• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Time-Varying Modal Parameters for Thermo-Elastic Structure Subject to Unsteady Heating*

    2014-04-24 10:53:14SunKaipeng孫凱鵬HuHaiyan胡海巖ZhaoYonghui趙永輝
    關(guān)鍵詞:海巖

    Sun Kaipeng(孫凱鵬),Hu Haiyan(胡海巖),Zhao Yonghui(趙永輝)

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University of Aeronautics and Astronautics,Nanjing,210016,P.R.China

    1 Introduction

    Hypersonic flight vehicles are subject to very tough aerodynamic load and heating during their missions[1].The aerodynamic heating produces adverse effects on the dynamic performance of a hypersonic flight vehicle,and even results in strong vibrations or dangerous flutters[2].From the view point of structural dynamics of hypersonic flight vehicles,the severe aerodynamic heating not only reduces the mechanical properties,such as Young′s modulus,of any structural material,but also gives rise to the dangerous thermal stress in any constrained structural component.Hence,the heated structure in a hypersonic flight vehicle undergoes the change of structural stiffness in both quantity and distribution,as well as the change of modal parameters,with an increase of heating time.That is,the heated structure of a hypersonic flight vehicle is a time-varying system,which features the vibration modes with time-varying properties.

    The studies on the dynamic analysis of thermo-elastic structures,such as beams and plates,under constant or time-varying temperature environment have been quite extensive[3-8].For example,Avsec and Oblak studied how the temperature field had an impact on the vibration of beams and found that a small change of temperature might cause significant changes of natural frequencies of beams[4].Xiao and Chen analyzed the buckling and vibration problems of a thin elastic-plastic square plate with four immovably simply-supported edges in a uniform temperature field[7].Huang and Wang analyzed the modal of a variable-thickness plate under the transient thermal environment,and derived the modal parameters at different moments[8].To the best knowledge of authors,the studies on the thermoelastic structure dynamics mainly focuse on the direct problems of analysis,instead of the inverse problems,such as system identification or input identification.

    The time-varying vibration modes occur not only in the heated structure of a hypersonic flight vehicle in a real mission,but also in such a structure in a thermal-vibration test on ground.As a matter of fact,it is very difficult to keep a long steady heating for such a structure during the thermal test,especially in the case of extremely high temperature.It is thus necessary to deal with the time-varying modal problem of thermo-elastic structures.For model verification and heated structure validation,it is important to identify the time-varying vibration modes of a heated structure by its thermal-vibration measured in a ground test.

    The dynamic identification and parameter estimation for a time-varying linear system are the forefront of the inverse problem in structural dynamics.Two major kinds of methods have been developed for such inverse problems.One is the time-frequency methods,such as the Gabor transform and wavelet transform[9-13].The other is the time series methods,such as time-varying autoregressive(TVAR)method and time-varying autoregressive moving average(TVARMA)method[14-20].Approaches for estimating the TVAR parameters can be classified into two categories,namely,the adaptive algorithm and the basis function method.Even though the adaptive algorithm can track the slowly time-varying frequency or the frequency jump efficiently,they are sensitive to measurement noise and initial conditions.They also fail to track the time-varying frequencies of a system in which frequencies change very fast or change in a wide range[16].The basis function expansion and regression approach has the excellent capability of tracking time-varying system parameters[16,19-20].However,the selection of expansion dimension is questionable since there is no theoretical criterion for the selection.

    Recent attention has been paid to the practical problem for selecting order p of the autoregressive(AR)model and dimension m of the basis functions.Many criteria have been proposed because the problem of model selection arises frequently in regression analysis.Final prediction error(FPE)criterion,Akaike information criterion(AIC)and Bayesian information criterion(BIC)are the most popular methods for selecting orders[21-24].However,the FPE,AIC and BIC functions are often not strictly concave down,and sometimes are accompanied by random fluctuations,in the actual process for selecting orders[24].This problem may let the criterion function reach a certain value without any obviously changing trend,but oscillating up and down randomly,which sequentially affects the correctness and effectiveness of order selection.Furthermore,these methods cannot determine the dimension of basis functions,but only pick the order of the AR model.In this work,hence,a new method combined by BIC and grey correlation analysis(GCA)is developed to solve the problem of model selection and to determine the order and dimension concurrently.

    The work focuses on the estimation of slowly time-varying modal parameters of a thermo-elastic structure with sparse natural frequencies,such as beams and panels frequently used in hypersonic flight vehicles.Here the"slowly"means that the time scale of the temperature variation is much larger than that of the thermo-elastic structure vibration,and thermal-induced oscillation do not occur.

    2 Dynamic Equations of Thermo-Elastic Beams

    2.1 Simply-supported beam with axially movable boundary

    For simplicity,the thermo-elastic structure in this paper is a simply-supported Euler-Bernoulli beam with a constant rectangular cross-section,as shown in Fig.1,subject to a distributed excitation f(x,t)and a uniformly distributed temperature field T(x,t)≡T(t).Let l be the length of beam,Athe cross-section area of beam,and Ithe cross-section moment of inertia of beam about the axis y-y.The ordinary simply-supported beam has two axially immovable boundaries,which constrain the axial thermal expansion of the beam and greatly reduce the critical buckling temperature of it.To remove this shortcoming,it is natural to let one boundary axially movable so that the axial thermal expansion can be released.To well model the real boundary in this case,it is better to add an axial spring at the movable boundary as shown in Fig.1.

    As a result of thermal expansion,the axial thermal force Nxyields

    where ksis the stiffness coefficient of spring and minus sign means Nxis an axially compressive force.E(T)andα(T)are the Young′s modulus and the thermal expansion coefficient changing with temperature T,respectively.Trefis the reference temperature,i.e.,the room temperature.

