劉雅昕 李單青
【摘 要】非小細胞肺癌(non-small cell lung carcinoma,NSCLC)的藥物治療目前仍以含鉑雙藥聯(lián)合化療為標準治療方案,但多項研究表明,化療藥物對于NSCLC的療效達到瓶頸。在這樣的背景下,通過干預(yù)表皮生長因子受體(epidermal growth factor receptor,EGFR)酪氨酸激酶信號轉(zhuǎn)導(dǎo)以治療NSCLC的酪氨酸激酶抑制劑(tyrosine kinase inhibitor,TKI)逐漸成為我們關(guān)注的焦點。但無論近期療效如何,最終患者都不可避免的產(chǎn)生耐藥及病情進展。因此,了解 EGFR-TKI 耐藥機制有利于指導(dǎo)臨床制定克服耐藥的策略。故本文對EGFR-TKI的耐藥機制進行綜述。
【關(guān)鍵詞】 表皮生長因子受體; 非小細胞肺癌; 酪氨酸激酶抑制劑; 耐藥; 突變
【中圖分類號】R734 【文獻標識碼】A 【文章編號】1004-7484(2014)04-01890-03
【Abstract】Nowadays ,the standard option for non-small cell lung carcinoma(NSCLC) is still Platinum-based double drug combination chemotherapy, the efficiency of chemotherapy,however,has hit a plateau .In this situation,tyrosine kinase inhibitor(TKI) which treats NSCLC through interrupting epidermal growth factor receptor(EGFR)signaling gradually becomes our focus .However it will eventually develop resistance to these TKIs and the disease will progress simultaneously. Therefore,understanding the resistance mechanisms of EGFR-response to TKIs will guide the clinic.In this paper, we summarize the mechanisms of resistance to EGFR TKIs that have been identified to date and discusses potential therapeutic strategies to overcome EGFR TKI resistance in NSCLC patients.
【Key words】Epidermal growth factor receptor; Non-small cell lung cancer; Tyrosine kinase inhibitor; Drug resistance; Mutant
1 引言
在世界范圍內(nèi),肺癌是目前癌癥死亡的首要原因。傳統(tǒng)含鉑雙藥對于進展期肺癌的治療效果并不理想,隨著多種致癌基因的發(fā)現(xiàn),多種以突變致癌基因為目標的靶向治療藥物應(yīng)運而生。在NSCLC患者中, EGFR是較為常見的致癌基因之一,EGFR信號傳導(dǎo)通路參與調(diào)控細胞的存活、增殖、細胞侵襲及轉(zhuǎn)移等過程[1]。EGFR-TKI正是基于這一基礎(chǔ)研究的治療NSCLC的靶向藥物。IPASS、INTEREST 和SAT-URN研究分別證實EGRF突變者接受TKI治療均能明顯獲益[2]。然而,患者最終會因各種原因出現(xiàn)耐藥。本文對此進行綜述,以期為NSCLC的臨床治療及基礎(chǔ)研究提供參考。
2 EGFR 基因及其突變
