• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical Length of Double-Walled Carbon Nanotubes Based Oscillators*

    2014-04-24 10:53:14WangLifeng王立峰LiuRumeng劉汝盟

    Wang Lifeng(王立峰),Liu Rumeng(劉汝盟)

    State Key Laboratory of Mechanics and Control of Mechanical Structures,Nanjing University Aeronautics and Astronautics,210016,Nanjing,P.R.China

    1 Introduction

    Cumings and Zettl[1]created a system that one end of a multi-walled carbon nanotube(MWCNT)was opened and a core tube was pulled out from the outer shell.And they found that the core tube retracts into the outer shell when the core tube is set free.Zheng and Jiang[2]reported that the core tube would oscillate with gigahertz frequency if both ends of the outer shell are opened.They estimated the frequency of the oscillators through the restoring force obtained from the retraction potential.Since it is very hard to observe this interesting phenomenon through experiment,molecular dynamics(MD)simulations were carried out for these systems by several groups[3-7].

    The van der Waals(vdW)potential energy between a carbon atom of inner tube and all the carbon atoms of outer tube depends on the relative position between this atom and the closest hexagonal unit of the outer tube[2].Charlier and Michenaud[8]calculated the potential barrier of a(5,5)/(10,10)double-walled carbon nanotube(DWCNT)using the local density approximation(LDA).They found that potential barrier per carbon atom for sliding motion is anisotropic.Satio et al[9]examined the adiabatic potential of a DWCNT for a variety of sets of inner and outer nanotube chiralities.Their results showed that the potential barrier for the relative displacement of the inner and outer tube layers depends significantly on the chirality difference of the pair.Guo and Gao[10]found that the energy dissipation related fluctuation of interlayer interaction forces can vary significantly with the chirality,length and diameter of the two tubes.The existence of potential barrier in sliding motion between inner and outer tube layers can give the reason that the inner tube cannot be pulled out from the outer tube with small force.Kimoto et al[11]calculated the force required to pull the inner tube out of the outer tube using MD method.They found the inner tube vibrates inside the outer tube instead of being pulled out,when the inner tube is subjected to a small constant force.These studies showed that the driving force due to the extrusion may be smaller than the force required to slide over the potential barrier of DWCNT-oscillators,if the coincidence length of inner and outer tubes is long enough.

    In this paper,the critical lengths of the oscillators based on DWCNTs are studied by both theory and energy minimization simulation.The relationship between the vdW potential energy and lattice matching of the inner and outer tubes is gotten by pulling the inner tube under a constant step to determine the barrier force during sliding motion between inner and outer tube layers.The critical length can be obtained by setting the barrier force equal to the vdW restoring force.Then these results are compared with that calculated by the energy minimization simulations.The chirality matching effects and size effects are analyzed.Finally,the critical lengths of zigzag/zigzag oscillator system with different temperature are discussed using MD method.

    2 Simulation models

    2.1 Van der Waals restoring force

    The restoring force resulting from asymmetry vdW interaction between inner and outer tubes due to the extrusion is the driving force for an oscillator based on MWCNT.

    The excess vdW potential energy U due to extrusion is[12]

    where a=0.142nm is the bond length between carbon atoms,Dis the diameter of the inner tube,LIand LOare the lengths of the inner and outer tubes respectively,ζis the separate distance between the centers of the inner and outer tubes.The vdW potential energy between a carbon atom of inner tube and all the carbon atoms of the outer tube is denoted by-Π.

    The vdW restoring force can be obtained as follows[12]

    FvdWis a constant force if the separate distanceζ of a DWCNT-based oscillator is much larger than cutoff length of vdW potential.

    2.2 Interatomic potential

    In energy minimization simulations,the reliability of the results depends on the potential used in the carbon system.The Brenner′s secondgeneration reactive empirical bond order(REBO)potential[13],which has been widely used to describe mechanical properties of carbon nanotubes and graphene,is applied to describe the covalently bonded pair among atoms.

    The following Lennard-Jones(LJ)potential is used to describe the vdW potential energy between atoms i and j belonging to different tubes

    where well-depth energyε=4.748 3×10-22J and equilibrium distanceσ=0.34nm.In Eq.(3),rijis the distance between atoms i and j.