    Using Hamilton′s principle,it is straightforward to establish the dynamic equation of the thermo-elastic beam as follows[4]

    Substituting Eq.(1)into Eq.(2)gives the transverse dynamic equation of the beam as follows

    2.2 Finite element formulation

    Eq.(3)enables one to obtain the dynamic equation modeled by FEM in the following matrix form

    where the matrices of finite element are defined by the integrals

    with the curvature interpolation matrix and the slope interpolation matrix as

    The coefficient matrix Meis the element mass matrix andis the time-varying element stiffness matrix as a result of material performance degeneration due to heating.The coefficient matrixis the time-varying element stiffness matrix due to longitudinal load Nx(t)with the thermal effect.The load vectorrepresents the equivalent nodal loads due to the external force f.For simplicity,the proportional damping is used in this paper.Now,the dynamic equation with a temperature effect taken into account reads

    3 Time-Varying Autoregressive Model

    3.1 TVAR modeling and estimation

    This subsection deals with a TVAR process(t)of order pin discrete-time as follows[14-15]

    where e(t)is a stationary white noise process with zero mean and varianceσ2,and the TVAR coefficients{ai(t),i=1,2,…,p}yield the following linear combination of a set of basis functions{gj(t),j=0,1,…,m}

    where aijare the weighted coefficients and mis the dimension of the basis functions.

    Then Eq.(9)can be expressed as

    According to the principle of least square(LS),the estimation of{aij}aims at minimizing the total squared prediction error

    Then,it is easy to get the LS estimate of{aij}

    and the LS estimate of residual variance

    Eq.(15)shows that the LS estimate requires matrix inversion and may give rise to the problems of computational cost and storage space.In practice,it is appropriate to use the recursive least square(RLS)estimation based on the estimation of previous steps.

    A variety of forgetting methods has been available so far to reduce the weight of the data in a distant past and reduce the effective memory of the RLS algorithm[25-26].In this paper,the expo-nential forgetting method with a constant forgetting factor is used so that the parameter estimation algorithm can be written as

    where the forgetting factorλis chosen in the interval(0,1],and normally close to 1.The initial value of^Aand Pcan be selected as^A0=0,P0=μI,whereμ≥1and Iis the unit matrix.

    3.2 Selection of order and dimension

    The BIC of Akaike is the most popular method for selecting orders.As shown in Ref.[24],the BIC can be expressed as

    where Nis the number of the data samplings,^σ the predicted error of the model and Ca constant larger than 1.When order pincreases,the firstitem of the right hand of Eq.(18)decreases,but the second item increases.The number p which minimizes the BIC value is regarded as the appropriate order.

    As mentioned above in Introduction,there may be several local minima in FPE,AIC and BIC values.It is therefore difficult to pick the global minimum due to the fact that the FPE,AIC and BIC functions are often not strictly concave down,and sometimes are accompanied by random fluctuations,in the actual process for selecting orders.Furthermore,BIC can only pick the order of the AR model,but cannot determine the dimension of the basis functions.Hence,in this study,BIC is used to preliminarily determine the rough scope of order p.Then,order p and dimension m are determined simultaneously by using the theory of grey systems with the definition of absolute grey correlation degree(AGCD).BIC thus reaches some minima so that the rough scope of the order number can be obtained preliminarily.After getting the scope of p,one can set up the range of dimension mas[0,8]for in-stance,and then build up the corresponding TVAR models.By means of the original LS estimator or RLS estimator,the AGCD between the TVAR model and the original signal{}can be acquired.The following steps give the definition and detailed algorithm for computing AGCD.

    Step 1 Normalize the sequences X=(k),k=1,…,N } and=(k),k=1,…,N }via their initial values.That is,let

    Step 2 Compute the absolute difference between the sequences and get the difference quotient sequences

    Step 3 Compute the relation coefficient r(tk)and the AGCD GR()

    With the increase of p and m,the AGCD increases and gets more and more close to 1.That is,a more precise TVAR model can be established when p and mbecome larger.From the viewpoint of forecasting,however,it is not appropriate to choose arbitrarily large pand m.The mean squared error of the forecasts depends not only on the white noise variance of the fitted model,which will be smaller for a higher-order model,but also on errors,which will be larger for a higher-order model,arising from estimation of the model parameters.Furthermore,the increases of pand mmay yield false modes and over fitting,respectively,and result in large amount of computations.Hence,the optimal order pand dimension mshould be determined by choosing an appropriate value of AGCD,usually about 0.9for the identification of modal parameters based on ambient excitation test.

    3.3 Determination of time-varying modal parameters

    Consider the general case of a linear structure of nddegrees of freedom,modeled by FEM,as follows

    where M,Kand Care the mass,stiffness,and damping matrices of dimension(nd×nd),respectively.q(t)and f(t)are the vectors of dimension(nd×1)for generalized displacement and external excitation,respectively.The parameter identification of Eq.(23)leads,by the application of the inverse Z-transform,to finding the parameters of a linear ARMA(2nd,2nd-1)model as follows[15]

    with

    For a time invariant structure,the coefficients ai(i=1,2,…,2nd)and bi(i=1,2,…,2nd-1)of the ARMA model are time-invariant.For a time-varying structure,however,these coefficients are time-varying.