EGFR 屬于EGFR受體家族,主要由胞外配體結(jié)合區(qū)、跨膜區(qū)和胞內(nèi)區(qū)構(gòu)成。EGFR-TKI是一類分子靶向藥物,可以通過和三磷酸腺苷競爭,可逆性與EGFR胞內(nèi)酪氨酸激酶結(jié)合并抑制其活性,遏制腫瘤細胞的增殖、侵襲、轉(zhuǎn)移。EGFR 是多種分子進程信號通路中主要的組成部分[3]。研究發(fā)現(xiàn),19號外顯子缺失突變和21號外顯子密碼子858替代突變(i858)對TKI高度敏感。但與此同時,也有部分突變與耐藥的機制相關(guān),如EGFR基因20外顯子768~774位插入突變可導(dǎo)致腫瘤細胞對EGFR-TKI的敏感性降低,引起EGFR-TKI原發(fā)性耐藥,EGFR基因二次突變則與繼發(fā)性耐藥有關(guān)[4]。
3 EGFR-TKIs 的耐藥機制
3.1.原發(fā)性耐藥
原發(fā)性耐藥即患者對首次使用TKI治療無反應(yīng),在癥狀改善、病灶控制和生存時間等方面未獲得明顯益處。其原因主要包括:
3.1.1.EGFR耐藥突變
臨床研究[5]證實,EGFR突變陽性的NSCLC對吉非替尼或厄洛替尼的治療有效率為70%-80%,而野生型患者的有效率僅約10%-20%,因而,不少患者對EGFR-TKIs存在著原發(fā)性耐藥,某些EGFR突變也可以引起NSCLC對EGFR-TKIs耐藥,如治療前存在EGFR20外顯子插人突變提示原發(fā)性耐藥[6]。
3.1.2.RAS基因突變的存在。
在亞洲,這一人群的比例<10%[7]。ras基因編碼的蛋白家族與 MAPK、STAT3及PI3K等信號分子相互作用,在調(diào)控細胞生長、分化和凋亡中起到重要作用。在 EGFR下游信號通路中,ras通過活化Raf激酶和MAPK促進細胞增殖,導(dǎo)致對 EGFR-TKI 耐藥[8]。 Pao等[9]曾收集了60例首次接受TKI單藥化療的肺腺癌患者,在38例對TKI不敏感的患者中,9例存在K-RAS的基因突變;而在客觀緩解的21例患者中,均無K-RAS的突變。由此可以推斷,K-RAS突變與肺腺癌患者TKI原發(fā)性耐藥密切相關(guān)。
3.1.3.B-Raf基因突變
B-Raf基因全稱鼠類肉瘤濾過性毒菌致癌同源體B1(vraf murine sarcoma viral oncogene homologB1),是EGFR信號通路中位于K-ras下游的一個基因。B-Raf編碼MAPK通路中的絲氨酸蘇氨酸蛋白激酶,將信號從Ras轉(zhuǎn)導(dǎo)至MEK1/2,參與調(diào)控細胞的生長、增殖與分化。B-Raf基因在非小細胞肺癌中的突變率為1%~3%,突變多為15外顯子第1 799位核苷酸上T替換成A,導(dǎo)致谷氨酸被纈氨酸所取代(V600E)[10]。B-Raf突變可導(dǎo)致10%~15%的K-ras野生型非小細胞肺癌患者發(fā)生EGFR-TKI原發(fā)性耐藥。
3.1.4.HER2基因突變
人類表皮生長因子受體2(human epid-ermal growth factor receptor-2,HER2),又稱c-erbB-2基因,是表皮生長因子受體家族成員之一。HER2具有酪氨酸激酶活性,可與EGFR構(gòu)成異源二聚體,激活酪氨酸激酶,使受體自身磷酸化,活化下游信號分子,促進腫瘤細胞生長、增殖及分化。突變的HER2具有更強的受體活性和信號轉(zhuǎn)導(dǎo)能力,可降低EGFR-TKI治療效果,導(dǎo)致原發(fā)耐藥[11]。
3.1.5.EML4-ALK
棘皮動物微管相關(guān)蛋白樣4( echinoderm microtubule associated protein like 4,EML4)間變性淋巴瘤激酶( anaplastic lymphomakinase,ALK)融合基因( EML4-ALK)是NSCLC中新發(fā)現(xiàn)的癌變驅(qū)動基因[12]。在 NSCLC 患者中有約3% ~ 7% 的患者含有該融合基因,由于EML4-ALK 融合基因通過激活Ras/Mek/Erk、PI3K/Akt及STAT3的信號通路產(chǎn)生致瘤作用[13],使得存在該融合基因的患者使用TKI并不能抑制Akt的活化。
3.1.6.其他學說
其他可能的原發(fā)耐藥機制還有ROS1基因重排, KIF5B-RET基因融合, NF-κB信號途徑的激活。
3.2.獲得性耐藥
EGFR—TKI獲得性耐藥的定義目前仍有爭議。目前認為EGFR—TKIs治療有確切的臨床獲益,按照RECIST或WHO標準疾病進展后,繼續(xù)單藥EGFR-TKIs治療至少30天無效。