    The vdW potential energy for the entire DWCNT is evaluated by summing Eijover all inter-tube i,j-pairs

    2.3 Models for calculation of potential barrier

    In order to determine the relationship between the vdW potential energy and lattice matching of the inner and outer tubes,a DWCNT model are constructed by placing two singlewalled nanotube models coaxially in xdirection as shown in Fig.1.The inner tube with periodic boundary condition is shifted 1×10-4nm every step along xdirection for 10 000steps,as shown in Fig.1.The total potential energy is monitored.(In order to neglect the edge-edge interaction,the distance between the inner and outer edges is taken to be larger than the cutoff length.)

    Fig.1 DWCNT atomic model

    2.4 Energy minimization simulation

    In order to eliminate the influence of thermophoretic force,the simulations need to be conducted under very low temperature.However,a nonequilibrium finite temperature system is difficult to be treated by MD simulations.There have been no reliable simulation tools for such problems,so far.So energy minimization of this system with a damped dynamics method described by Bitzek et al[14]is adopted to simulate the inner tube retraction process.The velocity of each atom is initialized to be zero at the beginning of the minimization in this method.

    A DWCNT with inner and outer tubes of the same length is modeled.The inner tube is pulled out from the outer one while the coincidence length of these two tubes is L1as shown in Fig.2.Then the potential energy of this system is minimized.

    Fig.2 DWCNT for energy minimization

    3 Results and Discussion

    3.1 Zigzag/zigzag system

    A(9,0)/(18,0)zigzag/zigzag system with the length LO=23.86nm is used to obtain the vdW potential energy barrier.The interlayer gap between inner tube and outer tube is 0.34nm.

    For convenience,the vdW potential energy at the initial position is set to be zero.The relation-ship between the vdW potential and lattice matching of the inner and outer tubes are presented in Fig.3.It can be seen that vdW potential energy varies periodically with the relative position between the inner and outer tubes.The barrier force in Fig.4is obtained by the differential of the vdW potential energy with x.

    Fig.3 Relationship between the vdW potential and lattice matching of inner and outer tubes for(9,0)/(18,0)zigzag/zigzag system

    Fig.4 Barrier force of(9,0)/(18,0)zigzag/zigzag system obtained from the first-order derivative of the curve in Fig.3

    Fig.4shows that the maximum value of the barrier force is Fmax=2.14nN.It means that at least 2.14nN is needed to move the inner tube if the coincidence length of(9,0)/(18,0)zigzag/zigzag system is 23.86nm.Same as the amplitude of total vdW potential energy shown in Fig.3,the barrier force is proportional to the coincidence length.Let the barrier force be equal to the restoring force in Eq.(2).

    where k=Fmax/LOis the maximum barrier force per unit length.Then the critical oscillation length 10.48nm can be obtained from Eq.(5).

    Energy minimization method is used to verify the result.As shown in Fig.5,the inner tube is pulled out from the outer tube.The initial coincidence length between inner tube and outer tube,i.e.L1,is 5nm.The vdW potential energy,which decreases with increasing of L1,is recorded during this process.The tendency of vdW potential energy in the minimization process is plotted in Fig.6,where the straight line represents the value of vdW potential when the inner and outer tubes coincide completely,and it is set to be zero for convenience.The vdW potential energydecreases during 0ns to 3ns generally.It stops at a certain value which is significantly larger than the value of vdW potential energy when the inner and outer tubes coincide completely.The inner tube retracts into the outer tube during the minimization process and stops when the coincidence length L2is 9.85nm.This critical oscillate length is close to the result predicted by Eq.(5).

    Fig.5 Initial and equilibrium positions in the energy minimization for(9,0)/(18,0)zigzag/zigzag system

    The critical oscillate lengths of zigzag/zigzag systems with different diameters obtained by theory and the energy minimization method are shown in Fig.7,where r is the diameters of the inner tubes.The interlayer gaps between inner tubes and outer tubes are kept 0.34nm.The critical oscillate lengths keep constant before the diameters of the inner tubes drop to 0.274nm.However,it will increase sharply if the diameter of carbon nanotube(CNT)is below 0.274nm.As shown in Fig.8,the cross section of a(n,0)CNT is a 2n-regular polygon which will no longer be close to a circular if nis not big enough.The smallest system we calculated is a(4,0)/(13,0)zigzag/zigzag system,and the cross section of the inner tube is nearly an octagon.The LJ potential energy distribution of this system is more complex than that of the circular case.The complex distribution of LJ potential energy leads to a sharp increasing trend in the small diameter region calculated by energy minimization method.The theory results are in good agreement with the energy minimization results if the diameter of the inner tube is big enough.The restoring force in Eq.(2)is obtained using an alternative approach by replacing the discrete distribution of atoms on the outer shell with a continuous distribution of the same atom density4a2[12],which will invalidate if the diameters of the system are small.So the deviation between the theory and the energy minimization method becomes larger when the diameters of the system are smaller.

