• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Delayed Control of Nonlinear Vibration Resonances of Single Degree of Freedom System*

    2014-04-24 10:53:16LiuCanchang劉燦昌JiHongli季宏麗SunHuiyu孫慧玉QiuJinhao裘進(jìn)浩LiuLu劉露

    Liu Canchang(劉燦昌),Ji Hongli(季宏麗),Sun Huiyu(孫慧玉) Qiu Jinhao(裘進(jìn)浩),Liu Lu(劉露)

    1.State Key Laboratory of Mechanics and Control of Mechanical Structures,College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China;2.School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo,255049,P.R.China

    1 Introduction

    In the past decade,a substantial amount of research have been carried out to understand the effects of time delay on the behavior of nonlinear dynamical systems which are controlled by the linear or nonlinear feedback controllers to mitigate the vibrations.The time delays exist not only between sampled signal output and control signal input,but also arise while the controller is calculating or performing.The intrinsic timedelays inevitably bring a defective effect on the structural vibration control.However,most researches paid attention to the defective impact caused by time delay.Research is sparse on the use of time delay for vibration attenuation control.The delayed terms of the nonlinear systems have an important role in the vibration control engineering.For this reason,understanding of the role played by delayed vibration control of the nonlinear systems is essential.

    Recently,local stability and bifurcations of the nonlinear vibration system have received considerable attention[1-2].Li et al[3]studied the response of a Duffing-Van der Pol oscillator under delayed feedback control.Ji and Leung[4]studied the primary,super-h(huán)armonic,and sub-h(huán)armonic resonances of a harmonically excited nonlinear single-degree-of-freedom(SDOF)system with two distinct time-delays in the linear state feedback.Qian and Tang[5]discussed the primary resonance and the sub-h(huán)armonic resonances of a non-linear beam under moving load based on timedelay feedback controllers.Daqaq et al[6]presented a comprehensive report on the effect of feedback delays on the non-linear vibrations of a piezoelectric actuated cantilever beam.Their work also includes the analysis of the effect of feedback delays on a beam subjected to harmonic based excitations.

    In recent years,the technique of delayed feedback control has been utilized as an effective tool in controlling vibrations of a wide variety of mechanical systems.Olgac et al[7]used the method of delayed resonators to control the vibration of mechanical system.The time-delayed acceleration feedback control was utilized to study the vibration of a continuous system[8].The timedelayed velocity feedback control technique was applied for controlling the vibration of torsional mechanisms[9].Jalili et al[10]used time-delayed feedback resonators to control the vibration of discrete multi-degree-of-freedom systems.Naik and Singru[11-12]studied the stability,Hopf bifurcation and chaotic vibration of a nonlinear oscillator with multiple time-delays.Zhao et al[13]used the delayed feedback control technique to suppress the vibration of vertical displacement in a two-degree-of-freedom nonlinear system subjected to external excitation.Active control is applied in the vibration of the linear and nonlinear vibration structures[14-15].The authors mentioned above had reservations on the selection of feedback gains and time-delays,which can enhance the control performance of nonlinear system or change the position of the bifurcation point.However,all these publications missed to report method for choosing the optimized control parameters and time delays for keeping the system stable.

    The main purpose of this paper is to present an optimum control method for SDOF nonlinear vibration system.This system takes the time delay as a control factor that can turn the defective effect into the favorable effect.This system also chooses the optimized time delay used in the vibration attenuation of an intelligent structure,which can reduce the input energy and simultaneously improve the system control effect.A method of determining the regions of the time delays and feedback gains is given based on the analysis of the stability conditions of eigenvalue equation.The control parameters are calculated by minimum optimal method,which takes the attenua-tion ratio as the objective function.Optimal controllers are designed to control the dynamic behavior of the nonlinear dynamic system.

    2 Equation Derivation

    The dimensionless equation of motion of a non-linear SDOF system subjected to a harmonic excitation with two distinct time-delays can be written as follows[4]

    where gdand gvare the feedback gain parameters of displacement and velocity,respectively.

    In the case of primary resonance,the frequency is expressed as

    By using the method of multiple scales,an approximate solution to Eq.(1)can be written as

    where Tn=εnt,n=0,1,2,….

    By substituting the Eq.(3)into Eq.(1)and equating the coefficients of like powers ofε,the following are obtained

    where Dn=?/?Tn,n=0,1,2,….

