Razjigaeva, N. G., Ganzey, L. A., Volkov, V. G., Grebennikova, T. A., Bazarova, V. B., and Kovalukh, N. N., 1995. Late Pleistocene-Holocene coastal development of island of Vietnam. Journal of Southeast Asian Earth Sciences, 11 (4): 301-308, DOI: 10.1016/0743-9547(94)E0016-7.

    Leuliette, E. W., Nerem, R. S., and Mitchum, G. T., 2004. Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Marine Geodesy, 27 (1): 79-94, DOI: 10.1080/01490410490465193.

    Mark, F. M., Mark, B. D., Ursula, K. R., Shad, O., Pfeffer, W. T., Robert, S. A., Suzanne, P. A., and Andrey, F. G., 2007. Glaciers dominate eustatic sea-level rise in the 21st century. Science, 317 (5841): 1064-1067, DOI: 10.1126/science.1143906.

    Miller, L., and Douglas, B. C., 2004. Mass and volume contributions to twentieth-century global sea level rise. Nature, 428: 406-409, DOI: 10.1038/nature02309.

    Nicholls, R. J., and Cazenave, A., 2010. Sea level rise and its impact on coastal zones. Science, 328 (5985): 1517-1520, DOI: 10.1126/science.1185782.

    Nie, B. F., Chen, T. G., Liang, M. T., Zhong, J. L., and Yu, K. F., 1997. Coral reef and high sea level in the holocene in Leizhou Peninsula. Chinese Science Bulletin, 42 (5): 511-514 (in Chinese).

    Qi, F. Q., Li, G. Z., Sun, Y., F., Liang, W., and Du, J., 2003. Basic geomorphologic features of the Weizhou Island of the Beibu Bay. Advances in Marine Science, 21 (1): 42-50 (in Chinese with English abstract).

    Rahmstorf, S., 2007a. A semi-empirical approach to projecting future sea-level. Science, 315 (5810): 368-370, DOI: 10.1126/ science.1135456.

    Rahmstorf, S., 2007b. Response to comment on ‘A semi-empirical approach to projecting future sea-level’. Science, 317 (5846): 1866, DOI: 10.1126/science.1141283.

    Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. T. M., 2011. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophysical Research Letters, 38 (5): L05503/1-L05503/5, DOI: 10.1029/2011GL046583.

    Rong, Z. R., Liu, Y. G., Chen, M. C., Zong, H. B., Xiu, P., and Wen, F., 2008. Mean sea level change in the global ocean and the South China Sea and its response to ENSO. Marine Science Bulletin, 27 (1): 1-8 (in Chinese with English abstract).

    Rong, Z. R., Liu, Y. G., Zong, H. B., and Xiu, P., 2009. Long term sea level change and water mass balance in the South China Sea. Journal of Ocean University of China, 8 (4): 327-334, DOI: 10.1007/s11802-009-0327-y.

    Schaeffer, M., Hare, W., Rahmstorf, S., and Vermeer, M., 2012. Long-term sea-level rise implied by 1.5℃ and 2℃ warming levels. Nature Climate Change, 2: 867-870, DOI: 10.1038/ NCLIMATE1584.

    Shen, D. F., Gong, Z., Cheng, Z. M., and Yang, H., 2010. Sea level change in coastal eastern Guangdong (Shanwei) in 1970–2009. Tropical Geography, 30 (5): 461-465 (in Chinese with English abstract).

    Shi, X. J., Chen, T. G., and Yu, K. F., 2008. Sea-level changes in Zhujiang Estuary over last 40 years. Marine Geology & Quaternary Geology, 28 (1): 127-134 (in Chinese with English abstract).

    State Oceanic Administration People’s Republic of China, 2011. China Sea Level Public Notice 2010, 1-32 (in Chinese).

    Sun, G. H., Qiu, Y., and Zhu, B. D., 2009. The tectonic implications of Holocene sea-level relics in the South China Sea and adjacent areas. Acta Oceanologica Sinica, 31 (5): 58-68 (in Chinese).