    Fig.7 Critical oscillate lengths of zigzag/zigzag systems with different diameters

    Fig.8 Cross sections of CNTs with different diameters

    3.2 Armchair/armchair system

    Next a(5,5)/(10,10)armchair/armchair system is considered.Atomic model with coincidence length 30nm shown in Section 2.3is built.The vdW potential energy which is also set to be zero at the initial position is plotted in Fig.9.Fig.10shows that the maximum barrier force is 0.157nN when the coincidence length is 30nm.The critical length obtained by Eq.(5)is 175nm.

    Fig.9 Relationship between the vdW potential and lattice matching of inner and outer tubes for(5,5)/(10,10)armchair/armchair system

    A(5,5)/(10,10)armchair/armchair system being 200nm long with 48 900atoms is established to confirm the above result.As shown in Fig.11,the original coincidence length of inner and outer tubes is L1=160nm.The final coincidence length is 185nm after fully energy minimi-zation.

    Fig.10 Barrier force of the(5,5)/(10,10)armchair/armchair system obtained by the firstorder derivative of the curve as shown in Fig.9

    Fig.11 Initial and equilibrium positions in the energy minimization of(5,5)/(10,10)armchair/armchair system

    These above two systems have similar diameters,which means the restoring force of these two systems is very near.But the vdW potential energy fluctuation of zigzag/zigzag system is much higher than that of armchair/armchair system.It is thus easier to slide over the barrier of the armchair/armchair system for the same restoring force.So the critical length of(5,5)/(10,10)armchair/armchair system is much larger than that of(9,0)/(18,0)zigzag/zigzag system.

    3.3 Temperature effects

    The effects of temperature for the critical oscillate length are studied by MD simulations with Nose-Hoover feedback thermostat[15-18].The velocity-Verlet algorithm with time step 1fs is used in the MD simulations.A(9,0)/(18,0)zigzag/zigzag oscillate system at different temperatures are simulated in the(N,V,T)ensembles by MD method.The inner tube is pulled out from the outer tube at the beginning of simulations.All the atoms are kept free during simulations.It is found that the inner tube retracted into the outer tube for a certain length.The inner tube may revolve around x axis during the retraction process.Fig.12shows that the critical lengths increase along with temperature.Atoms with higher temperature are far away from equilibrium.So their vdW energy is higher than those with lower temperature[19].And it is easier for atoms with higher temperature to slide over the vdW potential barrier.

    Fig.12 Critical oscillate lengths of(9,0)/(18,0)zigzag/zigzag systems at different temperatures

    But the temperature discussed here is very low.We must simulate in a larger system for the higher temperature which is out of our computational ability.The MD method based on classical Newtonian mechanics does not allow for the description of quantum effects which may play a key role in high-frequency oscillations at such low temperatures.Some MD methods with quantum effects taken into consideration should be developed to give a better simulation to oscillators of DWCNT at such low temperature.

    4 Conclusions

    The critical length of a DWCNT-based oscillator is studied in this paper.The vdW potential energy changes periodically with the lattice matching of the inner and outer tubes.If the coinci-dence length is long enough,the restoring force is not big enough to slide over the vdW barrier.The inner tube cannot retract into the outer tube.The critical oscillate length is predicted,and then confirmed by energy minimization method.Moreover,the amplitude of vdW potential energy fluctuation of armchair/armchair system is smaller than that of zigzag/zigzag system.The critical length of armchair/armchair system is much larger than that of zigzag/zigzag system.The critical lengths of zigzag/zigzag DWCNT-based oscillator systems with different diameters are obtained both by theory and energy minimization method.The theoritical results agree with those of the energy minimization when the diameter of the inner tube is not very small.The vdW interaction between inner and outer tubes cannot be treated as homogeneous when the diameter of carbon nanotube is very small.So in such a case,the critical length strongly increases.Finally,the MD simulation is carried out to study the critical length of zigzag/zigzag system at different temperatures.Results show that the critical lengths of the DWCNT-based oscillator increase when temperatures rise.

    [1] Cumings J,Zettl A.Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes[J].Science,2000,289(5479):602-604.

    [2] Zheng Q S,Jiang Q.Multiwalled carbon nanotubes as gigahertz oscillators[J].Physical Review Letters,2002,88(4):045503.

    [3] Guo W L,Guo Y F,Gao H J,et al.Energy dissipation in gigahertz oscillators from multiwalled carbon nanotubes[J].Physical Review Letters,2003,91:125501.