    Base on the equivalence relation of AMAR model and infinite-order AR model,the above ARMA(2nd,2nd-1)model can be replaced by an AR(∞)to avoid the nonlinear problem for solving the coefficients of MA model.In implementation,the coefficient estimation of an AR model of enough finite-orders can approximate the true coefficients of ARMA model.The coefficients of AR part contain the characteristics of frequencies and damping ratios of the system.As the AR model is an all-pole model,the transfer function at time instant tis

    Thus,the instantaneous natural frequencies and modal damping ratios can be derived from the conjugate roots si(t),s(t)of the above transfer function as follows

    4 Numerical Simulations

    This section starts with the dynamic analysis of the beam model.The beam length,width and thickness are taken as 1,0.01and 0.01m,respectively.Furthermore,mass density,Young′s modulus,Poisson′s ratio and coefficient of thermal expansion of the beam material at the reference temperature are 2 700kg/m3,70GPa,0.3,and 2.3×10-5°C-1,respectively.Without loss of generality,the reference temperature is assumed to be 0°C in this paper.Fig.2and Fig.3show the variance of Young′s modulus[27]and coefficient of thermal expansion[28]versus temperature,respectively.

    Fig.2 Variation of Young′s modulus vs.temperature

    Fig.3 Variation of coefficient of thermal expansion vs.temperature

    To discuss the advantage of the axially movable boundary for the simply-supported beam in Section 2,the ordinary axially immovable boundary must first and foremost be studied with a small change that makes ksequivalent to infinite in Eq.(1).For simplicity,let beam A and beam B denote the simply-supported beams with two immovable boundaries and with an axially movable boundary,respectively.At the reference temperature,it is easy to obtain the first three natural frequencies of beam A,that is,23.1,92.4and 207.8Hz,respectively.One can readily get that the critical buckling temperature of beam A is only 3.57°C.Hence,beam A is easily to get buckled in a very low temperature.For this reason,attention in this paper is paid to beam B,where a spring with elastic constant 30kN/m is attached to the axially movable end of the beam.It is found that the critical buckling temperature of beam B rises to 455.7°C.Hence,all the numerical simulations hereinafter are made for beam B.

    To study the time-varying modal parameters of beam B,the first three natural frequencies at the reference temperature should be determined.In case 1,the degeneration of material performance is taken into account.In case 2,only the effect of thermal stress is considered.In case 3,both effects of material performance degeneration and thermal stress are taken into consideration.

    Fig.4shows how the first three natural frequencies of beam B change with the increase of temperature in three cases.It indicates that the natural frequencies of beam B decrease when temperature increases,where both the degeneration of material performance and the thermal stress inevitably matter.Their effects will be addressed in further discussion.

    Fig.4 Variation of natural frequencies vs.temperature in three cases

    Now,the dynamic response of beam B under a white noise excitation at the reference temperature can be computed by using the well-known Newmark-Beta algorithm.The parameters in the algorithm are set asγ=0.5,β=0.25andΔt=0.001s.Then,the random decrement technique(RDT)is used to transfer the random response to free decays of the system.After the free decays are derived,the sparse time domain(STD)algorithm can be used to estimate the natural frequencies as shown in Table 1,where the modal parameters identified via RDT-STD method are compared with those identified via TVAR method.In Table 1,the first and the second natural frequencies identified via RDT-STD method and TVAR method are both close to their true values,and errors are within 0.5%of all.

    Table 1 Natural frequencies identified via RDT-STD and TVAR at reference temperature

    Now,the study turns to the identification of time-varying natural frequencies of beam B subject to an unsteady heating.Fig.5illustrates three cases of unsteady temperature field of concern,i.e.,a linear increase,denoted as Temp 1;a linear increase followed by a constant,denoted as Temp 2;and a linear increase followed by a linear decrease,denoted as Temp 3.

    Fig.5 Variation of temperature

    To compute the dynamic response of the beam subjected to the above heating,it is necessary to interpolate the corresponding Young′s modulus and the thermal expansion coefficient of beam material according to the temperature at each time instant.Then,based on the axial equilibrium condition,it is straightforward to compute the axial thermal stress.After the material performance degradation and thermal stress are considered,the unit mass matrix,unit damping matrix,unit stiffness matrix and external force vector can all be determined.Finally,by integrating the unit matrixes into overall matrixes,the dynamic responses can be computed by using the Newmark-Beta algorithm.

    To discuss the order selection for TVAR model,the case of Temp 1is taken as an example.The sampling number Nis very large and therefore the constant number Cof BIC criterion can be taken as 30.Fig.6shows the variation of BIC value versus the order pin the case of Temp 1.When pis assigned in the interval[12,40],BIC values are small,but have fluctuations and reach several local minima.In this case,it is not possible to determine the minimal value.Hence,the order p can be preliminarily set within[12,40],and then AGCD is used to determine the order p and dimension m simultaneously.Fig.7illustrates the variant of AGCD versus p and mindicating that AGCD increases and gets more and more close to 1with the increase of p and m.When dimension mis larger than 4,AGCD barely changes with the increase of mfor a constant order p.Here,pand mcan be taken as(28,4)or(27,6)respectively,and accordingly AGCD reaches a relatively large value,0.89.The real order of time-invariant AR model after the expansion of the time-varying parameters is p×(m+1),and PNin Eq.(17)is a matrix of order p×(m+1).To decrease computation complexity,the order and dimension are taken as 28and 4,respectively.

    Fig.6 Variation of BIC

    Fig.7 Variation of AGCD vs.dimension mand order p

    For different cases of temperature variation,different order pand dimension mcan be determined simultaneously by combining BIC and AGCD.After selecting a suitable forgetting factor,the TVAR model can be established,and then the time-varying coefficients of TVAR model are derived via an RLS estimator.According to Eq.(27),the instantaneous natural frequencies can be obtained for the three cases of time-varying temperature.

    In order to have a quantitative discussion,the mean absolute percentage error(MAPE)is defined as

    where yiand^yidenote the true value produced by the direct modal analysis and the identified value at the ith time instant respectively.Nis the total number of samplings.

