數(shù)學(xué)是由概念與命題等內(nèi)容組成的知識體系。它是一門以抽象思維為主的學(xué)科,而概念又是這種思維的語言。因此概念教學(xué)是中學(xué)數(shù)學(xué)中至關(guān)重要的一項內(nèi)容,是基礎(chǔ)知識和基本技能教學(xué)的核心,正確理解概念是學(xué)好數(shù)學(xué)的基礎(chǔ),學(xué)好概念是學(xué)好數(shù)學(xué)最重要的一環(huán)。從一定意義上說,數(shù)學(xué)水平的高低,取決于對數(shù)學(xué)概念掌握的程度。
那么,作為教師應(yīng)如何進行數(shù)學(xué)概念的教學(xué)呢?
一、注重概念的本源,概念產(chǎn)生的基礎(chǔ)。
每一個概念的產(chǎn)生都有豐富的知識背景,舍棄這些背景,直接拋給學(xué)生一連串的概念是傳統(tǒng)教學(xué)模式中司空見慣的做法,這種做法常常使學(xué)生感到茫然,丟掉了培養(yǎng)學(xué)生概括能力的極好機會。由于概念本身具有的嚴密性、抽象性和明確規(guī)定性,傳統(tǒng)教學(xué)中往往比較重視培養(yǎng)思維的邏輯性和精確性,在方式上以“告訴”為主讓學(xué)生“占有”新概念,置學(xué)生于被動地位,使思維呈依賴,這不利于創(chuàng)新型人才的培養(yǎng)?!皩W(xué)習(xí)最好的途徑是自己去發(fā)現(xiàn)”。學(xué)生如能在教師創(chuàng)設(shè)的情景中像數(shù)學(xué)家那樣去“想數(shù)學(xué)”,“經(jīng)歷”一遍發(fā)現(xiàn)、創(chuàng)新的過程,那么在獲得概念的同時還能培養(yǎng)他們的創(chuàng)造精神。由于概念教學(xué)在整個數(shù)學(xué)教學(xué)中起著舉足輕重的作用,我們應(yīng)重視在數(shù)學(xué)概念教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維。引入是概念教學(xué)的第一步,也是形成概念的基礎(chǔ)。概念引入時教師要鼓勵學(xué)生猜想,即讓學(xué)生依據(jù)已有的材料和知識作出符合一定經(jīng)驗與事實的推測性想象,讓學(xué)生經(jīng)歷數(shù)學(xué)家發(fā)現(xiàn)新概念的最初階段。牛頓曾說:“沒有大膽的猜想,就做不出偉大的發(fā)現(xiàn)?!辈孪胱鳛閿?shù)學(xué)想象表現(xiàn)形式的最高層次,屬于創(chuàng)造性想象,是推動數(shù)學(xué)發(fā)展的強大動力,因此,在概念引入時培養(yǎng)學(xué)生敢于猜想的習(xí)慣,是形成數(shù)學(xué)直覺,發(fā)展數(shù)學(xué)思維,獲得數(shù)學(xué)發(fā)現(xiàn)的基本素質(zhì),也是培養(yǎng)創(chuàng)造性思維的重要因素。如,在立體幾何中異面直線距離的概念,傳統(tǒng)的方法是給出異面直線公垂線的概念,然后指出兩垂足間的線段長就叫做兩條異面直線的距離。教學(xué)可以先讓學(xué)生回顧一下過去學(xué)過的有關(guān)距離的概念,如兩點之間的距離,點到直線的距離,兩平行線之間的距離,引導(dǎo)學(xué)生思考這些距離有什么特點,發(fā)現(xiàn)共同的特點是最短與垂直。然后,啟發(fā)學(xué)生思索在兩條異面直線上是否也存在這樣的兩點,它們間的距離是最短的?如果存在,應(yīng)當有什么特征?于是經(jīng)過共同探索,得出如果這兩點的連線段和兩條異面直線都垂直,則其長是最短的,并通過實物模型演示確認這樣的線段存在,在此基礎(chǔ)上,自然地給出異面直線距離的概念。這樣做,不僅使學(xué)生得到了概括能力的訓(xùn)練,還嘗到了數(shù)學(xué)發(fā)現(xiàn)的滋味,認識到距離這個概念的本質(zhì)屬性。
二、概念的教學(xué)中注重思維品質(zhì)的培養(yǎng)
如何設(shè)計數(shù)學(xué)概念教學(xué),如何在概念教學(xué)中有效地培養(yǎng)和開發(fā)學(xué)生的思維品質(zhì),是我們在教學(xué)中經(jīng)常遇到并必須解決的問題.本文試圖以“兩條異面直線所成的角”一課的教學(xué)設(shè)計為例,談?wù)劯拍罱虒W(xué)中各個階段上培養(yǎng)思維能力,優(yōu)化思維品質(zhì)的一點粗淺體會.
1.展示概念背景,培養(yǎng)思維的主動性,思維的主動性,表現(xiàn)為學(xué)生對數(shù)學(xué)充滿熱情,以學(xué)習(xí)數(shù)學(xué)為樂趣,在獲得知識時有一種愜意的滿足感. 2.創(chuàng)設(shè)求知情境,培養(yǎng)思維的敏捷性思維的敏捷性表現(xiàn)在思考問題時,以敏銳地感知,迅速提取有效信息,進行“由此思彼”的聯(lián)想,果斷、簡捷地解決問題. 3.精確表述概念,培養(yǎng)思維的準確性思維的準確性是指思維符合邏輯,判斷準確,概念清晰。新概念的引進解決了導(dǎo)引中提出的問題.學(xué)生自己參與形成和表述概念的過程培養(yǎng)了抽象概括能力. 4.解剖新概念,培養(yǎng)思維的縝密性思維的縝密性表現(xiàn)在抓住概念的本質(zhì)特征,對概念的內(nèi)涵與外延的關(guān)系全面深刻地理解,對數(shù)學(xué)知識結(jié)構(gòu)的嚴密性和科學(xué)性能夠充分認識. 5.運用新概念,培養(yǎng)思維的深刻性。6.分析錯解成因,培養(yǎng)思維的批判性。思維的批判是指思維嚴謹而不疏漏,能準確地辨別和判斷,善于覓錯、糾錯,以批判的眼光觀察事物和審視思維的活動.
三、針對概念的特點采用靈活的教學(xué)方法
對不同概念的教學(xué),在采用不同的教學(xué)方法和模式上下工夫。概念教學(xué)主要是要完成概念的形成和概念的同化這兩個環(huán)節(jié)。新知識的概念是學(xué)生初次接觸或較難理解的,所以在教學(xué)時應(yīng)先列舉大量具體的例子,從學(xué)生實際經(jīng)驗的肯定例證中,歸納出這一類事物的特征,并與已有的概念加以區(qū)別和聯(lián)系,形成對這一特性的一種陳述性的定義,這就是形成一種概念的過程。在這一過程中同時要做到與學(xué)生認知結(jié)構(gòu)中原有概念相互聯(lián)系、作用,從而領(lǐng)會新概念的本質(zhì)屬性,獲得新概念,這就是概念的同化。在進行數(shù)學(xué)概念教學(xué)時,最能有效促進學(xué)生創(chuàng)新能力的主要是對實例的歸納及辨析。通過對實例的歸納和辨析對新問題的特性形成陳述性的理解,繼而與原有的知識結(jié)構(gòu)相互聯(lián)系,完成概念形成的兩個步驟。