• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Sodium Chloride and Cadmium on the Growth,Oxidative Stress and Antioxidant EnzymeActivities of Zygosaccharomyces rouxii

    2014-04-17 02:42:48LIChunshengXUYingJIANGWeiLVXinandDONGXiaoyan
    Journal of Ocean University of China 2014年3期

    LI Chunsheng,XU Ying,JIANG Wei,LV Xin,and DONG Xiaoyan

    College of Food Science and Engineering,Ocean University of China,Qingdao 266003,P.R.China

    ? Ocean University of China,Science Press and Spring-Verlag Berlin Heidelberg 2014

    1 Introduction

    Cadmium(Cd)is a toxic heavy metal,which is known as an important environmental pollutant and a potent human carcinogen.It interferes with many cellular processes,and one of the main consequences is the enhanced production of reactive oxygen species(ROS)related to oxidative stress(Guoet al.,2007; Latinwoet al.,2006).These ROS,i.e.,superoxide radical(O2?),hydrogen peroxide(H2O2)and hydroxyl(?OH),are highly toxic to the cells and rapidly attack all biomolecules such as DNA,lipids,proteins and amino acids(Finkel and Holbrook,2000; Woodmansee and Imlay,2002),eventually leading to cell death.To mitigate the ROS-induced oxidative damage,yeast cells have developed a complex antioxidative defense system,including non-enzyme scavengers(e.g.,glutathione,uric acid,vitamin C and vitamin E)and antioxidant enzymes(e.g.,superoxide dismutase,SOD; catalase,CAT; and peroxidases,POD)(Anet al.,2012; Kumaret al.,2011).Of these,SOD is the major O2?scavenger whose enzymatic action results in the formation of H2O2and O2,while the accumulation of H2O2in cells is prevented by CAT and POD(Yuanet al.,2011; Zhanget al.,2007).

    Along with rapid industrial development,Cd pollution poses a great threat to marine environments,especially aquaculture ecosystems.Due to biomagnification and accumulationviathe food chain,Cd pollution may result in an increasing risk of seafood contamination(Stankovic and Jovic,2012; Whyteet al.,2007).The biosorption method,which takes advantage of microbial cells,is considered promising for solving Cd pollution problems because of the low cost,high removal efficiency,regeneration of the biosorbent,and the possibility of metal recovery(Cruzet al.,2004).Presently,the application of microbial cells as biosorbents in seawater and highly salty food is restricted due to the high salt environment.Research has shown that sodium chloride(NaCl)stress can lead to oxidative damage to microbial cells through an increase in ROS production(Mittovaet al.,2002; Qunet al.,2007; Srivastavaet al.,2005).Up to now,there has been a total lack of information in the literature regarding the effect of salt on microorganisms under Cd stress.

    Zygosaccharomyces rouxiiis a salt-tolerant yeast species commonly used for aroma development in the processes of soy and fish sauce fermentation.It can tolerate higher salt concentrations than another most useful yeastSaccharomyces cerevisiae(Liet al.,2013; Tomitaet al.,2000).Our previous study showed thatZ.rouxiiwas capable of removing Cd from aqueous solution(Xuet al.,2009).However,the effects of Cd and NaCl on the physiology ofZ.rouxiiremain poorly understood.Therefore,the aims of this study were:1)to determine the effects of NaCl and Cd on the growth and oxidative stress ofZ.rouxiiand 2)to explore the antioxidative defense mechanism based on enzyme activity assays of antioxidant SOD,CAT,and POD inZ.rouxii.The results will provide physiological clues to the possible use ofZ.rouxiias a biosorbent for Cd removal from seawater and liquid highly salty food.

    2 Materials and Methods

    2.1 Yeast Strain and Pre-Culturing

    Z.rouxii(CICC1379)used in this study was purchased from the China Center of Industrial Culture Collection(CICC)and maintained in YEPD agar slants(1% yeast extract,2% peptone,2% glucose,and 2% agar,pH 5.0)at 4℃ prior to use.Pre-culturing ofZ.rouxiiwas done by activating cells twice.TheZ.rouxiicells were first transferred to a fresh YEPD agar slant and incubated at 30℃in a constant temperature incubator for 24 h.Thereafter,a loopful ofZ.rouxiicells were transferred to 250 mL Erlenmeyer flasks containing 50 mL YEPD liquid medium and incubated in an incubator set at 30℃ and 180 r min?1for 24 h.

    2.2 Evaluation of the Effects of NaCl and Cd on the Growth of Z.rouxii

    The stock Cd solution(100 mg L?1)was prepared by dissolving CdCl2?2.5H2O(Sinopharm Group,China)in ultrapure water.The pre-culturedZ.rouxiiwas grown in YEPD liquid medium supplemented with different concentrations of Cd and NaCl for 24 h.The absorbance of 10-fold diluted culture sample was measured at 600 nm with a spectrophotometer(UV-2800,Unico)to quantify the cell biomass.The cell growth inhibition rate(reduction rate of cell biomass compared with control)was used to analyze the effects of NaCl and Cd on the growth ofZ.rouxii.