    [4] Legoas S B,Coluci V R,Braga S F,et al.Gigahertz nanomechanical oscillators based on carbon nanotubes[J].Nanotechnology,2004,15(4):S184-S189.

    [5] Legoas S B,Coluci V R,Braga S F,et al.Molecular-dynamics simulations of carbon nanotubes as gigahertz oscillators[J].Physical Review Letters,2003,90:055504.

    [6] Rivera J L,McCabe C,Cummings P T.Oscillatory behavior of double-walled nanotubes under extension:A simple nanoscale damped spring[J].Nano Letters,2003,3(8):1001-1005.

    [7] Liu P,Zhang Y W,Lu C.Oscillatory behavior of gigahertz oscillators based on multiwalled carbon nanotubes[J].Journal of Applied Physics,2005,98(1):014301.

    [8] Charlier J C,Michenaud J P.Energetics of multilayered carbon tubules[J].Physical Review Letters,1993,70(12):1858-1861.

    [9] Saito R,Matsuo R,Kimura T,et al.Anomalous potential barrier of double-wall carbon nanotube[J].Chemical Physics Letters,2001,348(3/4):187-193.

    [10]Guo W L,Gao H J.Optimized bearing and interlayer friction in multiwalled carbon nanotubes[J].CMES:Computer Modeling in Engineering and Sciences,2005,7(1):19-34.

    [11]Kimoto Y,Mori H,Mikami T,et al.Molecular dynamics study of double-walled carbon nanotubes for nano-mechanical manipulation[J].Japanese Journal of Applied Physics,2005,44:1641-1647.

    [12]Zheng Q S,Liu J Z,Jiang Q.Excess van der Waals interaction energy of a multiwalled carbon nanotube with an extruded core and the induced core oscillation[J].Physical Review B,2002,65:245409.

    [13]Brenner D W,Shenderova O A,Harrison J A,et al.A second-generation reactive empirical bond order(REBO)potential energy expression for hydrocarbons[J].Journal of Physics:Condensed Matter,2002,14(4):783-802.

    [14]Bitzek E,Koskinen P,Gahler F,et al.Structural relaxation made simple[J].Physical Review Letters,2006,97:170201.

    [15]Nose S.A molecular dynamics method for simulations in the canonical ensemble[J].Molecular Physics,1984,52(2):255-268.

    [16]Nose S.A unified formulation of the constant temperature molecular dynamics methods[J].The Journal of Chemical Physics,1984,81(1):511-519.

    [17]Hoover W G.Canonical dynamics:Equilibrium phase-space distributions[J].Physical Review A,1985,31(3):1695-1697.

    [18]Nose S.Constant temperature molecular dynamics methods[J].Progress of Theoretical Physics Supplement,1991,103:1-46.

    [19]Guo Z R,Chang T C,Guo X M,et al.Mechanics of thermophoretic and thermally induced edge forces in carbon nanotube nanodevices[J].Journal of the Mechanics and Physics of Solids,2012,60(9):1676-1687.