    Fig.8shows the instantaneous natural frequencies identified by the proposed method from the noise-free response of the TVAR model for three temperature variations.In Fig.8,the identified instantaneous frequency is capable of tracking temperature variation during the whole time duration.

    Table 2gives the MAPE of natural frequencies in noise-free measurement,which shows that the identified instantaneous natural frequencies are close to their true values with high precision as the largest MAPE of them is smaller than 5%.

    Fig.8 Instantaneous natural frequencies

    Table 2 MAPE for noise-free estimation

    In practice,the measured data always contain corrupted noise of certain level.To demonstrate the robustness of the proposed method against the measurement noise,the simulated response data are assumed to be contaminated with a Gaussian noise of zero mean.More specifically,either 1%or 5%standard deviation of the noise-to-signal ratio(NSR)is used,and NSR is defined as

    where sn is the standard deviation of the added noise and srs is the standard deviation of the response signal.In implementation,the numerical response is computed first and then the corresponding srs.Afterwards,snis determined from agiven NSR.A standard Gaussian white noise with a unit standard deviation is then generated,multiplied with the value sn,and then added to the response computed to produce the measured response.

    The comparison of the MAPEs listed in Tables 2,3and 4shows that the processing of noisy responses reveals different observations of influence on natural frequencies.With an increase of NSR,all of MAPEs increase slightly for the natural frequencies identified in this paper.For example,MAPE of the first natural frequency in the case of Temp 1changes from 1.68to 1.70and 1.75for the cases of noise-free,NSR=1%,and NSR=5%,respectively.Meanwhile,the varia-tions of MAPEs of the identified natural frequencies and their true values are small.Based on the above discussion,one can safely draw an assertion that the measurement noise does affect the identification accuracy of natural frequencies slightly.

    Table 3 MAPE for noisy estimation(NSR=1%)

    Table 4 MAPE for noisy estimation(NSR=5%)

    5 Conclusions

    A systematic identification method is proposed for the time-varying modal parameters of a kind of thermo-elastic structure with sparse natural frequencies under unsteady heating conditions.The identification method is based on the TVAR model with time-varying coefficients for the structure to be identified from the input and output of the structure.These time-varying coefficients are expanded as a finite set of basis functions.The order of TVAR model and the dimension of basis functions are simultaneously determined via AGCD after a preliminary selection of order number from BIC.The identification method is applied to estimating the time-varying modal parameters of a simply-supported beam with an axially movable boundary subjected to different kinds of time-varying heating.The numerical simulations show that the identification method can estimate the instantaneous natural frequencies of the beam at each instant of heating process.The identified results are capable of tracking slow time-varying natural frequencies with high accuracy.The measurement noise usually causes slight shifts of identified frequencies.In future works,the method should be improved for identification of modal damping ratios with high accuracy,especially from noisy input and output data.

    [1] Fan X J.Thermal structures analysis and applications of high-speed vehicles[M].Beijing:National Defence Industry Press,2009.(in Chinese)

    [2] McNamara J J,F(xiàn)riedmann P P.Aeroelastic and aerothermoelastic analysis in hypersonic flow:past,present,and future[J].AIAA Journal,2011,49(6):1089-1122.

    [3] Sun Y X,F(xiàn)ang D N,Soh A K.Thermoelastic damping in micro-beam resonators[J].International Journal of Solids and Structures,2006,43:3213-3229.

    [4] Avsec J,Oblak M.Thermal vibrational analysis for simply-supported beam and clamped beam[J].Journal of Sound and Vibration,2007,308:514-525.

    [5] Ghayesh M H.Coupled longitudinal-transverse dynamics of an axially accelerating beam[J].Journal of Sound and Vibration,2012,331:5107-5124.

    [6] Yuan K H,Qiu Z P.Flutter analysis of composite panels in hypersonic flow with thermal effects[J].Journal of Nanjing University of Aeronautics and Astronautics,2010,42(3):313-317.(in Chinese)

    [7] Xiao S F,Chen B.Dynamic and buckling analysis of a thin elastic-plastic square plate in a uniform temperature field[J].Acta Mechanica Sinica,2005,21:181-186.

    [8] Huang S Y,Wang Z Y.The structure modal analysis with thermal environment[J].Missile and Space Vehicle,2009,5:50-52.(in Chinese)

    [9] Cohen L.Time-frequency distributions—A review[J].Proceedings of the IEEE,1989,77(7):941-981.

    [10]Ibrahim G R,Albarbar A.Comparison between Wigner-Ville distribution-and empirical mode decomposition vibration-based techniques for helical gearbox monitoring[J].Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2011,225:1833-1846.

    [11]Ghanem R,Romeo F.A wavelet-based approach for the identification of linear time-varying dynamical systems[J].Journal of Sound and Vibration,2000,234(4):555-576.

    [12]Xu X,Shi Z Y,You Q.Identification of linear timevarying systems using a wavelet-based state-space method[J].Mechanical Systems and Signal Processing,2012,26:91-103.

    [13]Yu K P,Ye J Y,Zou J X,et al.Missile flutter experiment and data analysis using wavelet transform[J].Journal of Sound and Vibration,2004,269(3-5):899-912.

    [14]Box G E,Jenkins G M,Reinsel G C.Time series analysis:forecasting and control[M].Hoboken,NJ:John Wiley,2008.

    [15]Yang S Z,Wu Y,Xuan J P,et al.Time series analysis in engineering application[M].2nd Edition.Wuhan:Huazhong University of Science and Technology Press,2007.(in Chinese)

    [16]Huang C S,Hung S L,Su W C,et al.Identification of time-variant modal parameters using time-varying autoregressive with exogenous input and low-order polynomial function[J].Computer-Aided Civil and Infrastructure Engineering,2009,24(7):470-491.