    2.3 Flow Cytometry Assays

    The effects of NaCl and Cd on the oxidative stress ofZ.rouxiiwere studied by flow cytometry assay of the ROS level and cell death rate after double staining with 2’,7’-dichlorofluorescein diacetate(DCFH-DA,Sigma)and propidium iodide(PI,Sigma).TheZ.rouxiicells incubated with different concentrations of Cd and NaCl for 24 h were washed with 0.85% NaCl solution twice and resuspended in 1 mL of 0.85% NaCl at about 1×107cells mL?1.After incubation with 100 μmol L?1DCFH-DA at 37℃and 180 r min?1for 50 min in the dark,the samples were rapidly placed on ice,washed twice,resuspended in 1 mL of 0.85% NaCl,and then stained with 10 μg mL?1PI.The fluorescence of cell suspensions was recorded with a flow cytometer(Beckman Coulter Cytomics FC 500 MPL)equipped with an air-cooled 488 nm argon laser.Green fluorescence of the cells stained with 2’,7’-dichlorofluorescein(DCF)was collected in the FL1 channel(525 nm ± 20 nm),and red fluorescence of the cells labeled with PI was collected in the FL3 Channel(625 nm ± 20 nm).A total of 20000 events were registered per sample and the obtained data were analyzed with the CXP Analysis 2.1 software.

    2.4 Antioxidant Enzyme Activity Assays

    Z.rouxiicells cultured with various concentrations of Cd and NaCl for 24 h were centrifuged and washed twice with 0.85% NaCl solution.The cells were ground with liquid nitrogen,resuspended in 0.05 mmol L?1phosphatebuffered solution(pH 7.0),and then centrifuged at 7000 r min?1for 10 min.The supernatant was collected and used for enzymatic activity assays of SOD,CAT,and POD spectrophotometrically with a commercial reagent kit(Nanjing Jiancheng Bioengineering Institute,China)(Yuanet al.,2011).According to the manufacturer’s instructions,the activity of SOD was assayed at 550 nm using the xanthine and xanthine oxidase system.One unit(U)of SOD activity was defined as the amount of SOD required for 50% inhibition of the xanthine and xanthine oxidase system reaction in 1 mL of enzyme extraction of 1 mg of protein at 37℃.The activity of CAT was determined based on the rate of H2O2decomposition by the enzyme.The samples were treated with excess H2O2at 37℃,and the absorbance of remaining H2O2was measured at 405 nm.One unit of CAT activity was defined as 1 μmol H2O2decomposed in 1 mg of protein per second.According to the reaction principle of POD catalysis of H2O2,the activity of POD was determined by detection of changes in the absorbance at 420 nm.One POD unit was defined as the amount of enzyme needed to catalyze 1 μg of substrate per minute per milligram of total protein at 37℃.

    2.5 Statistical Analyses

    All data presented here are the mean ± SD(n=3).Statistical analyses were performed with one-way analysis of variance(ANOVA).A multiple comparison Tukey test was applied to evaluate the differences among treatments.In all cases the level of statistical significance was set atP< 0.01.

    3 Results

    3.1 Growth-Inhibiting Effect of NaCl and Cd on the Growth of Z.rouxii

    When grown in the YEPD medium,the growth ofZ.rouxiiwas inhibited in the presence of NaCl or Cd alone,but the growth-inhibiting effect of high-level Cd(e.g.,> 6 mg L?1)was reduced in the presence of 2%–8% NaCl(Fig.1).For example,the growth inhibition rate ofZ.rouxiiincubated with 20 mg L?1Cd for 24 h decreased from 78.4% to 45.0% when the YEPD medium was supplemented with 6% NaCl(Fig.1).

    Fig.1 Effect of NaCl and Cd at different concentrations on the growth of Z.rouxii after 24 h incubation.

    3.2 Effect of NaCl and Cd on ROS Production and Cell Death of Z.rouxii

    Although 2%–6% NaCl did not significantly affect the ROS production ofZ.rouxii,the ROS-positive cell rate significantly increased in the presence of 8% NaCl compared with the control(Fig.2a).There was no significant difference in the death rate ofZ.rouxiiin the presence of 2%–8% NaCl(Fig.2b).As compared with NaCl,Cd had a greater effect on the ROS production and cell death ofZ.rouxii(Fig.2).The intracellular ROS level and death rate ofZ.rouxiisignificantly increased with the Cd concentration from 0 mg L?1to 8 mg L?1(Figs.2a,2c).With continuous increases in the Cd concentration,a significant shift of cells to quadrant K2 and K1 was observed,indicating the increase in cell death rate(Figs.2b,2c).In quadrant K3,there remained 38.4% living cells in the presence of 50 mg L?1Cd despite that high-level Cd could cause serious oxidative stress and cell death(Fig.2c).