    免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 国产精品久久久久久久久免 | 午夜福利视频1000在线观看| 在线观看午夜福利视频| 在线观看午夜福利视频| 亚洲精品久久国产高清桃花| 俺也久久电影网| 亚洲精华国产精华精| 成人特级av手机在线观看| 宅男免费午夜| 一二三四社区在线视频社区8| 国产欧美日韩一区二区三| 男女做爰动态图高潮gif福利片| 亚洲片人在线观看| www.999成人在线观看| 欧美成人一区二区免费高清观看| 直男gayav资源| 亚洲va日本ⅴa欧美va伊人久久| 在线天堂最新版资源| 热99在线观看视频| 两个人视频免费观看高清| 在线看三级毛片| 啦啦啦韩国在线观看视频| 一个人看的www免费观看视频| 日韩成人在线观看一区二区三区| 午夜亚洲福利在线播放| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 久久人人精品亚洲av| 综合色av麻豆| 两人在一起打扑克的视频| 国产精品一区二区免费欧美| 国产极品精品免费视频能看的| 久久99热这里只有精品18| 嫩草影院新地址| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 午夜影院日韩av| 露出奶头的视频| 亚洲人成电影免费在线| 看黄色毛片网站| 欧美一区二区精品小视频在线| 亚洲,欧美精品.| 性插视频无遮挡在线免费观看| 精品日产1卡2卡| 老司机深夜福利视频在线观看| 2021天堂中文幕一二区在线观| 欧美日韩中文字幕国产精品一区二区三区| 午夜精品久久久久久毛片777| 国产精品一区二区免费欧美| 亚洲第一区二区三区不卡| 国产一区二区在线观看日韩| 久久6这里有精品| 男人狂女人下面高潮的视频| 久久久久久久久久成人| 国产一区二区在线观看日韩| 久久久久久久精品吃奶| 国产精品永久免费网站| 免费无遮挡裸体视频| 精品国产亚洲在线| 精华霜和精华液先用哪个| 我要看日韩黄色一级片| 欧美成人免费av一区二区三区| 国产探花极品一区二区| 国产伦精品一区二区三区视频9| 欧美激情在线99| 欧美极品一区二区三区四区| 欧美激情久久久久久爽电影| 久久久成人免费电影| 亚洲五月天丁香| 欧美国产日韩亚洲一区| 国产午夜福利久久久久久| 久久6这里有精品| 黄色配什么色好看| 午夜a级毛片| 日日干狠狠操夜夜爽| 婷婷丁香在线五月| .国产精品久久| 亚洲精品成人久久久久久| 日本免费a在线| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片 | 最新中文字幕久久久久| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 久久热精品热| 国产黄色小视频在线观看| 成人鲁丝片一二三区免费| 国产探花极品一区二区| 久久这里只有精品中国| 性插视频无遮挡在线免费观看| 在线播放国产精品三级| av在线蜜桃| 哪里可以看免费的av片| xxxwww97欧美| 白带黄色成豆腐渣| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 日日摸夜夜添夜夜添小说| 久久欧美精品欧美久久欧美| 日日干狠狠操夜夜爽| 国产成人啪精品午夜网站| 免费无遮挡裸体视频| 丰满的人妻完整版| 熟女人妻精品中文字幕| 赤兔流量卡办理| 婷婷精品国产亚洲av在线| 黄色视频,在线免费观看| 麻豆av噜噜一区二区三区| 国产成+人综合+亚洲专区| 搡老岳熟女国产| 日韩av在线大香蕉| 成人美女网站在线观看视频| av天堂在线播放| 偷拍熟女少妇极品色| 一级av片app| 日韩精品中文字幕看吧| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器| 欧美乱色亚洲激情| 日本 av在线| 欧美成人一区二区免费高清观看| 免费一级毛片在线播放高清视频| 色在线成人网| 嫩草影院入口| 国产欧美日韩精品一区二区| 91av网一区二区| 欧美成人性av电影在线观看| 一级av片app| 欧美潮喷喷水| 精华霜和精华液先用哪个| 久久午夜福利片| 久久国产精品人妻蜜桃| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 国产精品一区二区免费欧美| 亚洲成人精品中文字幕电影| 色播亚洲综合网| 一本精品99久久精品77| 日韩精品青青久久久久久| 欧美日韩乱码在线| 久久国产精品人妻蜜桃| 日本与韩国留学比较| а√天堂www在线а√下载| 欧美高清性xxxxhd video| 熟女电影av网| av在线天堂中文字幕| 极品教师在线视频| 国产极品精品免费视频能看的| 