    [17]Su W C,Liu C Y,Huang C S.Identification of instantaneous modal parameter of time-varying systems via a wavelet-based approach and its application[J].Computer-Aided Civil and Infrastructure Engineering,2013,29(4):279-298.

    [18]Li Y,Wei H L,Billings S A.Identification of timevarying systems using multi-wavelet basis functions[J].IEEE Transactions on Control Systems Technology,2011,19(3):656-663.

    [19]Poulimenos A G,F(xiàn)assois S D.Output-only stochastic identification of a time-varying structure via functional series TARMA models[J].Mechanical Systems and Signal Processing,2009,23:1180-1120.

    [20]Poulimenos A G,F(xiàn)assois S D.Parametric time-domain methods for non-stationary random vibration modelling and analysis—A critical survey and comparison[J].Mechanical Systems and Signal Processing,2006,20:763-816.

    [21]Akaike H.A new look at the statistical model identification[J].IEEE Transactions on Automatic Control,1974,19(6):716-723.

    [22]Akaike H.A Bayesian analysis of the minimum AIC procedure[J].Ann Inst Statist Math,1978,30(A):9-14.

    [23]Akaike H.A Bayesian extension of the minimum AIC procedure of autoregressive model fitting[J].Biometrika,1979,66(2):237-242.

    [24]LüR.Rules of judging models for time series analysis[J].Journal of National University of Defense Technology,1988,10(4):97-106.(in Chinese)

    [25]Guo L,Ljung L,Priouret P.Performance analysis of the forgetting factor RLS algorithm[J].International Journal of Adaptive Control and Signal Processing,1993,7(6):525-537.

    [26]Lee S W,Lim J S,Baek S J,Sung K M.Time-varying signal frequency estimation by VFF Kalman filtering[J].Signal Processing,1999,77:343-347.

    [27]McLellan R B,Ishikawa T.The elastic properties of aluminum at high temperatures[J].Journal of Physics and Chemistry of Solids,1987,48(7):603-606.

    [28]Nix F C,MacNair D.The thermal expansion of pure metals:copper,gold,aluminum,nickel,and iron[J].Physical Review,1941,60:597-605.

