摘要:卵巢癌作為最常見婦科惡性腫瘤之一,其死亡率位居女性生殖系統(tǒng)腫瘤第一位。循環(huán)腫瘤細胞(circulating tumor cells,CTC)是由原發(fā)腫瘤病灶脫落進入循環(huán)中的腫瘤細胞,近年來有研究證實CTC可作為卵巢癌預(yù)后的獨立因素,可能成為一種新型腫瘤標(biāo)志物來預(yù)測卵巢癌的預(yù)后、指導(dǎo)治療決策的制定甚至成為靶向治療的靶向位點。本文簡要綜述了CTC的常用檢測方法以及其對卵巢癌預(yù)后的預(yù)測價值的研究進展。
關(guān)鍵詞:卵巢癌;循環(huán)腫瘤細胞;預(yù)后;腫瘤標(biāo)志物
Advance on the Predict Value of Circulating Tumor Cells on Ovarian Cancer
ZENG Li-qiong,YANG Zhu
(Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University,Chongqing 400010,China)
Abstract:Ovarian cancer as one of the most common gynecological m alignant tumors, it played the first mortality in the female reproductive system. Recent years, Circulating tumor cells (CTC) which were fell off into circulatory system from the primary tumor lesions have been confirmed that could be an independent prognostic factor for ovarian cancer, and thus to become a new tumor marker to predict the prognosis of ovarian carcinoma, to guide the decision of treatment strategies, and even as a target spot of targeted therapy. In this paper, we briefly summarized the current methods of CTC-detection and its progress of the predictive value of prognosis for ovarian neoplasm.
Key words:Ovarian cancer; Circulating tumor cells (CTC); Prognosis; Biomarker
據(jù)全球癌癥數(shù)據(jù)統(tǒng)計,2008年在全世界范圍內(nèi),約有225500例新發(fā)病例,大約140200例女性死于卵巢癌,分別占女性癌癥發(fā)病率第8位及死亡率第7位。在發(fā)展中國家,新發(fā)病例及死亡病例分別為125200例與75700例,居女性癌癥發(fā)病率及死亡率的第9及第8位[1]。據(jù)我國癌癥數(shù)據(jù)統(tǒng)計,2010年卵巢癌在女性腫瘤中全國發(fā)病率為6.47/10萬,占女性腫瘤發(fā)病的第9位[2]。早期卵巢癌在經(jīng)過規(guī)范治療后,絕大部分可以達到治愈或者完全緩解,5年生存率可達90%。但由于缺乏有效的早期檢測手段,70%卵巢癌發(fā)現(xiàn)時已屬晚 期[3]。晚期卵巢癌,推薦治療為滿意腫瘤減滅術(shù)后,輔以化學(xué)治療。對于不能手術(shù)或有明確手術(shù)禁忌患者,推薦先給予新輔助化療后,再次評估手術(shù)治療。復(fù)發(fā)卵巢癌,治療方案選擇主要依據(jù)復(fù)發(fā)時間而定。為提高卵巢癌療效,靶向治療藥物尤其是貝伐珠單抗是目前研究的熱點藥物。目前對于卵巢癌療效的評估手段有限,主要為CA-125和影像學(xué)觀察等措施。CA-125作為上皮性卵巢癌的診斷及療效觀測常用標(biāo)志物,但其對于卵巢癌治療效果的評估缺乏足夠的特異性。近年來有研究顯示CTC可能成為一種新的腫瘤標(biāo)志物來預(yù)測卵巢癌的預(yù)后。本文就近年來關(guān)于CTC的檢測方法及其與卵巢癌預(yù)后關(guān)系的文章做一綜述。
1 CTC的概述