九九热线精品视视频播放| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看| 亚洲精品粉嫩美女一区| 一卡2卡三卡四卡精品乱码亚洲| 在线观看免费视频日本深夜| 噜噜噜噜噜久久久久久91| 国产精品伦人一区二区| 国产极品精品免费视频能看的| 成人特级av手机在线观看| 极品教师在线视频| 12—13女人毛片做爰片一| 亚洲狠狠婷婷综合久久图片| 国产在视频线在精品| av在线蜜桃| 日韩欧美免费精品| 精品一区二区三区av网在线观看| 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| 韩国av一区二区三区四区| 热99在线观看视频| 欧美色欧美亚洲另类二区| 国产精品98久久久久久宅男小说| 色综合站精品国产| 亚洲美女搞黄在线观看 | 少妇熟女aⅴ在线视频| 亚洲av.av天堂| 18禁黄网站禁片午夜丰满| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人爽人人爽人人片va | 12—13女人毛片做爰片一| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 美女大奶头视频| 国产成人影院久久av| 人人妻人人看人人澡| 久久精品久久久久久噜噜老黄 | 人妻丰满熟妇av一区二区三区| 亚洲午夜理论影院| av国产免费在线观看| 久久久久九九精品影院| 在线国产一区二区在线| 亚洲av免费在线观看| 久99久视频精品免费| 黄色配什么色好看| 精品久久久久久久久av| 尤物成人国产欧美一区二区三区| 日韩欧美精品v在线| 中国美女看黄片| 国产伦精品一区二区三区四那| 亚洲精品日韩av片在线观看| 可以在线观看的亚洲视频| 又黄又爽又免费观看的视频| 国产高清视频在线观看网站| 欧美成人免费av一区二区三区| 国产一级毛片七仙女欲春2| 听说在线观看完整版免费高清| 欧美日韩亚洲国产一区二区在线观看| 97碰自拍视频| 男插女下体视频免费在线播放| 久久久久免费精品人妻一区二区| 黄片小视频在线播放| 精品无人区乱码1区二区| 老熟妇乱子伦视频在线观看| 成人特级av手机在线观看| 成人亚洲精品av一区二区| 999久久久精品免费观看国产| 俄罗斯特黄特色一大片| 怎么达到女性高潮| 国产免费av片在线观看野外av| 中文字幕精品亚洲无线码一区| 一个人看的www免费观看视频| 欧美一区二区国产精品久久精品| 国产aⅴ精品一区二区三区波| 亚洲真实伦在线观看| 久久天躁狠狠躁夜夜2o2o| 久久久久久久久中文| 久久久成人免费电影| 亚洲欧美激情综合另类| 麻豆久久精品国产亚洲av| 嫩草影院新地址| 啦啦啦观看免费观看视频高清| 日韩成人在线观看一区二区三区| 日韩亚洲欧美综合| 婷婷精品国产亚洲av| 一个人免费在线观看的高清视频| 国产成人a区在线观看| 精品人妻视频免费看| 1024手机看黄色片| 国产视频一区二区在线看| 我要搜黄色片| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9| 非洲黑人性xxxx精品又粗又长| 在线观看免费视频日本深夜| 亚洲国产精品成人综合色| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 欧美国产日韩亚洲一区| 精品久久久久久久久亚洲 | 日日夜夜操网爽| 少妇丰满av| 熟女人妻精品中文字幕| 国产老妇女一区| 偷拍熟女少妇极品色| 国内精品久久久久精免费| 精华霜和精华液先用哪个| 久99久视频精品免费| 麻豆成人av在线观看| 国内毛片毛片毛片毛片毛片| 看片在线看免费视频| 亚洲av.av天堂| 免费看日本二区| 精品一区二区三区人妻视频| 男人的好看免费观看在线视频| 内射极品少妇av片p| 欧美精品国产亚洲| 真实男女啪啪啪动态图| 久久这里只有精品中国| 欧美日韩亚洲国产一区二区在线观看| 亚洲自拍偷在线| 麻豆国产av国片精品| 婷婷精品国产亚洲av| 免费大片18禁| 亚洲午夜理论影院| a级毛片免费高清观看在线播放| 久久久久精品国产欧美久久久| 2021天堂中文幕一二区在线观| 精品一区二区三区视频在线| 亚洲中文字幕日韩| 99riav亚洲国产免费| 伊人久久精品亚洲午夜| 我要看日韩黄色一级片| 日韩欧美在线乱码| 欧美一区二区国产精品久久精品| 成人一区二区视频在线观看| 美女黄网站色视频| 天堂影院成人在线观看| 精品一区二区免费观看| 直男gayav资源| 久久国产乱子免费精品| 夜夜夜夜夜久久久久| 1000部很黄的大片| 18美女黄网站色大片免费观看| 亚洲无线观看免费| 国产一区二区在线av高清观看| 丰满人妻熟妇乱又伦精品不卡| 97人妻精品一区二区三区麻豆| 亚洲成人久久爱视频| 日韩中文字幕欧美一区二区| 中国美女看黄片| 