    Wang, H. S., Jia, L. L., Patrick, W., and Hu, B., 2010. Effects of global glacial isostatic adjustment on the secular changes of gravity and sea level in East Asia. Chinese Journal Geophysics, 53 (11): 2590-2602 (in Chinese with English abstract), DOI: 10.3969/j.issn.0001-5733.2010.11.007.

    Wang, Z., and Wu, J., 2011. Analysis on global temperature anomalies from 1880 based on genetic algorithm. Quaternary Sciences, 31 (1): 66-72 (in Chinese with English abstract), DOI: 10.3969/j.issn.1001-7410.2011.01.09.

    Weiss, J., Overpeck, J. T., and Strauss, B., 2011. Implications of recent sea level rise science for low-elevation areas in coastal cities of the conterminous U.S.A. Climatic Change, 105 (3): 635-645, DOI: 10.1007/s 10584-011-0024-x.

    Wong, W. T., Li, K. W., and Yeung, K. H., 2003. Long term sea level change in Hong Kong. Hong Kong Meteorological Society Bulletin, 13: 24-40.

    Yu, K. F., Zhong, J. L., Zhao, J. X., Shen, C. D., Chen, T. G., and Liu, D. S., 2002. Biological-geomorphological zones in a coral reef area at southwest Leizhou Peninsula unveil multiple sea level high-stands in the holocene. Marine Geology & Quaternary Geology, 22 (2): 27-33 (in Chinese with English abstract).

    Yu, Z. Y., Yuan, L. W., Lv, G. N., Xie, Z. R., Zhang, J. Y., and Mei, W. C., 2009. Multi-scale analysis of sea-level change and its spatial characteristics in northwest Pacific Ocean marginal seas. Geographical Research, 28 (6): 1644-1655 (in Chinese with English abstract), DOI: 10.11821/yj2009060020.

    Yuan, L. W., Yu, Z. Y., Xie, Z. R., Song, Z. Y., and Lv, G. N., 2009. ENSO sigals and their spatial-temporal variation characteristics recorded by the sea-level changes in the northwest Pacific margin during 1965–2005. Science in China Series D: Earth Sciences, 52 (6): 869-882, DOI: 10.1007/sl1430-009-0072-5.

    Zhan, J. G., Wang, Y., and Cheng, Y. S., 2009. The analysis of China sea level change. Chinese Journal of Geophysics, 52 (7): 1725-1733 (in Chinese with English abstract), DOI: 10.3969/j. issn.0001-5733.2009. 07.007.

    Zhan, J. G., Wang, Y., and Liu, L. T., 2003. Time-frequency analysis of the inter-seasonal variations of China-neighboring seas level. Chinese Journal of Geophysics, 46 (1): 36-41 (in Chinese with English abstract).

    Zhang, G. H., 2009. Analysis of tide characteristics in coastal area in Guangxi. People Pearl River, 30 (1): 29-30 (in Chinese).

    Zhang, J. L., 2006. The variability of global sea level and the influence of the variability of the steric. PhD thesis, Ocean University of China.

    Zheng, W. Z., 1996. Forecasting of sea levels at coast tide gauge stations and any places in China and the world in the twenty first century. Marine Science Bulletin, 15 (6): 1-7 (in Chinese with English abstract).

    Zuo, J. C., Zhang, J. L., Du, L., Li, P. L., and Li, L., 2009. Global sea level change and thermal contribution. Journal of Ocean University of China, 8 (1): 1-8, DOI: 10.1007/S11808-009-0001-4.