    The solution to Eq.(1)is

    where cc stands for complex conjugates.By substituting the solution of Eq.(6)into Eq.(5),the equation of the secular terms can be written as

    Letγ=σT1-β.By separating the real and imaginary parts of Eq.(7),the amplitude aand phaseγof the response governed by the following polar form of modulation equations can be expressed as

    Setting D1a=D1γ=0,the following can be obtained

    From Eqs.(10,11),the frequency-response equation can be expressed as

    The peak amplitude at primary resonance response obtained from Eq.(12)can be written as

    For the purpose of comparison,peak amplitude of nonlinear primary oscillator without control will be considered.

    The equation of motion of the nonlinear primary oscillator without control is

    The corresponding peak amplitude for the nonlinear primary oscillator without control is

    As it is difficult to find an analytical solution for a nonlinear system,the performance of the vibration controllers on the reduction of nonlinear vibrations cannot be studied using a similar procedure for discussing the ratio of response amplitude for the linear system.Therefore,an attenuation ratio is utilized to evaluate the performance of the vibration control by using aproportion of vibration peak of primary resonance with and without control.The attenuation ratio can be written as[16-17]

    In this paper,μis assumed as positive.As defined by Eq.(16),a small value of the attenuation ratio Rindicates a large reduction in the nonlinear vibrations of the primary system.A smaller attenuation rate can be obtained by selecting proper parameters for feedback gains and time delays.

    3 Design of Primary Resonance Vibration Controllers

    The stability of the solutions is determined by the eigenvalues of the corresponding Jacobian matrix of Eqs.(8,9).The corresponding eigenvalues are the roots of the equation

    The sum of two eigenvalues is-2μe,which varies with feedback gains and time delays.If μe>0,the sum of two eigenvalues is negative,which means that at least one of the two eigenvalues will have a negative real part.Based on the above analysis,the sufficient condition for ensuring the system stability is[3]

    The value of f(σe)is positive when there is no real solution to the equation f(σe)=0.By assuming,it gains

    For simplicity,the time-delays are expressed in the forms ofτ1=τandτ2=φ+ωτ.The parameterμebecomes

    As the phase of velocity is ahead of displacement byπ/2,the phase differenceφcan be assumed as π/2[4].Eq.(20)can be modified as

    Substituting Eq.(20)into Eq.(19)and considering Eq.(21),the following expression is obtained

    The region of the stable vibration control parameters can be obtained as

    When there are two real solutions to equation f(σe)=0,the solutions are

    As the image of f(σe)=0is a parabola open upwards,the inequality f(σe)>0is satisfied when σe<σ-eandσe>σ+e.By reducing or enlarging the roots of the equation f(σe)=0,the following inequalities are obtained

    Considering the formula ofσkand inequality given by Eq.(25),the stable vibration region is obtained as

    Taking into account the relationship Eq.(26),there is

    4 Optimization of Parameters for Controller Design

    The regions of feedback parameters are obtained based on the analysis of the stability conditions of nonlinear vibration system.However,the optimal control parameters of the system are difficult to obtain.Taking the attenuation ratio as the objective function,the optimal feedback control parameters can be calculated by using an optimization method.An optimal analysis is carried out by considering the cases with no solution or with two solutions for the critical equation.

    Parametric optimization design for the case of critical equation without a solution is

    Subjected to

    Parametric optimization design in the case of criti-cal equation with two solutions is

    5 Simulation Research

    This paper reports a study on the nonlinear vibration control for SDOF system.The parameters selected areα=1,ω=3.0andμ=0.05.

    Fig.1shows the variation of peak amplitude amaxwith time delays for feedback gains.It can be easily seen that amaxvaries significantly with increasing time delay.For the value of fixed amplitude of excitation and feedback gains,the amplitudes of the vibration in the regions of 0—1.2 and 2.2—3.2are smaller than those in the regions of 1.2—2.2and 3.2—3.5.For fixed timedelays,with increasing feedback gains the peak amplitude decreases.The properly selected values of time-delays and feedback gains give a smaller peak amplitude amax.

    Fig.1 Variation of amaxwith time delay for different feedback gains

    Fig.2shows the variation of attenuation ratio Rwith time-delays for different feedback gains.As evident from the figure,for a fixed amplitude value of excitation,a smaller value of the attenuation ratio Rsignifies a larger reduction in the nonlinear vibrations of the system.A properly selected value of time delays gives a larger positive value ofμeand a smaller attenuation ratio of R.