欧美激情久久久久久爽电影| 日本免费a在线| 午夜免费男女啪啪视频观看 | av欧美777| 亚洲一区高清亚洲精品| 精品人妻1区二区| 99在线视频只有这里精品首页| 国产精品亚洲一级av第二区| 中亚洲国语对白在线视频| 欧美绝顶高潮抽搐喷水| 天美传媒精品一区二区| 91狼人影院| 久久精品综合一区二区三区| 麻豆一二三区av精品| 国产精品一区二区三区四区久久| 老女人水多毛片| 亚洲美女视频黄频| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆| 很黄的视频免费| 国产免费一级a男人的天堂| xxxwww97欧美| 国产三级在线视频| 99热这里只有是精品在线观看 | 欧美中文日本在线观看视频| 亚洲真实伦在线观看| 国产美女午夜福利| 此物有八面人人有两片| 日韩 亚洲 欧美在线| 国产午夜福利久久久久久| www.www免费av| 成年版毛片免费区| 免费人成视频x8x8入口观看| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 日本黄色片子视频| 亚洲美女黄片视频| 一级作爱视频免费观看| 免费av不卡在线播放| 免费观看人在逋| 在线国产一区二区在线| 听说在线观看完整版免费高清| 国产在线男女| a级毛片免费高清观看在线播放| 国产精品电影一区二区三区| 亚洲内射少妇av| 国产色婷婷99| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 久久精品影院6| 国内精品久久久久精免费| 久久久久久久久久黄片| 亚洲人成网站高清观看| 十八禁网站免费在线| 男女那种视频在线观看| 国产高清视频在线观看网站| 天堂网av新在线| 亚洲美女黄片视频| 极品教师在线视频| 日本 av在线| 久久久久免费精品人妻一区二区| 国产一区二区在线av高清观看| 看免费av毛片| 国产国拍精品亚洲av在线观看| 国产色婷婷99| 久久久久久久午夜电影| 91九色精品人成在线观看| 我要看日韩黄色一级片| 欧美绝顶高潮抽搐喷水| 日韩av在线大香蕉| 欧美日韩综合久久久久久 | 午夜精品久久久久久毛片777| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看 | 自拍偷自拍亚洲精品老妇| 中文字幕精品亚洲无线码一区| 日韩精品青青久久久久久| 国产中年淑女户外野战色| 999久久久精品免费观看国产| 久久九九热精品免费| 不卡一级毛片| 亚洲人成电影免费在线| 人人妻,人人澡人人爽秒播| 亚洲成人久久爱视频| 久久热精品热| 最新在线观看一区二区三区| 深夜a级毛片| 91麻豆av在线| 日韩欧美一区二区三区在线观看| 国产色爽女视频免费观看| 日本精品一区二区三区蜜桃| 啦啦啦韩国在线观看视频| 亚洲国产欧美人成| 色5月婷婷丁香| 久久久精品欧美日韩精品| netflix在线观看网站| 色综合站精品国产| 欧美日韩国产亚洲二区| 欧美成人性av电影在线观看| 久久国产精品影院| 亚洲精品久久国产高清桃花| 欧美三级亚洲精品| 夜夜爽天天搞| 观看免费一级毛片| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 免费av毛片视频| 国产精品一区二区免费欧美| 国产三级黄色录像| 亚洲国产日韩欧美精品在线观看| 午夜亚洲福利在线播放| 国产精品1区2区在线观看.| 俺也久久电影网| 人妻夜夜爽99麻豆av| 国产人妻一区二区三区在| 神马国产精品三级电影在线观看| 成人鲁丝片一二三区免费| 少妇被粗大猛烈的视频| 观看免费一级毛片| 色综合站精品国产| 免费看光身美女| 性插视频无遮挡在线免费观看| 99视频精品全部免费 在线| 禁无遮挡网站| 此物有八面人人有两片| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 观看免费一级毛片| 欧美性猛交黑人性爽| 久久久久久久久久成人| 一区二区三区免费毛片| 日韩欧美 国产精品| 精品无人区乱码1区二区| 亚洲国产精品999在线| 亚洲久久久久久中文字幕| 国产精品,欧美在线| 天堂网av新在线| 久久久久久久午夜电影| 伊人久久精品亚洲午夜| 一本久久中文字幕| 精品人妻偷拍中文字幕| 99久国产av精品| 日本 av在线| 男女那种视频在线观看| 一个人免费在线观看的高清视频| 黄色一级大片看看| 男人的好看免费观看在线视频| 国产高潮美女av| 桃色一区二区三区在线观看| 最新中文字幕久久久久| 淫妇啪啪啪对白视频| 综合色av麻豆| 欧美不卡视频在线免费观看| 欧美+亚洲+日韩+国产| 我要搜黄色片| 中文资源天堂在线| 乱人视频在线观看| 国产欧美日韩精品一区二区| 天堂动漫精品| 十八禁国产超污无遮挡网站| 亚洲美女视频黄频| 