    (Edited by Xie Jun)

    (Received April 4, 2012; revised November 26, 2012; accepted October 28, 2013)

    ? Ocean University of China, Science Press and Springer-Verlag Berlin Heidelberg 2014

    * Corresponding author. Tel: 0086-532-66782542

    E-mail: estuary@ouc.edu.cn

    听说在线观看完整版免费高清| 人人妻,人人澡人人爽秒播| 国内久久婷婷六月综合欲色啪| 国产精华一区二区三区| www.999成人在线观看| 欧美又色又爽又黄视频| 欧美乱色亚洲激情| 精品久久久久久成人av| 嫁个100分男人电影在线观看| 国产黄a三级三级三级人| 午夜福利18| 亚洲专区国产一区二区| 99热精品在线国产| 美女 人体艺术 gogo| 99国产精品一区二区蜜桃av| 色噜噜av男人的天堂激情| 此物有八面人人有两片| 真人做人爱边吃奶动态| 国产美女午夜福利| 国产一区二区三区在线臀色熟女| 国产乱人视频| 伦理电影大哥的女人| 天堂网av新在线| 国内精品久久久久久久电影| 久久久久久久精品吃奶| 日本精品一区二区三区蜜桃| 国产av在哪里看| 黄色日韩在线| 在线播放国产精品三级| 国产成人av教育| 一个人观看的视频www高清免费观看| 五月玫瑰六月丁香| 免费高清视频大片| av天堂在线播放| 中文字幕av在线有码专区| 很黄的视频免费| 国产淫片久久久久久久久 | 日韩中字成人| 少妇熟女aⅴ在线视频| 乱码一卡2卡4卡精品| 日日夜夜操网爽| 午夜免费激情av| 国产一区二区三区在线臀色熟女| 久久这里只有精品中国| 亚洲专区中文字幕在线| 日本成人三级电影网站| 日日摸夜夜添夜夜添av毛片 | 99久国产av精品| 在现免费观看毛片| 亚洲激情在线av| 18禁黄网站禁片免费观看直播| 婷婷精品国产亚洲av在线| 亚洲av成人精品一区久久| 精品99又大又爽又粗少妇毛片 | 听说在线观看完整版免费高清| 97人妻精品一区二区三区麻豆| 精品国产亚洲在线| 国产精品不卡视频一区二区 | 婷婷精品国产亚洲av在线| 欧美不卡视频在线免费观看| 成人一区二区视频在线观看| 中文字幕精品亚洲无线码一区| 综合色av麻豆| 高清日韩中文字幕在线| 少妇被粗大猛烈的视频| 日韩人妻高清精品专区| 少妇高潮的动态图| 中文字幕久久专区| 久久精品国产99精品国产亚洲性色| 亚洲av免费高清在线观看| 欧美成人a在线观看| 日韩欧美免费精品| 国产一区二区激情短视频| 波多野结衣高清作品| 老熟妇仑乱视频hdxx| 亚洲av二区三区四区| 黄色一级大片看看| 国内久久婷婷六月综合欲色啪| 国产精品亚洲av一区麻豆| 色播亚洲综合网| 淫秽高清视频在线观看| 国内揄拍国产精品人妻在线| 12—13女人毛片做爰片一| 免费av不卡在线播放| 免费在线观看日本一区| 久久久久性生活片| 午夜免费激情av| 丝袜美腿在线中文| 一个人免费在线观看的高清视频| 精品一区二区三区av网在线观看| 十八禁人妻一区二区| 一夜夜www| 久久久久久国产a免费观看| 亚洲av成人av| 亚洲精品成人久久久久久| 我的老师免费观看完整版| 人妻夜夜爽99麻豆av| 91字幕亚洲| 99久久99久久久精品蜜桃| 一本精品99久久精品77| 蜜桃久久精品国产亚洲av| 国内精品久久久久久久电影| 好男人在线观看高清免费视频| 久久午夜福利片| 久久久久久大精品| 深夜精品福利| 美女大奶头视频| av天堂在线播放| 国产一级毛片七仙女欲春2| 在线观看免费视频日本深夜| 久久国产精品影院| 国产伦一二天堂av在线观看| 国产 一区 欧美 日韩| 