Ashworth首次報道在腫瘤患者死后的血液中發(fā)現(xiàn)類似于腫瘤細胞的細 胞[4]。有研究證實CTC存在于腫瘤患者循環(huán)系統(tǒng)中,罕見于健康人群[5]。在多種腫瘤中,已證實CTC陽性患者整體生存期(OS)及無進展生存期(DFS)明顯短于陰性患者。Cain等首次在卵巢癌患者骨髓(BM)樣本中檢測到CTC,其陽性率為23%[6]。許多研究證實CTC可作為一種新型的腫瘤標(biāo)志物,預(yù)測卵巢癌的治療效果[7-16]。腫瘤細胞到達遠隔器官形成轉(zhuǎn)移灶通常包括3個過程:內(nèi)滲、外滲、定居[23]。通常情況下原發(fā)病灶的腫瘤細胞通過自分泌多種細胞因子溶解與基底膜之間的連接或者上皮間質(zhì)轉(zhuǎn)換(EMT)而獲得侵襲能力[24],從而侵犯到臨近基質(zhì)組織,進入到循環(huán)系統(tǒng)中。每克腫瘤組織每天大約釋放106個腫瘤細胞入血[25],這些細胞在循環(huán)中的存活率極低,絕大多數(shù)發(fā)生失巢凋亡, 只有極少部分具有較強侵襲能力的腫瘤細胞通過表達凋亡抑制因子存活下來[26]。在適宜的條件下最終在遠隔器官生長成肉眼可見的病灶。同時CTC也可以向骨髓歸巢,進入骨髓儲備池并維持靜息狀態(tài),一定條件下再次釋放入外周血循環(huán),活化增殖形成轉(zhuǎn)移灶[27]。由于CTC在骨髓及血液中的量極少,接近于1 CTC/mL血液或者每106~107白細胞中有一個CTC[28],故CTC的檢測有一定難度。
2 CTC的檢測
2.1 CTC的富集 CTC的檢測通常需兩個步驟:富集和分離純化。CTC富集主要根據(jù)腫瘤細胞的物理和生物學(xué)特性來完成[29]。根據(jù)腫瘤細胞的物理特性富集CTC主要通過細胞大小及密度來檢測。有密度梯度離心法(FICOLL、Onco-Quick);特殊濾過膜過濾法(ISET[30],3D-濾過膜過濾法[31],MEMS[32])、微流體控制系統(tǒng)(捏流耦合切變慣性微流體法[33];MOFF and DEP[34])、非生物標(biāo)志芯片法[35]。根據(jù)腫瘤生物學(xué)特性檢測CTC則是結(jié)合腫瘤細胞表達腫瘤相關(guān)抗原來篩選細胞,分為陽性選擇和陰性選擇。上皮細胞粘附分子(EpCAM)是一種最常見的上皮性腫瘤表面檢測靶點。Cellsearch 系統(tǒng)、CTC-chip和 Herringbone-chip法均為以EpCAM作為免疫標(biāo)志[5,36-37]?,F(xiàn)以EpCAM作為標(biāo)志的納米技術(shù)的運用使得腫瘤細胞檢測的限制性明顯降低(標(biāo)本量),同時可提高測定的敏感性[38]。腫瘤細胞具有強侵襲性, 腫瘤在向周圍組織侵襲的過程中會攝取大量細胞粘附基質(zhì)(CAM),通過檢測細胞攝取CAM的情況亦可富集腫瘤細胞[8]。
2.2腫瘤細胞的分離純化 CTC分離純化常用方法為免疫細胞組化法(Immunocytochemistry analysis,ICC),其熒光染色的靶點包括上皮性腫瘤特異性抗原如細胞角蛋白(CK)、上皮特異性粘附分子如EpCAM和E-鈣黏蛋白、腫瘤特異性蛋白如雌孕激素受體等。其主要作為基礎(chǔ)檢測方式,現(xiàn)多種CTC檢測方法均以ICC為基礎(chǔ)。如流式細胞術(shù)(flow cytometry,F(xiàn)CM)、激光掃描細胞儀(LSC)[39]。Cellsearch作為最具代表性的ICC檢測方法,其檢測過程結(jié)合了EpCAM、CK-8、CK-18、CK-19、CD45,以及核染色DAPI(4,6-diamino-2-phenylindole)[5]。這些標(biāo)準同樣被運用于CTC-chip、HB-chip以及納米檢測技術(shù)中?;贗CC的逆轉(zhuǎn)錄聚合酶鏈反應(yīng)(RT-PCR)將腫瘤特異性mRNA逆轉(zhuǎn)錄擴增后檢測CTC,其靈敏度極高,但缺乏足夠特異性,代表方法有Adnagen。近年來有研究通過PCR法檢測腫瘤細胞基因有望取代單純檢測CTC本身(Cyclophilin C, PICC)[13]。EPISPOT亦是通過細胞免疫組化法檢測CTC,其將離體腫瘤細胞培養(yǎng)24~48 h后提取腫瘤相關(guān)分泌蛋白,進而檢測CTC。其靶向的細胞蛋白有CK-19,MUC1 (mucin-1),PSA(prostate-specific antigen), FGF-2(fibroblast growth factor-2)[40]。由于在腫瘤細胞富集過程中往往存在偏倚,因而光導(dǎo)纖維陣列技術(shù)[41]及數(shù)字化自動掃描熒光顯微鏡技術(shù)被開發(fā)出來[42]。
2.3 Cellsearch系統(tǒng) 目前市面上CTC檢測方法眾多,但唯一作為FDA通過的用于檢測CTC的方法只有Cellsearch系統(tǒng)[5]。美國FDA分別在2004年、2007年和2008年批準CellSearch系統(tǒng)用于轉(zhuǎn)移性乳腺癌、結(jié)直腸癌及前列腺癌的CTC檢測。2012年CellSearch系統(tǒng)作為CTC檢測與分析系統(tǒng)獲得中國FDA批準用于乳腺癌患者的預(yù)后分析。該系統(tǒng)將循環(huán)腫瘤細胞定義為EpCAM+/CK+/DAPI+/CD45-表達細胞。CellSearch 系統(tǒng)是目前自動化程度最高的CTC 檢測技術(shù),受人為因素影響較小,具有較高的特異性、敏感性及可重復(fù)性[5]。