    Fig.2 Variation of Rwith time delay for different feedback gains

    Taking the attenuation ratio as the objective function,the optimal feedback control parameters can be determined by using the minimum optimal method.In the formulation of inequality Eq.(22),the value of gsτshould be positive for obtaining improvement in control performance.A larger value of gsτresults in a smaller attenuation rate of Rand a better control performance.It is also found that gsτis a function of excitation amplitude F.With increasing value of Fthe value of control parameter should be increased for reducing the vibration.The effect of the excitation amplitude on the stable minimum control parameters for three sets of time-delays is shown in Figs.3,4.The stable maximum feedback gain is shown in Fig.5.For area above the curve,the feedback gains can lead to a stable control performance while that below the curve is unstable.The stable minimum or maximum feedback gain varies with change of the time delays and amplitude of excitation.In the region of time delay 0—π/2ω,a larger value of time delay requires a smaller feedback gain to control the vibration of the system.The smallest feedback gain g can be used to reduce the vibration,therefore the optimal control time-delays can be obtained whenτ=π/2ω.The time delay can be taken as a control factor to improve the control performance as well as the feedback gains.A good control performance can be obtained by selecting optimal time delays.Fig.6shows the graphs for primary resonance of vi-bration system for three different sets of feedback gains.There is no jump or hysteresis phenomenon when gsτ=0.025or 0.035.This suggests that saddle node bifurcation and jump phenomenon can be eliminated by choosing stable values of the feedback gains.Three solutions exist when gsτ=0.005.The bending of the frequency response curves is due to jump phenomenon.Moreover,the peak amplitude of the primary resonance response at gsτ=0.035is the smallest among the three cases.The vibration controllers can effectively suppress the amplitude oscillations of the nonlinear oscillator.Hence,by choosing optimal feedback gains and time delays of the controllers,the primary resonance response of the nonlinear oscillator can be reduced.

    Fig.3 Stable minimum control parameters gτ1 for three sets of time delays

    Fig.4 Stable minimum control parameters gτ2 for three sets of time delays

    Fig.5 Stable maximum control parameters gτ3 for three sets of time delays

    Fig.6 Frequency-response graphs for primary resonance for three sets of feedback gains

    Fig.7shows the primary resonance graphs of vibration system for three different sets of the time delays.The parameters are gd=0.2,gv=0.06,and F=0.1.There is no jump or hysteresis phenomenon whenτ=π/6ωorτ=π/3ω.The saddle node bifurcation and jump phenomenon can be eliminated by choosing certain numerical values of time delays.Three solutions exist in a region of coexistence whenτ=0.The peak amplitude of the primary resonance response atτ=π/3ωis the smallest among the three cases.The time-delays chosen correctly can effectively suppress the amplitude oscillations of the nonlinear oscillator.

    Fig.7 Frequency-response graphs for primary resonance for three sets of time delays

    The amplitude of excitation Fis 0.1.It can be determined that the product of feedback gain gsτis higher than 0.025when the characteristic equation has no solution.Assumingτ=π/6ωthe optimal feedback gains can be calculated as gcτ≥0.567for the case of characteristic equation with two solutions.

    Fig.8gives the numerical result of the control performance of the nonlinear vibration system with delayed displacement and velocity controllers.It is evident that the vibration amplitude is mitigated.In the numerical calculation,the control dampingμeand tune coefficientσeare approximate replacements toμandσ,respectively.The Runge-Kutta method is used to obtain the numerical result for the vibration displacement.The feedback gains of displacement and velocity are gd=0.5,gv=0.4,respectively.The damping of the system isμ=0.1.Time delay isτ=π/3ω.The frequency of the excitation isΩ=3.1.

    Fig.8 Control performance of nonlinear vibration system with delayed displacement and velocity controllers

    6 Conclusions

    The regions of the time delays and feedback gains are obtained by enlarging or reducing the inequalities of production of eigenvalue equation roots.Taking the attenuation ratio as the objective function,the optimal control parameters of feedback gains and time delays are determined using the method of minimum optimal attenuation ratio.

    Time-delays feedback control is a singlechannel control strategy and its design is relatively simple.Compared to damping force controller,the delayed controller is controlled with two parameters(feedback gains parameter and time delayed parameter)which can be independently adjusted.Therefore,the scope of design and adjustment are much wider.A delayed circuit is used in the controller algorithm and it has simple structure,low energy consumption and is easy to implement.

    [1] Hu H Y,Dowell E H,Virgin L N.Resonances of a harmonically forced Duffing oscillator with the timedelay state feedback[J].Nonlinear Dynamics,1998,15:311-327.

    [2] Xu J,Pei L J.Advances in dynamics for delayed system[J].Advanced Mechanics,2006,36:17-30.(in Chinese)

    [3] Li X Y,Ji J C,Hansen C H.The response of a Duffing-van der Pol oscillator under delayed feedback control[J].Journal of Sound and Vibration,2006,291:644-655.