色av中文字幕| 成人鲁丝片一二三区免费| 99精品久久久久人妻精品| 天天躁日日操中文字幕| 欧美激情在线99| 久久亚洲真实| 国产私拍福利视频在线观看| 久久人人精品亚洲av| 亚洲专区中文字幕在线| 国产高清视频在线播放一区| 在线观看免费视频日本深夜| 三级男女做爰猛烈吃奶摸视频| 少妇熟女aⅴ在线视频| 久久久久久久久久成人| 91在线观看av| 亚洲中文字幕日韩| 三级男女做爰猛烈吃奶摸视频| 免费无遮挡裸体视频| 午夜视频国产福利| 99久久精品一区二区三区| 欧美乱色亚洲激情| 成年版毛片免费区| 搞女人的毛片| 韩国av一区二区三区四区| 搞女人的毛片| 亚洲第一区二区三区不卡| 久久久久免费精品人妻一区二区| 中文字幕av在线有码专区| 搡老熟女国产l中国老女人| 国产伦精品一区二区三区四那| 天堂影院成人在线观看| 国产在视频线在精品| 蜜桃久久精品国产亚洲av| 校园春色视频在线观看| 99久国产av精品| 色综合欧美亚洲国产小说| 男人狂女人下面高潮的视频| 最新在线观看一区二区三区| 久久99热6这里只有精品| 成人av在线播放网站| 国产欧美日韩一区二区精品| 男插女下体视频免费在线播放| 一级黄片播放器| 男人和女人高潮做爰伦理| 嫩草影院入口| 少妇裸体淫交视频免费看高清| 国内毛片毛片毛片毛片毛片| 制服丝袜大香蕉在线| 日日干狠狠操夜夜爽| 中国美女看黄片| 亚洲最大成人手机在线| 一级作爱视频免费观看| 能在线免费观看的黄片| 成人性生交大片免费视频hd| 久久99热6这里只有精品| 亚洲精品乱码久久久v下载方式| 亚洲成a人片在线一区二区| 最新在线观看一区二区三区| www.熟女人妻精品国产| 精品福利观看| 男人舔女人下体高潮全视频| 午夜亚洲福利在线播放| 亚洲精品456在线播放app | 欧美成人免费av一区二区三区| 精品99又大又爽又粗少妇毛片 | 欧美中文日本在线观看视频| av黄色大香蕉| 国产欧美日韩精品一区二区| 成人美女网站在线观看视频| 成人美女网站在线观看视频| 丁香六月欧美| 日韩欧美在线乱码| 久久久久久久久久成人| 国产精品国产高清国产av| 国产白丝娇喘喷水9色精品| 国产老妇女一区| 大型黄色视频在线免费观看| 在线观看av片永久免费下载| 深夜a级毛片| 男女床上黄色一级片免费看| 国产黄色小视频在线观看| 90打野战视频偷拍视频| 丰满乱子伦码专区| 免费大片18禁| av视频在线观看入口| 色播亚洲综合网| 精品一区二区三区视频在线| 欧美色欧美亚洲另类二区| 亚洲avbb在线观看| av在线老鸭窝| 麻豆一二三区av精品| 国产午夜精品论理片| 久久久久国产精品人妻aⅴ院| 欧美区成人在线视频| 人人妻,人人澡人人爽秒播| 人人妻,人人澡人人爽秒播| 丁香欧美五月| 婷婷六月久久综合丁香| 热99在线观看视频| 日本精品一区二区三区蜜桃| 长腿黑丝高跟| 青春草亚洲视频在线观看| 嫩草影院入口| 一级黄片播放器| 精品人妻熟女av久视频| 国产精品一二三区在线看| 国产69精品久久久久777片| 18禁动态无遮挡网站| 国产综合懂色| 波多野结衣巨乳人妻| 国产探花极品一区二区| 国产高清不卡午夜福利| 在线看a的网站| 国产黄频视频在线观看| 日韩制服骚丝袜av| av在线观看视频网站免费| 国产乱人视频| 日本色播在线视频| 2018国产大陆天天弄谢| 一区二区三区四区激情视频| 狂野欧美激情性bbbbbb| 晚上一个人看的免费电影| 亚洲丝袜综合中文字幕| av天堂中文字幕网| 全区人妻精品视频| 中文字幕av成人在线电影| 国产成人91sexporn| 免费av毛片视频| 美女xxoo啪啪120秒动态图| 天天躁日日操中文字幕| 一本一本综合久久| 久久精品国产亚洲网站| 欧美高清性xxxxhd video| 97在线人人人人妻| 久久久精品免费免费高清| 欧美变态另类bdsm刘玥| 国产成人精品福利久久| 