目前各種檢測方法測得CTC陽性率高低不同,Cellsearch系統(tǒng)作為唯一被FDA允許的CTC檢測方法,但其對上皮性標(biāo)志物如EpCAM/CK表達陰性細胞,存在檢測困難,可能有漏診。腫瘤細胞與EMT的關(guān)系已被眾多研究證 實[24],眾多經(jīng)過EMT的高侵襲性腫瘤細胞可能不再表達EpCAM/CK從而逃避傳統(tǒng)的檢測方法[43]。有研究開始采用新的方法以檢測那些因為缺乏或低表達上皮標(biāo)記的CTC,Pecot等采用微流體控制系統(tǒng)來檢測CK陰性細胞,可用于檢測那些經(jīng)過EMT上皮表達缺失的CTC[44]。近來,CTC的檢測已不僅僅局限于細胞學(xué)的檢測,有研究開始著眼于CTC相關(guān)基因的檢測,Obermayr等采用RT-PCR法檢測11個與CTC相關(guān)的基因及EpCAM,結(jié)果顯示PPIC基因在CTC中陽性率為68%,而EpCAM僅為8%。且結(jié)果顯示PPIC基因陽性是卵巢癌獨立預(yù)后不良因子[13]。其提示有將PPIC替代CTC作為檢測卵巢癌預(yù)后的指標(biāo)可能。
3 CTCs在卵巢癌中的運用現(xiàn)狀
早期腹膜擴散是卵巢癌預(yù)后不佳的重要原因,卵巢癌主要播散方式為腹腔內(nèi)播散,較少通過血液循環(huán)傳播[45],遠處轉(zhuǎn)移在卵巢癌是一種遲發(fā)型并發(fā)癥,大約只發(fā)生在1/3的患者中,一旦卵巢癌發(fā)生遠處轉(zhuǎn)移,患者治療效果十分有限[46]。CTC在乳腺癌和結(jié)直腸癌以及前列腺中的應(yīng)用價值已被證實。有關(guān)CTC在卵巢癌運用中的研究已較多[15-30]。有研究顯示CTC可作為一種新的腫瘤標(biāo)志物[15-24]。CTC的檢測可以通過PB和BM樣本進行,陽性檢出率為14.35%~60.6%,目前檢測方法多為ICC法,其中Behbakht,Liu以及Poveda等采用了目前公認的Cellsearch系統(tǒng)。本文就近年來關(guān)于CTC檢測與卵巢癌預(yù)后的文獻做一總結(jié),見表1。
4結(jié)論與展望
目前的研究數(shù)據(jù)多為治療前的CTC數(shù)值與卵巢癌患者預(yù)后的關(guān)系,較少涉及隨訪過程中的CTC數(shù)目變化與患者預(yù)后的關(guān)系,Obermayr等研究了基礎(chǔ)水平及隨訪過程中CTC水平與卵巢癌預(yù)后的關(guān)系,結(jié)果顯示DFS及OS與CTCs基線水平無關(guān),而與隨訪中CTCs仍保持陽性有關(guān)(P=0.001),顯示出持續(xù)檢測CTC的意義[13]。由于CTC檢測價格高昂,故隨訪中CTC檢測失訪率較高,因而限制其運用。若能開發(fā)出敏感性和特異性更高以及成本價格更合理的CTC檢測方法,CTC檢測可能可以納入到卵巢癌常規(guī)檢測項目中。目前對CTC數(shù)目與腫瘤預(yù)后的研究已經(jīng)相當(dāng)多,但關(guān)于CTC與個體化治療的研究仍不多,通過檢測患者腫瘤組織中基因表達/突變來篩選相應(yīng)抗腫瘤藥物在眾多研究中被證實。但所有的檢測均建立在能得到腫瘤組織的基礎(chǔ)上,由于腫瘤組織存在異質(zhì)性,隨著藥物的使用,腫瘤的基因表達/突變可能發(fā)生改變,導(dǎo)致最初有效的藥物變得無效。因此為了更好地對腫瘤患者實施個體化選藥, 最好對腫瘤的性質(zhì)進行實時監(jiān)測。CTC為術(shù)后腫瘤標(biāo)本的唯一來源,通過對其進行基因及表面抗位的檢查,可以明確腫瘤的表型,使得其成為一個良好的腫瘤實時監(jiān)測指標(biāo),從而更好的指導(dǎo)腫瘤的個體化治療。根據(jù)得到的CTC監(jiān)測中基因表達情況來選擇相應(yīng)治療藥物,達到事半功倍的效果。近年來靶向治療已成為腫瘤治療的熱點,隨著對CTC研究的成熟,以CTC作為靶向治療藥物位點可能成為現(xiàn)實。
參考文獻:
[1]Jemal A.Global Cancer Statistics[J].CA Cancer J Clin,2011,2: 69-90.
[2]陳萬青等. 中國2010年惡性腫瘤發(fā)病和死亡分析.中國腫瘤,2014,1,1-10.
[3]Badgwell D. Early detection of ovarian cancer[J].Dis Markers,2007,5-6:397-341.
[4]Ashworth T. R. A case of cancer in which cells similar to those in the tumours were seen in the blood after death[J].Australian Med,1869,14:146.
[5]Allard WJ.Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonm alignant diseases[J].Clin Cancer Res,2004,10:6897-6904.