    [4] Ji J C,Leung A Y T.Responses of a non-linear s.d.o.f.system with two time-delays in linear feedback control[J].Journal of Sound and Vibration,2002,253:985-1000.

    [5] Qian C Z,Tang J S.A time delay control for a nonlinear dynamic beam under moving load[J].Journal of Sound and Vibration,2008,309:1-8.

    [6] Daqaq M F,Alhazza K A,Arafat H N.Non-linear vibrations of cantilever beams with feedback delays[J].J Nonlinear Mechanics,2008,43:962-978.

    [7] Olgac N,Hoim-Hansen B.A noval active vibration absorption technique:Delayed resonator[J].Journal of Sound and Vibration,1994,176:93-104.

    [8] Olgac N,Jalili N.Modal analysis of flexible beams with delayed resonator vibration absorber:theory and experiments[J].Journal of Sound and Vibration,1998,218(2):307-331.

    [9] Hosek M,Elmali H,Olgac N.Tunable torsional vibration absorber:the centrifugal delayed resonator[J].Journal of Sound and Vibration,1997,205(2):151-165.

    [10]Jalili N,Olgac N.Multiple delayed resonator vibration absorbers for multi-degree-of-freedom mechanical structures[J].Journal of Sound and Vibration,1999,223(4):567-585.

    [11]Naik R D,Singru P M.Resonance,stability and chaotic vibration of a quarter-car vehicle model with time-delay feedback[J].Commun Nonlinear Sci Numer Simulat,2011(16):3397-3410.

    [12]Naik R D,Singru P M.Stability and Hopf bifurcation of a Nonlinear oscillator with multiple time-delays[J].Chaos,Solitons and Fractals,2012(45):1387-1396.

    [13]Zhao Y Y,Xu J.Effects of delayed feedback control on nonlinear vibration absorber system[J].Journal of Sound and Vibration,2007(308):212-230.

    [14]Chen T,Wang L G,F(xiàn)eng G F.Active vibration control of two-beam structures[J].Transactions of Nanjing University of Aeronautics and Astronautics,2013,30(2):193-201.

    [15]Hu Y Y,Jiang C S.Robust control of a class of nonlinear system with time-varying parametric uncertainties[J].Transactions of Nanjing University of Aeronautics and Astronautics,2003,20(1):97-102.

    [16]Ji J C,Zhang N.Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber[J].Journal of Sound and Vibration,2010,329:2044-2056.

    [17]Ji J C,Zhang N.Suppression of super-h(huán)armonic resonance response using a linear vibration Absorber[J].Mechanics Research Communications,2011(38):411-416.