又爽又黄无遮挡网站| av天堂在线播放| 日韩 亚洲 欧美在线| 两个人的视频大全免费| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 久久久久久久精品吃奶| 国产精品一区二区三区四区免费观看 | 美女高潮喷水抽搐中文字幕| 高清在线国产一区| 精品一区二区免费观看| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 精品99又大又爽又粗少妇毛片 | 免费av毛片视频| 亚洲人成网站在线播| 一级a爱片免费观看的视频| bbb黄色大片| 不卡一级毛片| 国产精品嫩草影院av在线观看 | 日韩免费av在线播放| 精品一区二区三区视频在线| 国产爱豆传媒在线观看| 如何舔出高潮| 亚洲18禁久久av| 亚洲国产日韩欧美精品在线观看| 嫩草影院入口| ponron亚洲| 桃色一区二区三区在线观看| 丰满的人妻完整版| 成人精品一区二区免费| 91久久精品国产一区二区成人| 永久网站在线| 首页视频小说图片口味搜索| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频| 成人午夜高清在线视频| 动漫黄色视频在线观看| 色视频www国产| 亚洲美女视频黄频| 日日摸夜夜添夜夜添小说| 最近中文字幕高清免费大全6 | 国产高清视频在线播放一区| 中出人妻视频一区二区| 欧美黑人欧美精品刺激| 国产伦一二天堂av在线观看| 国模一区二区三区四区视频| 国内少妇人妻偷人精品xxx网站| 中出人妻视频一区二区| 亚洲18禁久久av| 国产伦在线观看视频一区| 亚洲精品久久国产高清桃花| 1000部很黄的大片| 国产v大片淫在线免费观看| 97超视频在线观看视频| 欧美日韩国产亚洲二区| 俺也久久电影网| av天堂在线播放| 高清在线国产一区| 一个人免费在线观看的高清视频| 亚洲av二区三区四区| 一本综合久久免费| 18美女黄网站色大片免费观看| 日韩免费av在线播放| 亚洲av电影不卡..在线观看| 亚洲熟妇熟女久久| 国产精品国产高清国产av| 欧美乱妇无乱码| 久久国产乱子伦精品免费另类| 高清在线国产一区| 国产一区二区三区在线臀色熟女| 免费无遮挡裸体视频| 欧美日韩福利视频一区二区| 最新中文字幕久久久久| 日日摸夜夜添夜夜添小说| 91久久精品国产一区二区成人| 12—13女人毛片做爰片一| 精品午夜福利视频在线观看一区| 国产欧美日韩精品亚洲av| 国产免费男女视频| 亚洲欧美日韩高清专用| 精华霜和精华液先用哪个| 人妻丰满熟妇av一区二区三区| 51午夜福利影视在线观看| 日本黄大片高清| 久久久国产成人精品二区| 日本精品一区二区三区蜜桃| 日本熟妇午夜| 欧美乱妇无乱码| av国产免费在线观看| 国产精品电影一区二区三区| 免费人成视频x8x8入口观看| 久久精品人妻少妇| 亚洲精品乱码久久久v下载方式| 色综合站精品国产| 在线a可以看的网站| x7x7x7水蜜桃| 国产私拍福利视频在线观看| 日日摸夜夜添夜夜添av毛片 | 老司机午夜十八禁免费视频| 亚洲国产精品999在线| 精品久久久久久成人av| 国产精品一及| 国产精品电影一区二区三区| 舔av片在线| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲真实| 午夜福利在线观看免费完整高清在 | 97热精品久久久久久| 欧美日韩黄片免| 51国产日韩欧美| 亚洲国产精品999在线| 国产久久久一区二区三区| 我的女老师完整版在线观看| 可以在线观看毛片的网站| 一个人免费在线观看的高清视频| 天天一区二区日本电影三级| 欧美成人a在线观看| 精品一区二区三区视频在线观看免费| 亚洲国产色片| 午夜影院日韩av| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 99久久99久久久精品蜜桃| 亚洲av熟女| 亚洲电影在线观看av| 美女 人体艺术 gogo| 精华霜和精华液先用哪个| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 给我免费播放毛片高清在线观看| 在线观看av片永久免费下载| 首页视频小说图片口味搜索| 久久99热这里只有精品18| 精品国内亚洲2022精品成人| 不卡一级毛片| 久久性视频一级片| 在线观看一区二区三区| 9191精品国产免费久久| 午夜精品在线福利| 亚洲美女视频黄频| 成人永久免费在线观看视频| 成人性生交大片免费视频hd| 一进一出好大好爽视频| 99国产精品一区二区三区| 99精品久久久久人妻精品| 99久久精品热视频| 内射极品少妇av片p| 国产麻豆成人av免费视频| 免费av毛片视频| 少妇熟女aⅴ在线视频| 99热6这里只有精品| 亚洲熟妇中文字幕五十中出| 免费av不卡在线播放|