    猜你喜歡
    海巖
    有心人的世界
    機會是自己爭取來的
    大跨度和轉(zhuǎn)體連續(xù)梁施工及安全管理研究
    一個也跑不了
    藍(lán)盾(2018年7期)2018-08-11 10:33:24
    海巖父子聯(lián)手打造科幻新劇《昆侖歸》
    綜藝報(2017年18期)2017-10-20 10:11:27
    個人生活
    海巖的嚴(yán)
    人生沒有什么是被浪費的
    37°女人(2009年2期)2009-10-24 04:33:26
    歐洲4國為一塊海巖紛爭幾十年
    海巖:有心人的世界
    幸?!傋x(2009年3期)2009-04-08 08:45:24
    日韩一本色道免费dvd| 亚洲五月婷婷丁香| 中文欧美无线码| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲人成电影免费在线| 一级,二级,三级黄色视频| 又粗又硬又长又爽又黄的视频| 99香蕉大伊视频| 国产成人影院久久av| 日本a在线网址| 精品亚洲成a人片在线观看| 中文字幕最新亚洲高清| 青春草亚洲视频在线观看| 大码成人一级视频| 国产91精品成人一区二区三区 | av有码第一页| 午夜免费成人在线视频| 午夜视频精品福利| 99国产精品一区二区蜜桃av | 91麻豆精品激情在线观看国产 | 制服诱惑二区| 黑人欧美特级aaaaaa片| xxx大片免费视频| 一本色道久久久久久精品综合| 中文字幕人妻熟女乱码| 女人久久www免费人成看片| www.精华液| 午夜久久久在线观看| 国产男女内射视频| 亚洲精品久久午夜乱码| 亚洲自偷自拍图片 自拍| a 毛片基地| 日韩制服丝袜自拍偷拍| 在线观看人妻少妇| 欧美老熟妇乱子伦牲交| 亚洲人成77777在线视频| 国产高清不卡午夜福利| 狠狠婷婷综合久久久久久88av| 日本黄色日本黄色录像| 18禁裸乳无遮挡动漫免费视频| h视频一区二区三区| 91精品三级在线观看| 国产免费现黄频在线看| 久久国产精品大桥未久av| 久久精品国产亚洲av高清一级| 黄频高清免费视频| 国产精品av久久久久免费| 国产精品九九99| 国产伦理片在线播放av一区| 一区福利在线观看| 亚洲五月色婷婷综合| 精品国产国语对白av| 制服人妻中文乱码| 国产日韩一区二区三区精品不卡| 久久久久精品国产欧美久久久 | av在线app专区| 欧美黑人精品巨大| 成人国产一区最新在线观看 | 黄色片一级片一级黄色片| bbb黄色大片| 亚洲欧美成人综合另类久久久| 69精品国产乱码久久久| 精品人妻熟女毛片av久久网站| 欧美黄色片欧美黄色片| 18禁国产床啪视频网站| 宅男免费午夜| 精品亚洲成国产av| 亚洲第一av免费看| 亚洲欧美日韩高清在线视频 | 日本欧美视频一区| 国产麻豆69| 国产成人91sexporn| 99久久精品国产亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 久久国产精品人妻蜜桃| 男男h啪啪无遮挡| 国产精品 欧美亚洲| 一级片'在线观看视频| 搡老乐熟女国产| 50天的宝宝边吃奶边哭怎么回事| 午夜久久久在线观看| av国产精品久久久久影院| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久久成人av| 国产精品99久久99久久久不卡| 欧美 日韩 精品 国产| 国产又爽黄色视频| 日韩,欧美,国产一区二区三区| 赤兔流量卡办理| 嫩草影视91久久| 精品国产一区二区三区四区第35| 91麻豆精品激情在线观看国产 | 麻豆国产av国片精品| 婷婷色综合大香蕉| 性少妇av在线| 一级片'在线观看视频| 国产一区二区 视频在线| 久久 成人 亚洲| 欧美精品啪啪一区二区三区 | 久久精品久久久久久噜噜老黄| 后天国语完整版免费观看| 国产麻豆69| 我的亚洲天堂| 一本大道久久a久久精品| 下体分泌物呈黄色| 午夜视频精品福利| 好男人电影高清在线观看| 久久天堂一区二区三区四区| 国产免费又黄又爽又色| 黄色一级大片看看| 男女无遮挡免费网站观看| 久久国产精品男人的天堂亚洲| 十八禁网站网址无遮挡| 国产成人精品在线电影| 无限看片的www在线观看| 欧美日韩成人在线一区二区| 日本av免费视频播放| 一本—道久久a久久精品蜜桃钙片| 亚洲欧洲日产国产| av一本久久久久| 91老司机精品| 一边亲一边摸免费视频| 国产精品欧美亚洲77777| 我要看黄色一级片免费的| 悠悠久久av| 午夜福利一区二区在线看| 欧美老熟妇乱子伦牲交| 色94色欧美一区二区| 纵有疾风起免费观看全集完整版| 日韩制服骚丝袜av| 欧美日韩一级在线毛片| 狂野欧美激情性xxxx| 在线观看国产h片| 久久 成人 亚洲| 免费在线观看影片大全网站 | 十八禁高潮呻吟视频| 午夜福利视频在线观看免费| 国产免费现黄频在线看| 久久精品亚洲av国产电影网| 久久这里只有精品19| 精品一区在线观看国产| 男男h啪啪无遮挡| 少妇 在线观看| 久久狼人影院| 每晚都被弄得嗷嗷叫到高潮| 91字幕亚洲| 欧美黑人精品巨大| 国产一区二区三区综合在线观看| 欧美激情极品国产一区二区三区| 欧美在线一区亚洲| 一本色道久久久久久精品综合| 高清欧美精品videossex| 韩国高清视频一区二区三区| www.自偷自拍.com| 在线观看免费视频网站a站| 欧美日韩亚洲综合一区二区三区_| 久久精品亚洲av国产电影网| av网站在线播放免费| 丁香六月欧美| 国产精品99久久99久久久不卡| videos熟女内射| 精品视频人人做人人爽| 男女之事视频高清在线观看 | 女人精品久久久久毛片| 国产精品一区二区免费欧美 | 久久精品亚洲熟妇少妇任你| 少妇粗大呻吟视频| 日本五十路高清| 七月丁香在线播放| 日韩av免费高清视频| 在线观看免费高清a一片| 久久久久久人人人人人| 欧美黄色片欧美黄色片| 老熟女久久久| 国产深夜福利视频在线观看| av视频免费观看在线观看| 欧美日韩综合久久久久久| 亚洲国产欧美一区二区综合| 大码成人一级视频| 亚洲成人手机| 欧美成人精品欧美一级黄| 另类亚洲欧美激情| 大香蕉久久成人网| 9色porny在线观看| 欧美人与性动交α欧美软件| 国产在线观看jvid| av有码第一页| 亚洲熟女精品中文字幕| 天堂8中文在线网| 超碰97精品在线观看| 欧美在线黄色| 永久免费av网站大全| 