    婷婷亚洲欧美| 99久国产av精品| 99精品久久久久人妻精品| 亚洲性夜色夜夜综合| 91麻豆精品激情在线观看国产| 搡女人真爽免费视频火全软件 | 1024手机看黄色片| 桃色一区二区三区在线观看| 国产伦在线观看视频一区| 欧美日韩黄片免| 少妇被粗大猛烈的视频| 国产精品一及| 国产免费av片在线观看野外av| 精品人妻1区二区| 永久网站在线| 搞女人的毛片| 国产精品1区2区在线观看.| 免费看光身美女| 少妇的逼水好多| 小蜜桃在线观看免费完整版高清| 啦啦啦观看免费观看视频高清| 蜜桃亚洲精品一区二区三区| 高潮久久久久久久久久久不卡| 国产色婷婷99| 91在线观看av| 婷婷精品国产亚洲av| 999久久久精品免费观看国产| 日本免费一区二区三区高清不卡| 亚洲 国产 在线| 久久人人精品亚洲av| 3wmmmm亚洲av在线观看| 男女下面进入的视频免费午夜| avwww免费| 亚洲,欧美精品.| 色综合站精品国产| 一区二区三区四区激情视频 | 97超视频在线观看视频| 一进一出好大好爽视频| 久久久久久久久大av| 十八禁网站免费在线| 亚洲,欧美精品.| 我的女老师完整版在线观看| 亚洲熟妇熟女久久| 欧美黑人欧美精品刺激| 亚洲熟妇中文字幕五十中出| 久久久成人免费电影| 国产主播在线观看一区二区| 久久99热这里只有精品18| 在线观看一区二区三区| 男女做爰动态图高潮gif福利片| 他把我摸到了高潮在线观看| 男女做爰动态图高潮gif福利片| 男女下面进入的视频免费午夜| 男女床上黄色一级片免费看| 最近视频中文字幕2019在线8| 毛片一级片免费看久久久久 | 热99在线观看视频| 国产精品免费一区二区三区在线| 国产精品av视频在线免费观看| 又粗又爽又猛毛片免费看| 久久精品国产亚洲av涩爱 | 日韩精品青青久久久久久| 十八禁网站免费在线| 真人一进一出gif抽搐免费| 国产在线精品亚洲第一网站| 国产爱豆传媒在线观看| 高清日韩中文字幕在线| 精品久久久久久久久av| 婷婷六月久久综合丁香| 亚洲av美国av| 97超视频在线观看视频| 琪琪午夜伦伦电影理论片6080| 精品久久久久久久久av| 亚洲熟妇中文字幕五十中出| 精品乱码久久久久久99久播| 变态另类丝袜制服| 99在线人妻在线中文字幕| 亚洲综合色惰| 久久精品国产亚洲av香蕉五月| 村上凉子中文字幕在线| 美女黄网站色视频| 久久性视频一级片| 天堂av国产一区二区熟女人妻| 亚洲成人免费电影在线观看| 中文字幕久久专区| 国产精品伦人一区二区| 国产欧美日韩一区二区精品| 蜜桃亚洲精品一区二区三区| 免费在线观看日本一区| 日本熟妇午夜| 亚洲成人久久性| 人人妻,人人澡人人爽秒播| av欧美777| 亚洲片人在线观看| 国产精品av视频在线免费观看| 久久中文看片网| 亚洲熟妇熟女久久| 美女 人体艺术 gogo| 少妇的逼水好多| 亚洲精品一区av在线观看| 国产精品爽爽va在线观看网站| 精品无人区乱码1区二区| 亚洲午夜理论影院| 亚洲片人在线观看| 国产淫片久久久久久久久 | 日本 av在线| 欧美黑人巨大hd| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕| 成人美女网站在线观看视频| 99久久成人亚洲精品观看| 欧美极品一区二区三区四区| 久久国产精品人妻蜜桃| 亚洲第一区二区三区不卡| 高清日韩中文字幕在线| 男人和女人高潮做爰伦理| 啦啦啦观看免费观看视频高清| 国产精品综合久久久久久久免费| 中文字幕熟女人妻在线| 免费看日本二区| 亚洲经典国产精华液单 | 啦啦啦观看免费观看视频高清| 12—13女人毛片做爰片一| 成年女人永久免费观看视频| 婷婷丁香在线五月| 久久香蕉精品热| 日本一本二区三区精品| 国产熟女xx| av天堂在线播放| 亚洲av免费在线观看| 欧美性猛交黑人性爽| 嫩草影院精品99| 欧美成人a在线观看| 久久久久九九精品影院| 免费看日本二区| 成年免费大片在线观看| 亚洲三级黄色毛片| 国产乱人伦免费视频| 亚洲 国产 在线| 国产高清激情床上av| 国产精品三级大全| 美女cb高潮喷水在线观看| 好男人在线观看高清免费视频| 少妇人妻精品综合一区二区 | 亚洲性夜色夜夜综合| 69av精品久久久久久| 亚洲av免费高清在线观看| 性欧美人与动物交配| 久久久久久久久中文| 国产男靠女视频免费网站| 免费看美女性在线毛片视频| 国产高清三级在线| 丁香欧美五月| 午夜老司机福利剧场| 天堂网av新在线| 日韩中文字幕欧美一区二区| 91av网一区二区| 亚洲国产欧洲综合997久久,| 