91午夜精品亚洲一区二区三区| 99热网站在线观看| 深爱激情五月婷婷| av国产精品久久久久影院| 2021少妇久久久久久久久久久| 少妇熟女欧美另类| 国产在线一区二区三区精| 精品视频人人做人人爽| 国产一区二区三区综合在线观看 | 少妇裸体淫交视频免费看高清| 国产在视频线精品| 久久精品久久久久久久性| 最近最新中文字幕大全电影3| 亚洲国产精品999| 国产精品久久久久久久电影| 免费高清在线观看视频在线观看| 国产成人91sexporn| 久久影院123| 免费观看的影片在线观看| 简卡轻食公司| 尤物成人国产欧美一区二区三区| av专区在线播放| av天堂中文字幕网| 国产精品福利在线免费观看| 国产精品av视频在线免费观看| 高清av免费在线| 国产黄片视频在线免费观看| 国产在视频线精品| 成人二区视频| 成人一区二区视频在线观看| 伦理电影大哥的女人| 亚洲精品日韩在线中文字幕| 七月丁香在线播放| 黄色怎么调成土黄色| 丝袜脚勾引网站| 亚洲国产精品国产精品| 人妻一区二区av| 国产免费一级a男人的天堂| 少妇人妻 视频| 一级二级三级毛片免费看| 日韩亚洲欧美综合| 直男gayav资源| 伦精品一区二区三区| 永久免费av网站大全| 丰满人妻一区二区三区视频av| 一区二区三区乱码不卡18| 国产美女午夜福利| 国产成人精品一,二区| 亚洲欧美日韩东京热| 男女边摸边吃奶| 各种免费的搞黄视频| 国产成人a∨麻豆精品| 国产精品久久久久久精品古装| 人妻 亚洲 视频| 我的老师免费观看完整版| 日韩大片免费观看网站| 69av精品久久久久久| 麻豆精品久久久久久蜜桃| 又黄又爽又刺激的免费视频.| 最近中文字幕2019免费版| 男女下面进入的视频免费午夜| 69人妻影院| 精品一区二区三区视频在线| 极品少妇高潮喷水抽搐| 伦理电影大哥的女人| 成人黄色视频免费在线看| 我要看日韩黄色一级片| 免费观看的影片在线观看| 久久久久久久国产电影| 中文资源天堂在线| 纵有疾风起免费观看全集完整版| 国产精品秋霞免费鲁丝片| 精品少妇久久久久久888优播| 免费黄色在线免费观看| 成人综合一区亚洲| 插逼视频在线观看| 少妇人妻 视频| av在线播放精品| 欧美丝袜亚洲另类| av在线老鸭窝| 最近中文字幕2019免费版| 国产亚洲91精品色在线| 久久久久九九精品影院| 成年免费大片在线观看| 国产在线男女| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 天天躁日日操中文字幕| 亚洲av不卡在线观看| 国产伦理片在线播放av一区| 国内少妇人妻偷人精品xxx网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久99热这里只频精品6学生| freevideosex欧美| 一边亲一边摸免费视频| 亚洲四区av| tube8黄色片| 亚洲成人av在线免费| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲色图av天堂| 日本wwww免费看| 亚洲va在线va天堂va国产| 中文字幕久久专区| 三级男女做爰猛烈吃奶摸视频| 国产精品av视频在线免费观看| 大片免费播放器 马上看| 亚洲人成网站在线播| 少妇高潮的动态图| 3wmmmm亚洲av在线观看| 国产成人a∨麻豆精品| 丝瓜视频免费看黄片| 国产有黄有色有爽视频| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 欧美一级a爱片免费观看看| 亚洲精品aⅴ在线观看| 日韩强制内射视频| 99热6这里只有精品| 日韩成人伦理影院| 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频 | 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 日韩一区二区三区影片| 97超碰精品成人国产| 久久久午夜欧美精品| 久久人人爽av亚洲精品天堂 | 亚洲国产色片| 一级毛片aaaaaa免费看小| 日产精品乱码卡一卡2卡三| 午夜免费鲁丝| 超碰97精品在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品国产色婷婷电影| 久久精品国产亚洲网站| 国产毛片在线视频| av国产免费在线观看| 日本爱情动作片www.