伦理电影免费视频| 一二三四在线观看免费中文在| 国产精品久久久av美女十八| 色94色欧美一区二区| 波多野结衣一区麻豆| 国产成人免费无遮挡视频| 久久国产精品影院| 国产免费又黄又爽又色| 视频区欧美日本亚洲| 人人妻人人澡人人看| 青春草亚洲视频在线观看| 亚洲一区中文字幕在线| avwww免费| 天堂中文最新版在线下载| 女警被强在线播放| 中文字幕高清在线视频| 99热全是精品| 欧美黑人精品巨大| 免费高清在线观看视频在线观看| 精品欧美一区二区三区在线| 亚洲自偷自拍图片 自拍| 日韩电影二区| 麻豆av在线久日| 欧美久久黑人一区二区| 国产精品一二三区在线看| 老汉色av国产亚洲站长工具| 只有这里有精品99| 我的亚洲天堂| 成人国产一区最新在线观看 | 欧美日韩视频精品一区| 亚洲欧洲精品一区二区精品久久久| 国产免费一区二区三区四区乱码| 国产日韩欧美视频二区| 亚洲精品国产区一区二| 91麻豆精品激情在线观看国产 | 日韩 欧美 亚洲 中文字幕| 国产免费现黄频在线看| 91麻豆av在线| 国产亚洲av高清不卡| 欧美变态另类bdsm刘玥| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 亚洲精品国产一区二区精华液| 精品国产国语对白av| 亚洲图色成人| 国产熟女欧美一区二区| 18禁裸乳无遮挡动漫免费视频| 国语对白做爰xxxⅹ性视频网站| 亚洲国产av影院在线观看| 国产免费一区二区三区四区乱码| 在线观看人妻少妇| 久久亚洲国产成人精品v| av福利片在线| 高潮久久久久久久久久久不卡| 国产成人精品久久二区二区免费| 男女午夜视频在线观看| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 久久久久久久久免费视频了| 国产99久久九九免费精品| 国产爽快片一区二区三区| 男人添女人高潮全过程视频| 国产一区有黄有色的免费视频| 亚洲精品久久成人aⅴ小说| 国产在线免费精品| 免费不卡黄色视频| 精品高清国产在线一区| 免费日韩欧美在线观看| 美女午夜性视频免费| 婷婷色麻豆天堂久久| 欧美大码av| 日韩中文字幕欧美一区二区 | 99国产综合亚洲精品| 亚洲五月婷婷丁香| 真人做人爱边吃奶动态| 男人舔女人的私密视频| 黑人欧美特级aaaaaa片| 午夜两性在线视频| 午夜福利一区二区在线看| 国产精品熟女久久久久浪| 国产成人欧美| 国产精品二区激情视频| 汤姆久久久久久久影院中文字幕| avwww免费| 久久99精品国语久久久| 视频在线观看一区二区三区| 成人影院久久| 亚洲伊人色综图| 黑丝袜美女国产一区| cao死你这个sao货| 各种免费的搞黄视频| 欧美精品av麻豆av| 久久精品久久久久久久性| 亚洲精品久久成人aⅴ小说| 在线天堂中文资源库| 中文字幕色久视频| 男人爽女人下面视频在线观看| 亚洲精品美女久久久久99蜜臀 | 伦理电影免费视频| 亚洲av综合色区一区| 亚洲视频免费观看视频| 午夜福利免费观看在线| 一本色道久久久久久精品综合| 下体分泌物呈黄色| 久久天堂一区二区三区四区| 在线观看免费视频网站a站| videosex国产| 老司机午夜十八禁免费视频| 国产精品亚洲av一区麻豆| 91麻豆av在线| 亚洲av电影在线观看一区二区三区| 2021少妇久久久久久久久久久| av在线老鸭窝| 免费女性裸体啪啪无遮挡网站| 精品国产一区二区久久| 老司机午夜十八禁免费视频| 久久 成人 亚洲| 搡老岳熟女国产| 中文字幕人妻丝袜制服| 精品少妇内射三级| 男人舔女人的私密视频| 人人妻人人澡人人看| 一边摸一边抽搐一进一出视频| 久久人人爽人人片av| 99国产精品一区二区蜜桃av | 99国产精品一区二区三区| 午夜精品国产一区二区电影| 制服诱惑二区| 妹子高潮喷水视频| 午夜免费男女啪啪视频观看| 一本一本久久a久久精品综合妖精| 亚洲成av片中文字幕在线观看| 久久女婷五月综合色啪小说| 老司机亚洲免费影院| 人人妻人人添人人爽欧美一区卜| 欧美国产精品va在线观看不卡| 国产亚洲av片在线观看秒播厂| 水蜜桃什么品种好| av有码第一页| 黄色a级毛片大全视频| 一区福利在线观看| 99热网站在线观看| 亚洲图色成人| 精品久久久久久电影网| 91字幕亚洲| 麻豆国产av国片精品| 99热全是精品| 女人久久www免费人成看片| 亚洲国产精品一区三区| 国产精品久久久人人做人人爽| 亚洲国产av影院在线观看| 在线亚洲精品国产二区图片欧美| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通| 久久国产精品大桥未久av| 日日爽夜夜爽网站| 女性生殖器流出的白浆| 国产成人精品久久二区二区免费| 婷婷色综合www| 久久亚洲国产成人精品v| www.熟女人妻精品国产| 巨乳人妻的诱惑在线观看| 日本vs欧美在线观看视频| 纯流量卡能插随身wifi吗| 天天躁夜夜躁狠狠久久av| 黄色毛片三级朝国网站| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 久久久精品免费免费高清| 一级毛片 在线播放| 日韩中文字幕欧美一区二区 | 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲国产一区二区在线观看 | 日日爽夜夜爽网站| 97在线人人人人妻| 精品久久久久久电影网| 午夜精品国产一区二区电影| 欧美日韩视频精品一区| 亚洲 国产 在线| 香蕉国产在线看| 国产亚洲av高清不卡| 最近中文字幕2019免费版| 日本av手机在线免费观看| 99re6热这里在线精品视频| 成人三级做爰电影| 国产成人系列免费观看| 日韩一卡2卡3卡4卡2021年| 亚洲图色成人| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕亚洲精品专区| 久久久精品国产亚洲av高清涩受| 自线自在国产av| 视频在线观看一区二区三区| 日韩中文字幕欧美一区二区 | 亚洲国产精品国产精品| 国产精品久久久久久人妻精品电影 | 国产深夜福利视频在线观看| 日韩人妻精品一区2区三区| 日本猛色少妇xxxxx猛交久久| 美女中出高潮动态图| 国产一区二区在线观看av| 91精品国产国语对白视频| 精品一区二区三卡| 亚洲五月婷婷丁香| 久久久久久久大尺度免费视频| 国产成人欧美| 麻豆av在线久日| 久久精品国产综合久久久| 