日本免费a在线| 国产真实乱freesex| 中文字幕高清在线视频| 精品久久久久久久久亚洲 | 日韩欧美国产在线观看| 成人av一区二区三区在线看| 九色成人免费人妻av| 一边摸一边抽搐一进一小说| 一级黄片播放器| 亚洲国产精品久久男人天堂| 在线播放无遮挡| 精品久久久久久久久亚洲 | 日韩欧美国产在线观看| 人人妻,人人澡人人爽秒播| 欧美zozozo另类| 久久国产精品人妻蜜桃| 亚洲欧美日韩无卡精品| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 欧美黄色片欧美黄色片| 中文字幕精品亚洲无线码一区| 天天一区二区日本电影三级| 国产一区二区激情短视频| 亚洲第一欧美日韩一区二区三区| 99久久久亚洲精品蜜臀av| 少妇裸体淫交视频免费看高清| 免费黄网站久久成人精品 | 97超级碰碰碰精品色视频在线观看| 老熟妇乱子伦视频在线观看| 亚洲18禁久久av| 日本撒尿小便嘘嘘汇集6| 国产精品1区2区在线观看.| 国产黄a三级三级三级人| 免费看日本二区| 久久精品91蜜桃| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 久久精品国产自在天天线| 毛片女人毛片| 国产成+人综合+亚洲专区| 我的女老师完整版在线观看| 如何舔出高潮| 国产爱豆传媒在线观看| 亚洲精品久久国产高清桃花| 赤兔流量卡办理| 热99在线观看视频| 最新在线观看一区二区三区| 亚洲经典国产精华液单 | 成人高潮视频无遮挡免费网站| 久久精品国产亚洲av香蕉五月| 日日干狠狠操夜夜爽| 亚洲天堂国产精品一区在线| 3wmmmm亚洲av在线观看| 亚洲人成伊人成综合网2020| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 亚洲五月天丁香| 波多野结衣巨乳人妻| 男女做爰动态图高潮gif福利片| 亚洲成人久久爱视频| 国产黄片美女视频| 成年女人永久免费观看视频| 真实男女啪啪啪动态图| www日本黄色视频网| 禁无遮挡网站| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区免费观看 | 亚洲国产精品久久男人天堂| 免费在线观看影片大全网站| 精品免费久久久久久久清纯| 欧美高清成人免费视频www| 久久婷婷人人爽人人干人人爱| 一进一出抽搐动态| av天堂中文字幕网| 亚洲av熟女| 国产精品电影一区二区三区| 国产精品一及| 精品久久久久久成人av| 日本与韩国留学比较| 日韩高清综合在线| 欧美精品啪啪一区二区三区| 我要看日韩黄色一级片| 欧美最黄视频在线播放免费| 国产不卡一卡二| 少妇人妻精品综合一区二区 | 日本a在线网址| 怎么达到女性高潮| 九九久久精品国产亚洲av麻豆| 18禁黄网站禁片午夜丰满| 在线观看66精品国产| 热99在线观看视频| 美女cb高潮喷水在线观看| 久久久久精品国产欧美久久久| 少妇的逼水好多| 欧美区成人在线视频| 色噜噜av男人的天堂激情| 精品久久国产蜜桃| 久久精品国产99精品国产亚洲性色| 亚洲不卡免费看| 亚洲中文日韩欧美视频| 亚洲第一区二区三区不卡| 国产国拍精品亚洲av在线观看| 色综合欧美亚洲国产小说| 国产乱人视频| 久久久久九九精品影院| 黄色日韩在线| 狠狠狠狠99中文字幕| 可以在线观看毛片的网站| 亚洲美女视频黄频| 欧美成人免费av一区二区三区| 亚洲 国产 在线| 桃红色精品国产亚洲av| 久久久久国产精品人妻aⅴ院| 一进一出好大好爽视频| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 啦啦啦韩国在线观看视频| 黄色日韩在线| 嫩草影院新地址| 国产欧美日韩精品一区二区| 亚洲精品色激情综合| 亚洲av电影不卡..在线观看| 大型黄色视频在线免费观看| 国产淫片久久久久久久久 | www.999成人在线观看| 麻豆av噜噜一区二区三区| 亚洲一区二区三区色噜噜| 啪啪无遮挡十八禁网站| 欧美绝顶高潮抽搐喷水| 观看美女的网站| 久久久久久久久中文| 精品午夜福利在线看| 可以在线观看的亚洲视频| 看黄色毛片网站| 国内少妇人妻偷人精品xxx网站| 免费电影在线观看免费观看| 91久久精品国产一区二区成人| 久久99热6这里只有精品| 一本综合久久免费| 极品教师在线免费播放| 亚洲成av人片在线播放无| 国产国拍精品亚洲av在线观看| 又爽又黄a免费视频| 欧美又色又爽又黄视频| 亚洲av熟女| 两人在一起打扑克的视频| 国产综合懂色| 国产午夜福利久久久久久| 