在线观看| 亚洲精品中文字幕在线视频 | 深夜a级毛片| 女人十人毛片免费观看3o分钟| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 免费av毛片视频| 国语对白做爰xxxⅹ性视频网站| 欧美一级a爱片免费观看看| 亚洲精品亚洲一区二区| 久久99热这里只频精品6学生| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 97人妻精品一区二区三区麻豆| 午夜福利视频精品| 老女人水多毛片| 两个人的视频大全免费| 噜噜噜噜噜久久久久久91| 中文字幕亚洲精品专区| 色网站视频免费| 精品久久久久久电影网| 日本一二三区视频观看| 成年女人在线观看亚洲视频 | 最近手机中文字幕大全| 国产色爽女视频免费观看| 亚洲av欧美aⅴ国产| 激情五月婷婷亚洲| 欧美3d第一页| 一个人看的www免费观看视频| 又粗又硬又长又爽又黄的视频| 少妇熟女欧美另类| 99re6热这里在线精品视频| 亚洲成人中文字幕在线播放| 嫩草影院入口| 午夜精品一区二区三区免费看| 日韩av不卡免费在线播放| 成人漫画全彩无遮挡| 狠狠精品人妻久久久久久综合| 大陆偷拍与自拍| 精品久久久久久久久av| 干丝袜人妻中文字幕| 国产精品一区二区三区四区免费观看| 国产精品秋霞免费鲁丝片| 王馨瑶露胸无遮挡在线观看| 一级毛片aaaaaa免费看小| 日本与韩国留学比较| 啦啦啦中文免费视频观看日本| 丝瓜视频免费看黄片| 中文天堂在线官网| 嫩草影院入口| 日日摸夜夜添夜夜添av毛片| 亚洲内射少妇av| 亚洲图色成人| 亚洲av日韩在线播放| 午夜免费鲁丝| 久久久a久久爽久久v久久| 国内少妇人妻偷人精品xxx网站| 一级毛片久久久久久久久女| 欧美高清性xxxxhd video| 在线看a的网站| 国产精品精品国产色婷婷| 亚洲久久久久久中文字幕| 国内精品美女久久久久久| 国产精品精品国产色婷婷| 亚洲美女搞黄在线观看| 91久久精品电影网| 91在线精品国自产拍蜜月| 国产v大片淫在线免费观看| 人妻一区二区av| av又黄又爽大尺度在线免费看| 男人爽女人下面视频在线观看| 不卡视频在线观看欧美| 免费高清在线观看视频在线观看| 你懂的网址亚洲精品在线观看| 日韩av不卡免费在线播放| 日韩精品有码人妻一区| 一本一本综合久久| 免费大片黄手机在线观看| 久久久精品94久久精品| 伊人久久国产一区二区| 国产永久视频网站| 毛片一级片免费看久久久久| 可以在线观看毛片的网站| 最新中文字幕久久久久| 成年人午夜在线观看视频| 亚洲国产日韩一区二区| 亚洲国产欧美在线一区| 三级国产精品片| 大陆偷拍与自拍| 成人漫画全彩无遮挡| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久| 欧美xxxx黑人xx丫x性爽| 欧美变态另类bdsm刘玥| 一区二区av电影网| 最近2019中文字幕mv第一页| 五月开心婷婷网| 色哟哟·www| 蜜桃久久精品国产亚洲av| 成人毛片a级毛片在线播放| 国产av国产精品国产| 成人欧美大片| 日韩不卡一区二区三区视频在线| 熟女人妻精品中文字幕| 女人久久www免费人成看片| 欧美国产精品一级二级三级 | 麻豆久久精品国产亚洲av| 啦啦啦中文免费视频观看日本| 大又大粗又爽又黄少妇毛片口| 