[6]Cain JM.Bone marrow involvement in epithelial ovarian cancer by immunocytochemical assessment[J].Gynecol Oncol,1990,38(3):442-445.
[7]Poveda A.Circulating tumor cells Predict progression free survival and overall survival in patients with relapsed/recurrent advanced ovarian cancer[J].Gynecol Oncol,2011,3:567-572.
[8]Fan T.Clinical significance of circulating tumor cells detected by an invasion assay in peripheral blood of patients with ovarian cancer[J].Gynecol Oncol,2009,1:185-191.
[9]Banys M.Disseminated tumor cells in bone marrow may affect prognosis of patients with gynecologic m alignancies[J].Int J Gynecol Cancer,2009,5:948-952.
[10]Aktas B.Molecular profiling and prognostic relevance of circulating tumor cells in the blood of ovarian cancer patients at primary diagnosis and after platinum-based chemotherapy[J].Int J Gynecol Cancer,2011,5:822-830.
[11]Braun S.Occult tumor cells in bone marrow of patients with locoregionally restricted ovarian cancer predict early distant metastatic relapse[J].J Clin Oncol,2001,2:368-375.
[12]Wimberger P.Influence of platinum-based chemotherapy on disseminated tumor cells in blood and bone marrow of patients with ovarian cancer[J].Gynecol Oncol,2007,2:331-338.
[13]Obermayr E.Molecular characterization of circulating tumor cells in patients with ovarian cancer improves their prognostic significance[J].Gynecol Oncol,2013,1:15-21.
[14]Wimberger P.Impact of platinum -based chemotherapy on circulating nucleic acid levels, protease activities in blood and disseminated tumor cells in bone marrow of ovarian cancer patients[J].Int J Cancer,2011,11:2572-2580.
[15]Schindlbeck C.Prognostic impact of KI67, p53, human epithelial growth factor receptor 2,Topoisomerase IIalpha, epidermal growth factor receptor and nm23 expression of ovarian carcinomas anddisseminated tumor cells in the bone marrow[J].Int J Gynecol Cancer,2007,5:1047-1055.
[16]Fehm T.Pooled analysis of the prognostic relevance of disseminated tumor cells in the bone marrow of patients with ovarian cancer[J].Int J Gynecol Cancer,2013,23:839-845.
[17]Judson PL.Preoperative detection of peripherally circulating cancer cells and its prognostic significance in ovarian cancer[J].Gynecol Oncol,2003,2:389-394.