亚洲激情在线av| 狂野欧美白嫩少妇大欣赏| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 精品久久久久久久久久久久久| 757午夜福利合集在线观看| 国产男靠女视频免费网站| 观看美女的网站| 国产色婷婷99| 天堂√8在线中文| 亚洲天堂国产精品一区在线| 一进一出好大好爽视频| 亚洲不卡免费看| 婷婷色综合大香蕉| 美女高潮的动态| 亚洲 国产 在线| 一级作爱视频免费观看| 国产精品乱码一区二三区的特点| 在线免费观看的www视频| 国产人妻一区二区三区在| 亚洲国产日韩欧美精品在线观看| 国产不卡一卡二| 久久久色成人| 日韩精品中文字幕看吧| www.999成人在线观看| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 噜噜噜噜噜久久久久久91| 免费在线观看亚洲国产| 亚洲成人免费电影在线观看| 岛国在线免费视频观看| 麻豆一二三区av精品| 色吧在线观看| 欧美成人免费av一区二区三区| 欧美又色又爽又黄视频| 亚洲欧美日韩高清专用| 在线a可以看的网站| av视频在线观看入口| 国产精品人妻久久久久久| 亚洲精品色激情综合| 日本三级黄在线观看| 亚洲精品一区av在线观看| 国产人妻一区二区三区在| av福利片在线观看| 五月玫瑰六月丁香| 在线看三级毛片| 成年女人看的毛片在线观看| 哪里可以看免费的av片| 亚洲欧美精品综合久久99| 亚洲真实伦在线观看| 国产欧美日韩一区二区精品| 在线观看免费视频日本深夜| 久久久久久大精品| 国产精品亚洲av一区麻豆| 亚洲,欧美,日韩| 搡女人真爽免费视频火全软件 | 国产精品不卡视频一区二区 | 一本精品99久久精品77| 成人毛片a级毛片在线播放| 国产精品久久久久久人妻精品电影| 国产在线男女| 久久久成人免费电影| 美女高潮的动态| 日本免费一区二区三区高清不卡| 18美女黄网站色大片免费观看| 一个人免费在线观看的高清视频| 久久精品影院6| 国产又黄又爽又无遮挡在线| 欧美在线黄色| 成年免费大片在线观看| 午夜福利高清视频| 久久九九热精品免费| 国产黄片美女视频| 免费大片18禁| 国产又黄又爽又无遮挡在线| 亚洲精品日韩av片在线观看| 三级毛片av免费| 小说图片视频综合网站| 日日干狠狠操夜夜爽| 国产伦一二天堂av在线观看| 丰满人妻一区二区三区视频av| 国产v大片淫在线免费观看| 久久久久久九九精品二区国产| 久久天躁狠狠躁夜夜2o2o| 欧美+日韩+精品| a级毛片a级免费在线| 亚洲欧美日韩高清在线视频| 少妇人妻一区二区三区视频| 少妇人妻精品综合一区二区 | av福利片在线观看| 乱人视频在线观看| 淫妇啪啪啪对白视频| 成年女人看的毛片在线观看| 成人午夜高清在线视频| a级一级毛片免费在线观看| 97超视频在线观看视频| 在线播放国产精品三级| 久久国产乱子伦精品免费另类| 午夜福利视频1000在线观看| 国产精品国产高清国产av| 在线免费观看的www视频| 91av网一区二区| 99国产精品一区二区蜜桃av| 男女那种视频在线观看| 97碰自拍视频| 天天躁日日操中文字幕| 国产在线精品亚洲第一网站| 97碰自拍视频| 免费观看的影片在线观看| 欧美日本视频| 丰满人妻一区二区三区视频av| 免费看日本二区| 99国产极品粉嫩在线观看| 毛片女人毛片| 国产黄片美女视频| 国产欧美日韩精品亚洲av| 久久久国产成人精品二区| 久久精品人妻少妇| 日韩欧美精品免费久久 | 九九久久精品国产亚洲av麻豆| 免费观看的影片在线观看| 麻豆一二三区av精品| 91麻豆精品激情在线观看国产| 在线看三级毛片| 看十八女毛片水多多多| 久久精品影院6| 中文字幕免费在线视频6| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久com| 91在线观看av| 宅男免费午夜| 老司机午夜福利在线观看视频| 又粗又爽又猛毛片免费看| 性色avwww在线观看| 老司机深夜福利视频在线观看| 一个人免费在线观看电影| 观看免费一级毛片| 色噜噜av男人的天堂激情| 精品无人区乱码1区二区| 免费看光身美女| 深夜精品福利| 免费在线观看亚洲国产| 日本黄大片高清| 性色av乱码一区二区三区2| 日日摸夜夜添夜夜添小说| 国产精品一及| 国产精品久久久久久久久免 | 午夜免费激情av| 国模一区二区三区四区视频| h日本视频在线播放| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕 | 日韩亚洲欧美综合| 国产一区二区三区视频了| 亚洲精品影视一区二区三区av| 日本熟妇午夜| 亚洲性夜色夜夜综合| 午夜精品一区二区三区免费看| 亚洲激情在线av| 级片在线观看| eeuss影院久久| 两人在一起打扑克的视频| 久久精品人妻少妇| 嫁个100分男人电影在线观看| 99视频精品全部免费 在线| 亚洲黑人精品在线| 看片在线看免费视频| 久久欧美精品欧美久久欧美| 一边摸一边抽搐一进一小说| netflix在线观看网站| 男女床上黄色一级片免费看| 高清在线国产一区| 久久精品人妻少妇| 免费搜索国产男女视频| 色综合婷婷激情| 久久婷婷人人爽人人干人人爱| 欧美色视频一区免费| 在线天堂最新版资源| 成人无遮挡网站| 老司机深夜福利视频在线观看| 亚洲熟妇熟女久久| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| 欧美另类亚洲清纯唯美| 婷婷色综合大香蕉| 午夜福利成人在线免费观看| 少妇人妻一区二区三区视频| 国产亚洲欧美98| 国产男靠女视频免费网站| 国内精品久久久久久久电影| 午夜福利高清视频| 久久久国产成人免费| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 又紧又爽又黄一区二区| 性色av乱码一区二区三区2| 亚洲最大成人中文| 日本a在线网址| 国产精品99久久久久久久久| 久久精品影院6| 日本三级黄在线观看| 最好的美女福利视频网| 1024手机看黄色片| av天堂中文字幕网| 日韩av在线大香蕉| 欧美不卡视频在线免费观看| 日本a在线网址| 亚洲av五月六月丁香网| 亚洲黑人精品在线| 伦理电影大哥的女人| 亚洲欧美日韩卡通动漫| 国产精品乱码一区二三区的特点| 欧美日韩乱码在线| 亚洲色图av天堂| 午夜福利视频1000在线观看| 三级国产精品欧美在线观看| 久久九九热精品免费| av福利片在线观看| 日韩欧美精品免费久久 | 嫩草影院新地址| 久久久久免费精品人妻一区二区| 乱人视频在线观看| 欧美日本视频| 亚洲性夜色夜夜综合| 国产成+人综合+亚洲专区| 性色av乱码一区二区三区2| 国产精品99久久久久久久久| 亚洲七黄色美女视频| 757午夜福利合集在线观看| 一个人免费在线观看的高清视频| 真实男女啪啪啪动态图| 国产欧美日韩一区二区三| 欧美高清性xxxxhd video| 最好的美女福利视频网| 别揉我奶头~嗯~啊~动态视频| 国产免费一级a男人的天堂| 国产精品久久视频播放| 三级男女做爰猛烈吃奶摸视频| 女人十人毛片免费观看3o分钟| 精品日产1卡2卡| 黄色女人牲交| 国产 一区 欧美 日韩| 亚州av有码| 精品国内亚洲2022精品成人| 亚洲国产欧洲综合997久久,| 亚洲av中文字字幕乱码综合| 国产成人福利小说| 亚洲av中文字字幕乱码综合| 亚洲狠狠婷婷综合久久图片| 好看av亚洲va欧美ⅴa在| 亚洲欧美日韩卡通动漫| 夜夜看夜夜爽夜夜摸| 久9热在线精品视频| 中文字幕av成人在线电影| 午夜激情欧美在线| 自拍偷自拍亚洲精品老妇| 最新在线观看一区二区三区| 精品人妻视频免费看| 99热这里只有精品一区| 亚洲av日韩精品久久久久久密| 亚洲专区国产一区二区| 很黄的视频免费| 久久中文看片网| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩高清专用| 男女下面进入的视频免费午夜| 窝窝影院91人妻| 日本 欧美在线| 神马国产精品三级电影在线观看| 国产aⅴ精品一区二区三区波| 欧美一区二区亚洲| 国产一区二区三区视频了| 老司机福利观看| 成年女人永久免费观看视频| 欧美最新免费一区二区三区 | 99精品在免费线老司机午夜| 国产三级黄色录像| 成人一区二区视频在线观看| www.999成人在线观看| av专区在线播放| 亚洲av成人av| 亚洲欧美日韩高清在线视频| 欧美性猛交黑人性爽| 久久香蕉精品热| 亚洲第一欧美日韩一区二区三区| 国产成人福利小说| 变态另类成人亚洲欧美熟女| 欧美黄色淫秽网站| 国产成人福利小说| 在线a可以看的网站| 成年免费大片在线观看| 久久精品影院6| 波野结衣二区三区在线| 欧美色欧美亚洲另类二区| 亚洲熟妇中文字幕五十中出| 国产乱人伦免费视频| 亚洲成a人片在线一区二区| 欧美精品国产亚洲| 亚洲av二区三区四区| 欧美色欧美亚洲另类二区| 精品国产三级普通话版| 夜夜躁狠狠躁天天躁| 18禁在线播放成人免费| 老司机深夜福利视频在线观看| 女人十人毛片免费观看3o分钟| 一级黄色大片毛片| 可以在线观看的亚洲视频|