3.2.1.EGFR 基因的二次突變
3.2.1.1.T790M突變
目前最普遍認同的是二次突變學說,EGFR基因20外顯子在吉非替尼治療過程中出現(xiàn)二次突變,導(dǎo)致EGFR 790位的蘇氨酸被甲硫氨酸所取代。構(gòu)成了空間位阻,阻礙了TKI和EGFR-TK相應(yīng)位點的競爭性結(jié)合,而ATP與酪氨酸激酶的結(jié)合則不受影響,使得激酶可以繼續(xù)磷酸化[14]。Pao 等[15]回顧性分析了 155 例 NSCLC 患者治療前腫瘤組織的EGFR,結(jié)果無一例攜帶 T790M 突變。Bell等人[16]在研究之后指出:T790M并非致癌性突變,其在腫瘤早期可能僅以微小克隆的形式存在于癌組織中,隨著敏感克隆被TKI清除而被保留下來并進一步擴增,從而在腫瘤發(fā)展的繼承階段起重要作用。
3.2.1.2.非T790M突變
繼發(fā)性耐藥突變還有D761Y、L858R、L747S、E884K及G796A等,它們的總發(fā)生率小于5%。與T790M突變相比,其耐藥可能性要小很多[17]。一項關(guān)于L858R、L747S和L858R、D761Y突變的體外臨床試驗顯示,當吉非替尼或厄洛替尼達到1uM時,可以阻止這些突變,提示可以通過TKI的劑量轉(zhuǎn)換來解決對TKI的耐藥[18]。
3.2.2.c-Met 的擴增
2007年,Dana-Farber腫瘤研究中心報道了MET基因的擴增可能與TKI的獲得性耐藥有關(guān)。MET是肝細胞生長因子(hepatocyte growth factor,HGF)受體,與腫瘤的擴增、侵襲和轉(zhuǎn)移有關(guān)。MET基因擴增在未經(jīng)治療的NSCLC中很少見,但卻存在于對TKI產(chǎn)生獲得性耐藥的部分病例中,提示其與另一種新的耐藥機制有關(guān)[19]。Met 擴增通過EGFR3 介導(dǎo)的PI3K/蛋白激酶B 信號通路促進腫瘤細胞的增殖; 相對于未接受治療的肺癌患者,伴有吉非替尼耐藥的NSCLC 患者中Met 基因擴增會被更頻繁的檢出[20]。癌基因 Met 的擴增導(dǎo)致 20% 的EGFR 突變的 NSCLC 患者 TKI 耐藥,且與 T790M 突變無關(guān)。Engelman 等[21]構(gòu)建一株開始對吉非替尼敏感但暴露在遞增濃度的吉非替尼6 個月后產(chǎn)生耐藥克隆的細胞株,其耐藥原因是 Met 基因的擴增。這提示未來臨床設(shè)計的 EGFR-TKI 獲得性耐藥的抑制劑不僅要阻斷 EGFR T790M 突變通路,還需要阻斷 MET/ErbB3/PI3K 信號軸。
3.2.3.pten基因突變
張力蛋白同源的 10 號染色體缺失的磷酸酶基因(phosphatase and tensin homology deleted onchromosome ten,PTEN)是一個抑癌基因,其表達產(chǎn)物具有抑制腫瘤的作用,能夠負向調(diào)控Akt,控制細胞的增殖與生存,在 PI3K / Akt 通路中具有重要的作用。早在 2005 年 Kokubo 等[22]即發(fā)現(xiàn)PTEN 低表達與吉非替尼獲得性耐藥相關(guān)。Endoh等[23]的一項研究也顯示在吉非替尼治療的患者中PTEN 高表達者生存期較長。而 EGFR 激活突變的患者若存在 PTEN 缺失,EGFR-TKI 治療效果亦不佳[24]。Cappuzzo 等[25]在 93 例經(jīng)吉非替尼治療的NSCLC 患者中檢測出 19 例存在 PTEN 缺失,但客觀有效率、疾病進展時間及生存時間與 PTEN 陽性患者比較未顯示有明顯差異。研究顯示,PTEN 可通過激活 Akt 導(dǎo)致 EGFR-TKI 耐藥[26]。另外,最近有學者在 PC9 與 PC9 耐藥細胞株中發(fā)現(xiàn)核轉(zhuǎn)錄因子EGR1 的低表達導(dǎo)致了 PTEN 表達降低[27],也可能是引起 TKI 耐藥的機制之一。NSCLC 患者中,PTEN 基因表達喪失( < 5%) ,使得蛋白激酶 B 過度表達而抵抗凋亡,進而對 EGFR-TKI 產(chǎn)生耐藥[28].