[18]Fehm T.Detection of disseminated tumor cells in patients with gynecological cancers[J]. Gynecol Oncol,2006,3:942-947.
[19]Behbakht K,.Phase II trial of the mTOR inhibitor, temsirolimus and evaluation of circulating tumor cells and tumor biomarkers in persistent andrecurrent epithelial ovarian and primary peritoneal m alignancies[J].Gynecol Oncol,2011,1:19-26.
[20]Liu JF.Predictive value of circulating tumor cells (CTCs) in newly-diagnosed and recurrent ovarian cancer patients[J].Gynecol Oncol,2013, 2:352-356.
[21]Kuhlmann JDLoss of Heterozygosity proximal to the M6P/IGF2R locus is predictive for the presence of disseminated tumor cells in the bone marrow of ovarian cancer patients before and after chemotherapy[J].Genes Chromosomes Cancer.2011,8:598-605.
[22]Marth C.irculating tumor cells in the peripheral blood and bone marrow of patients with ovarian carcinoma do not predict prognosis[J].Cancer,2002, 3:707-712.
[23]Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited[J].Nat Rev Cancer.2003,6:453-8.
[24]Joyce JA,et al. Microenvironmental regulation of metastasis[J].Nat Rev Cancer,2009,9:239-352.
[25]Chang YS.Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Proc[J].Natl Acad Sci, 2000,26:14608-13.
[26]Berezovskaya O.Increased expression of apoptosis inhibitor protein XIAP contributes to anoikis resistance of circulating human prostate cancer metastasis precursor cells[J].Cancer Re,6:2378-2386.
[27]Pantel K.Detection, clinical relevance and specific biological properties of disseminating tumour cells[J].Nat Rev Cancer,2008, 5:329-40.
[28]Franklin WA.Incidence of tumor-cell contamination in leukapheresis products of breast cancer patients mobilized with stem cell factor and granulocyte colony-stimulating factor (G-CSF)or with G-CSF alone[J].Blood,1999,94:340-347.
[29]Alix C.Circulating tumor cells and circulating tumor DNA[J].Annu Rev Med,2012,63:199-215.
[30]Vona G, Sabile A, Louha M,et al. Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells[J].Am J Pathol,2000,1:57-63.
[31]Zheng S.3D-microfilter device for viable circulating tumor cell (CTC) enrichment from blood[J].Biomed Microdevices.2011,1:203-13.
[32]Zheng S.Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells[J].Chromatogr A,2007,2:154-161.
[33]Bhagat AA.Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation[J].Lab Chip,2011,11:1870-1878.
[34]Moon HS.Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF)and dielectrophoresis (DEP)[J].Lab Chip, 2011,11:1118-25.
[35]Tan SJ.Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients[J].Biosens. Bioelectron.2010.26:1701-1705.
[36]Nagrath S.Isolation of rare circulating tumour cells in cancer patients by microchip technology[J].Nature 2007;450:1235-1239.
[37]Stott SL.Isolation of circulating tumor cells using a microvortex-generating herringbone-chip.Proc Natl Acad Sci USA.43:18392-18397.
[38]Parkinson DR.Considerations in the development of circulating tumor cell technology for clinical use[J].J TranMed,2010,1:138.
[39]Pachmann K.An increase in cell number at completion of therapy may develop as all indicator of early relapse.J Cancer Res Clin Oncol,2008,1: 59-65.
[40]Alix- C, Vendrell JP, Slijper M, et al. Full-length cytokeratin-19 is released by human tumor cells: a potential role in metastatic progression of breast cancer. Breast Cancer Res.2009.11:R39.
[41]Krivacic RT.A rare-cell detector for cancer. Proc[J].Natl Acad Sci 2004.101:10501-10504.
[42]Ntouroupi TG, et al.Detection of circulating tumour cells in peripheral blood with an automated scanning fluorescence microscope[J].Br.J.Cancer, 2008.99:789-95.
[43]Ledford H. Cancer theory faces doubts. Nature.2011,472:273.
[44]Pecot CV. A novel platform for detection of CK+ and CK- CTCs[J].Cancer Discov.2011,7:580-6.
[45]Eccles SA Welch DR. Metastasis: recent discoveries and novel treatment strategies[J]. Lancet,2007,1742-57.
[46]Cormio G.Distant metastases in ovarian carcinoma[J].Int J Gynecol Cancer.2003,2:125-9.
編輯/張燕