日韩视频在线欧美| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| 丝袜在线中文字幕| 亚洲av成人精品一二三区| a 毛片基地| 免费女性裸体啪啪无遮挡网站| 超碰成人久久| av网站免费在线观看视频| 女人高潮潮喷娇喘18禁视频| 一边摸一边做爽爽视频免费| 一区二区三区乱码不卡18| 色综合欧美亚洲国产小说| 2018国产大陆天天弄谢| 国产精品熟女久久久久浪| 少妇粗大呻吟视频| 久久久欧美国产精品| 天堂中文最新版在线下载| 丝袜人妻中文字幕| 亚洲综合色网址| 我的亚洲天堂| 9热在线视频观看99| av线在线观看网站| 老司机影院成人| 80岁老熟妇乱子伦牲交| 97在线人人人人妻| 91麻豆精品激情在线观看国产 | 视频区图区小说| 中文字幕色久视频| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 午夜免费成人在线视频| 91麻豆精品激情在线观看国产 | 国产不卡av网站在线观看| 视频区图区小说| 国产成人a∨麻豆精品| 欧美国产精品va在线观看不卡| 一区二区三区激情视频| 亚洲专区国产一区二区| 久热爱精品视频在线9| 国产淫语在线视频| 国产成人欧美| 国产高清不卡午夜福利| 视频区图区小说| 国产日韩一区二区三区精品不卡| 热re99久久国产66热| 亚洲五月色婷婷综合| h视频一区二区三区| 久久鲁丝午夜福利片| 日本a在线网址| 黄色片一级片一级黄色片| 久久综合国产亚洲精品| 一边摸一边抽搐一进一出视频| 国产亚洲av片在线观看秒播厂| 99久久综合免费| 午夜福利影视在线免费观看| 欧美+亚洲+日韩+国产| 又黄又粗又硬又大视频| 在现免费观看毛片| 久久久国产欧美日韩av| 19禁男女啪啪无遮挡网站| 国产精品 国内视频| 亚洲精品乱久久久久久| av国产精品久久久久影院| 日韩 亚洲 欧美在线| 手机成人av网站| 欧美日韩亚洲高清精品| 1024香蕉在线观看| 欧美精品人与动牲交sv欧美| 男女边吃奶边做爰视频| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 肉色欧美久久久久久久蜜桃| 亚洲欧洲国产日韩| 黑人猛操日本美女一级片| 少妇 在线观看| 久久毛片免费看一区二区三区| 久久性视频一级片| 男女高潮啪啪啪动态图| 国产亚洲av高清不卡| 亚洲欧美色中文字幕在线| 精品久久久久久久毛片微露脸 | 中文精品一卡2卡3卡4更新| 欧美 亚洲 国产 日韩一| 国产真人三级小视频在线观看| 成人亚洲精品一区在线观看| 老司机午夜十八禁免费视频| 国产成人a∨麻豆精品| 一级黄片播放器| 欧美人与善性xxx| 制服诱惑二区| 中文字幕精品免费在线观看视频| 日韩欧美一区视频在线观看| 美女主播在线视频| 午夜福利视频精品| 亚洲第一av免费看| 男女下面插进去视频免费观看| 天堂8中文在线网| 亚洲伊人色综图| 母亲3免费完整高清在线观看| 国产一区二区在线观看av| www日本在线高清视频| 日本欧美视频一区| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 97精品久久久久久久久久精品| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密 | 久久99精品国语久久久| 2018国产大陆天天弄谢| 日韩一区二区三区影片| 国产精品久久久av美女十八| 亚洲av国产av综合av卡| 欧美少妇被猛烈插入视频| 一级黄色大片毛片| 亚洲视频免费观看视频| 人人妻人人澡人人看| av在线播放精品| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 精品欧美一区二区三区在线| 2021少妇久久久久久久久久久| 成人午夜精彩视频在线观看| 国产伦人伦偷精品视频| 少妇人妻久久综合中文| av不卡在线播放| 午夜视频精品福利| 久久99一区二区三区| 男女国产视频网站| 另类精品久久| 90打野战视频偷拍视频| 两性夫妻黄色片| 一本—道久久a久久精品蜜桃钙片| 美国免费a级毛片| 亚洲精品成人av观看孕妇| 国产精品久久久人人做人人爽| 青草久久国产| 午夜91福利影院| 国产xxxxx性猛交| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 狠狠婷婷综合久久久久久88av| 国产成人免费无遮挡视频| 亚洲国产日韩一区二区| 一级毛片电影观看| 成人午夜精彩视频在线观看| 亚洲国产欧美在线一区| 精品一区二区三卡| 精品欧美一区二区三区在线| 午夜免费成人在线视频| 成人国产av品久久久| 亚洲精品国产av蜜桃| 波多野结衣一区麻豆| 亚洲欧美日韩另类电影网站| 日韩一本色道免费dvd| 欧美日韩国产mv在线观看视频| 视频区欧美日本亚洲| 免费av中文字幕在线| 国产91精品成人一区二区三区 | 一本综合久久免费| 91字幕亚洲| 操出白浆在线播放| 午夜激情av网站| 麻豆av在线久日| 欧美日韩国产mv在线观看视频| 色网站视频免费| 无限看片的www在线观看| 视频区欧美日本亚洲| 色播在线永久视频| 99国产精品免费福利视频| av国产精品久久久久影院| 亚洲中文av在线| 久久人人爽av亚洲精品天堂| 亚洲国产精品999| 国产精品亚洲av一区麻豆| 一个人免费看片子| 国产成人欧美在线观看 | 欧美 亚洲 国产 日韩一| 男女免费视频国产| 亚洲欧美一区二区三区久久| 亚洲国产精品999| 欧美日韩视频高清一区二区三区二| 欧美变态另类bdsm刘玥| 国产精品一区二区在线不卡| 国产不卡av网站在线观看| 亚洲国产欧美在线一区| 天天影视国产精品| 成人国产av品久久久| 婷婷色麻豆天堂久久| 国产精品免费视频内射| 亚洲天堂av无毛| 欧美成人精品欧美一级黄| 免费不卡黄色视频| 搡老岳熟女国产| 男女国产视频网站| 免费在线观看完整版高清| 9色porny在线观看| 人妻一区二区av| 亚洲精品在线美女| 日韩av在线免费看完整版不卡| 99国产精品99久久久久| 国产男女超爽视频在线观看| 一本综合久久免费| 成人亚洲精品一区在线观看| 热re99久久国产66热| 成人亚洲精品一区在线观看| 中文字幕av电影在线播放| 免费观看人在逋| 一级黄片播放器| 十八禁人妻一区二区| 亚洲专区中文字幕在线| 老司机午夜十八禁免费视频| 国产亚洲av片在线观看秒播厂|