3.2.4.PIK3CA基因突變
PIK3CA基因編碼I類磷脂酰肌醇-3-激酶(phosphatidylino-sitol 3-kinases,PI3Ks)的催化亞基,由生長因子受體如EGFR、胰島素受體等激活?;罨腜I3Ks磷酸化4,5-二磷酸磷脂酰肌醇(phosphatidylinositol 4,5-bisphosphate,PIP2),生成第二信使3,4,5-三磷酸磷脂酰肌醇(PIP3)并激活A(yù)kt、GSK-3β、mTOR、FH等下游分子,調(diào)控細胞的成長、增殖、分化、黏附和遷移[29]。PIK3CA的突變多發(fā)生于9號外顯子編碼的螺旋區(qū)和20號外顯子編碼的激酶區(qū)[30]。研究表明PIK3CA基因突變可導(dǎo)致PI3K-Akt信號傳導(dǎo)通路持續(xù)激活,致使腫瘤細胞對EGFR-TKI的敏感性降低,發(fā)生EGFR-TKI耐藥[31]。
3.2.5.上皮間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)
EMT 在腫瘤的發(fā)展與轉(zhuǎn)移中起著重要的作用,代表上皮表型的上皮細胞鈣黏蛋白( E-cadherin) 減少,增強細胞運動及代表間質(zhì)表型的蛋白如纖維連接蛋白、波形蛋白等增多是 EMT 的主要特點。腫瘤細胞需要經(jīng)歷 EMT 才具有擴散轉(zhuǎn)移的能力。在肺腺癌中近半數(shù)的 TKI 獲得性耐藥與EMT 有關(guān)[32]。Thomson 等[33]的實驗表明 EGFR-TKI 對腫瘤細胞基礎(chǔ)水平 p-Akt 和 p-Erk 的抑制只在上皮表型的腫瘤細胞中起作用,而對間質(zhì)表型的腫瘤細胞無效。Chung 等[34]報道的 1 例 NSCLC 患者經(jīng)過近 1 年 EGFR-TKI 治療后病情復(fù)發(fā)進展。在其轉(zhuǎn)移腫瘤組織中,并未檢測出 EGFR T790M 突變或 MET 擴增等已知的獲得性耐藥機制,卻發(fā)現(xiàn)上皮細胞鈣黏蛋白缺失,波形蛋白表達增加,即出現(xiàn)EMT。這些研究均提示 EMT 與 EGFR-TKI 獲得性耐藥有著密不可分的聯(lián)系。
3.2.6.胰島素樣生長因子-1受體(insulin-like growth factor 1 receptor,IGF-1R)
IGF-1R 是一種跨膜蛋白,在腫瘤轉(zhuǎn)化及腫瘤細胞的增殖等方面起著重要作用。IGF-1R主要通過Ras/Raf /MAPK通路及PI3K/Akt通路起作用。抑制IGF-1R 能夠下調(diào)PI3K/Akt通路的信號轉(zhuǎn)導(dǎo),使吉非替尼的藥效增強[35]。抑制IGF-1R的活化或降低生存素的表達可增加NSCLC 細胞死亡。多數(shù)存在EGFR過表達的NSCLC組織伴有 IGF-1R的高表達,這些均提示IGF-1R與EGFR-TKI耐藥有關(guān),抑制 IGF-1R 的信號通路可能逆轉(zhuǎn)或延遲 NSCLC 患者的獲得性耐藥。
3.2.7.其他學說
學者還提出了一些其他可能的耐藥機制,如肝細胞生長因子過表達,雙調(diào)蛋白升高,整合素β1上調(diào), BIM 下調(diào),10號染色體q23D的缺失、細胞的程序性死亡。AXL受體酪氨酸激酶的激活等。
4 結(jié)語
雖然分子靶向治療對NSCLC的治療具有重大的意義,但隨之而來的耐藥現(xiàn)象也不可避免地為靶向治療帶來了不小的麻煩,針對于一個靶點的研究往往不能取得很好的療效, 本文所提及的耐藥機制可能只是TKI耐藥機制的冰山一角,可能發(fā)現(xiàn)某些耐藥機制之間存在交互作用,甚至只是同一機制的不同階段,亦或某種機制既參與原發(fā)耐藥也參與獲得性耐藥.充分了解EGFR-TKI的耐藥機制有助于尋找到能夠預(yù)測療效和指導(dǎo)治療策略的分子標志物,使得NSCLC的靶向治療效果更上一層樓。
References:
[1] Olaussen, K.A., et al., Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol, 2006. 57(3): p. 191-214.
[2] Cappuzzo, F., et al., Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol, 2010. 11(6): p. 521-9.