精品久久久久久久久亚洲| 色婷婷久久久亚洲欧美| 看免费成人av毛片| av在线天堂中文字幕| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 免费黄色在线免费观看| 国产免费一级a男人的天堂| 啦啦啦中文免费视频观看日本| 可以在线观看毛片的网站| 亚洲av男天堂| 久久精品国产a三级三级三级| 国产免费一级a男人的天堂| 欧美zozozo另类| 亚洲精华国产精华液的使用体验| 爱豆传媒免费全集在线观看| 欧美 日韩 精品 国产| 边亲边吃奶的免费视频| videossex国产| 精品少妇黑人巨大在线播放| 中文精品一卡2卡3卡4更新| 蜜桃久久精品国产亚洲av| 久久99精品国语久久久| 好男人在线观看高清免费视频| 夫妻性生交免费视频一级片| 亚洲精品久久午夜乱码| 免费av观看视频| 九色成人免费人妻av| 在线观看人妻少妇| 成人国产麻豆网| 国产69精品久久久久777片| av在线蜜桃| 日韩免费高清中文字幕av| 国产毛片a区久久久久| 少妇裸体淫交视频免费看高清| 秋霞伦理黄片| 最近最新中文字幕免费大全7| 亚洲国产成人一精品久久久| 国产精品国产三级专区第一集| 亚洲精品国产av成人精品| 成人高潮视频无遮挡免费网站| 一边亲一边摸免费视频| 亚洲国产精品成人久久小说| 少妇高潮的动态图| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 丰满人妻一区二区三区视频av| 九九爱精品视频在线观看| 国产精品无大码| 日韩 亚洲 欧美在线| 午夜福利在线观看免费完整高清在| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 久久人人爽人人爽人人片va| 在线观看人妻少妇| 国产精品久久久久久精品电影| 中文字幕制服av| 精品人妻视频免费看| 人妻系列 视频| 男女边摸边吃奶| 国产人妻一区二区三区在| 精品熟女少妇av免费看| 欧美日韩国产mv在线观看视频 | 欧美潮喷喷水| 大码成人一级视频| tube8黄色片| 我的女老师完整版在线观看| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品专区久久| 狂野欧美白嫩少妇大欣赏| 国内精品美女久久久久久| 男插女下体视频免费在线播放| av天堂中文字幕网| 在线观看免费高清a一片| 亚洲国产日韩一区二区| 视频中文字幕在线观看| av在线亚洲专区| 欧美性猛交╳xxx乱大交人| 看黄色毛片网站| 欧美少妇被猛烈插入视频| 亚洲丝袜综合中文字幕| 午夜激情久久久久久久| 精品久久久噜噜| 五月玫瑰六月丁香| 亚洲人成网站高清观看| 色吧在线观看| 最近最新中文字幕大全电影3| 久久久久久伊人网av| av在线app专区| 一级毛片 在线播放| 久久久久久久久久久丰满| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品乱码久久久v下载方式| 最新中文字幕久久久久| 国产爽快片一区二区三区| 在线观看一区二区三区| 内地一区二区视频在线| 亚洲成人中文字幕在线播放| 亚洲精品456在线播放app| 婷婷色综合大香蕉| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久小说| 在线亚洲精品国产二区图片欧美 | 国产午夜精品久久久久久一区二区三区| 青春草国产在线视频| 免费看a级黄色片| 男人狂女人下面高潮的视频| 成人黄色视频免费在线看| 国产91av在线免费观看| 精品国产三级普通话版| 久久精品国产亚洲av天美| 国产精品av视频在线免费观看| 国产在线一区二区三区精| 国产成人免费观看mmmm| av在线老鸭窝| 大码成人一级视频| 亚洲丝袜综合中文字幕| 亚洲欧洲日产国产| 亚洲,欧美,日韩|