[3] Lin, L. and T.G. Bivona, Mechanisms of Resistance to Epidermal Growth Factor Receptor Inhibitors and Novel Therapeutic Strategies to Overcome Resistance in NSCLC Patients. Chemother Res Pract, 2012. 2012: p. 817297.
[4] Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis. Ont Health Technol Assess Ser, 2010. 10(24): p. 1-48.
[5] Mitsudomi, T. and Y. Yatabe, Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci, 2007. 98(12): p. 1817-24.
[6] Greulich, H., et al., Oncogenic transformation by inhibitor-sensitive and -resistant EGFR mutants. PLoS Med, 2005. 2(11): p. e313.
[7] Linardou, H., et al., Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol, 2008. 9(10): p. 962-72.
[8] Luo, F., et al., Mutated K-ras(Asp12) promotes tumourigenesis in Apc(Min) mice more in the large than the small intestines, with synergistic effects between K-ras and Wnt pathways. Int J Exp Pathol, 2009. 90(5): p. 558-74.
[9] Pao, W., et al., EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13306-11.
[10] Tan, Y.H., et al., Detection of BRAF V600E mutation by pyrosequencing. Pathology, 2008. 40(3): p. 295-8.
[11] Wang, S.E., et al., HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell, 2006. 10(1): p. 25-38.
[12] Soda, M., et al., Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 2007. 448(7153): p. 561-6.
[13] Li, Y., et al., Evaluation of EML4-ALK fusion proteins in non-small cell lung cancer using small molecule inhibitors. Neoplasia, 2011. 13(1): p. 1-11.
[14] Kobayashi, S., et al., EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 2005. 352(8): p. 786-92.
[15] Pao, W., et al., Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2005. 2(3): p. e73.
[16] Bell, D.W., et al., Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat Genet, 2005. 37(12): p. 1315-6.
[17] Tokumo, M., et al., Double mutation and gene copy number of EGFR in gefitinib refractory non-small-cell lung cancer. Lung Cancer, 2006. 53(1): p. 117-21.
[18] Costa, D.B., et al., Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol, 2008. 26(7): p. 1182-4; author reply 1184-6.
[19] Smolen, G.A., et al., Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2316-21.
[20] Bean, J., et al., MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A, 2007. 104(52): p. 20932-7.
[21] Engelman, J.A., et al., MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 2007. 316(5827): p. 1039-43.
[22] Kokubo, Y., et al., Reduction of PTEN protein and loss of epidermal growth factor receptor gene mutation in lung cancer with natural resistance to gefitinib (IRESSA). Br J Cancer, 2005. 92(9): p. 1711-9.
[23] Endoh, H., et al., PTEN and PIK3CA expression is associated with prolonged survival after gefitinib treatment in EGFR-mutated lung cancer patients. J Thorac Oncol, 2006. 1(7): p. 629-34.
[24] Vivanco, I., et al., The phosphatase and tensin homolog regulates epidermal growth factor receptor (EGFR) inhibitor response by targeting EGFR for degradation. Proc Natl Acad Sci U S A, 2010. 107(14): p. 6459-64.
[25] Cappuzzo, F., et al., Insulin-like growth factor receptor 1 (IGFR-1) is significantly associated with longer survival in non-small-cell lung cancer patients treated with gefitinib. Ann Oncol, 2006. 17(7): p. 1120-7.
[26] Sos, M.L., et al., PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res, 2009. 69(8): p. 3256-61.
[27] Yamamoto, C., et al., Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations. Cancer Res, 2010. 70(21): p. 8715-25.
[28] Sharma, S.V., et al., A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell, 2010. 141(1): p. 69-80.
[29] Vanhaesebroeck, B. and M.D. Waterfield, Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res, 1999. 253(1): p. 239-54.
[30] Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554.
[31] Samuels, Y., et al., Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell, 2005. 7(6): p. 561-73.
[32] Uramoto, H., et al., Epithelial-mesenchymal transition in EGFR-TKI acquired resistant lung adenocarcinoma. Anticancer Res, 2010. 30(7): p. 2513-7.
[33] Thomson, S., et al., Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. Clin Exp Metastasis, 2008. 25(8): p. 843-54.
[34] Chung, J.H., et al., Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer, 2011. 73(2): p. 176-82.
[35] Guix, M., et al., Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest, 2008. 118(7): p. 2609-19.