    The Cd-induced ROS production ofZ.rouxiicells was significantly attenuated after incubation with NaCl and Cd for 24 h.The ROS-positive cell rates ofZ.rouxiigrown with 8 mg L?1Cd in the presence of 2%,4%,6% and 8% NaCl were 3.9%,4.0%,5.1% and 5.9%,respectively,obviously lower than that in the absence of NaCl(40.0%)(Fig.2a).In the presence of NaCl,the death rate ofZ.rouxiiunder Cd stress significantly decreased(Fig.2).The death rate ofZ.rouxiitreated with 50 mg L?1Cd respectively decreased from 62.7% to 26.5%,25.4%,20.7% and 26.5% in the presence of 2%,4%,6% and 8% NaCl.

    3.3 Effect of NaCl and Cd on the Activities of SOD,CAT and POD of Z.rouxii

    The effects of NaCl and Cd on the SOD activity ofZ.rouxiiare summarized in Fig.3.The SOD activity first increased and then decreased with an increasing concentration of NaCl or Cd.However,the combined use of NaCl and Cd produced different experimental results.In the presence of 20 mg L?1Cd,the SOD activity ofZ.rouxiifirst decreased and then increased with an increasing concentration of NaCl(Fig.3a).In the presence of 6% NaCl,the SOD activity ofZ.rouxiisignificantly increased compared with the control but showed no significant differences among Cd treatments at various concentrations(Fig.3b).

    The effects of NaCl and Cd on the CAT activity ofZ.rouxiiare shown in Fig.4.In the presence of 2%–6% NaCl,the CAT activity ofZ.rouxiisignificantly increased after 24 h incubation.As compared with that of control,the CAT activity ofZ.rouxiislightly increased in the presence of 8 mg L?1Cd but decreased in the presence of 20 mg L?1and 50 mg L?1Cd.Under Cd stress,the CAT activity ofZ.rouxiisignificantly increased in the presence of NaCl,especially at 6%.The CAT activity ofZ.rouxiiin the presence of 6% NaCl combined with 8,20 and 50 mg L?1Cd was 54.3%,154.7% and 320.7% higher than that in the absence of NaCl,respectively.However,there was no significant difference in the CAT activity ofZ.rouxiiamong the tested Cd concentrations(0–50 mg L?1)in the presence of 6% NaCl,similar to the observations of SOD activity.

    The POD activity ofZ.rouxiiin the presence of different concentrations of NaCl and Cd is shown in Fig.5.In the absence of Cd,the POD activity ofZ.rouxiiincreased with the NaCl level and peaked in the presence of 6% NaCl,consistent with the changes in the CAT activity.As compared with that of control,the POD activity ofZ.rouxiirelatively decreased after Cd treatment(Fig.5a)but was significantly improved after combined use of 6% NaCl.The POD activity ofZ.rouxiishowed 163.9%,234.1% and 88.0% increases in presence of 6% NaCl combined with 8,20 and 50 mg L?1Cd,respectively.

    4 Discussion

    4.1 Increased Antioxidant Enzyme Activities May Contribute to the High Salt Tolerance of Z.rouxii

    It has been proposed thatZ.rouxiican tolerant highlevel NaCl mainlyviatwo mechanisms:1)the adaptation to high osmotic pressure and 2)the intracellular cation homeostasis.When the surrounding medium contains high-level NaCl,large amounts of osmotically compatible solutes,such as glycerol and arabitol,can be synthesized and accumulated inZ.rouxiicells to acclimate to the salt stress(Reedet al.,1987; Yoshikawaet al.,1995).Z.rouxiican efficiently excrete Na+into the extracellular medium via Na+-ATPase and Na+/H+-antiporter in order to counteract the potential of metabolic failure caused by the Na+influx into cells(Pribylovaet al.,2008; Watanabeet al.,2003).In the present study,results showed that the enhanced antioxidant enzyme activities possibly contributed to the salt tolerance ofZ.rouxii.When NaCl was added to the medium,the activities of major antioxidant enzymes(i.e.,SOD,CAT and POD)significantly increased even in the presence of 6% NaCl(Figs.3a,4a and 5a),while the corresponding ROS levels showed no significant increases compared with the control.The increased SOD and POD activities have been shown to protect arbuscular mycorrhizae plants from salinity injury and to improve their salt tolerance(Qunet al.,2007).However,we observed that the SOD,CAT and POD activities ofZ.rouxiidecreased in the presence of 8% NaCl(Figs.3a,4a and 5a).It suggested that there was no sufficient antioxidant enzyme activities to scavenge excess O2?and H2O2accumulated inZ.rouxii,leading to a significant increase in the ROS level at 8% NaCl(Fig.2a).

    Fig.2 Effect of NaCl and Cd on the ROS production(a)and cell death(b)of Z.rouxii after 24 h incubation.Bars with different letters are significantly different at P < 0.01.(c)Representative flow cytometry dot plots of Z.rouxii cells after incubation with NaCl and Cd.Quadrant K1:DCF?/PI+,no(or low)ROS accumulation,dead cells; quadrant K2:DCF+/PI+,high ROS accumulation,dead cells; quadrant K3:DCF?/PI?,no(or low)ROS accumulation,living cells; quadrant K4:DCF+/PI?,high ROS accumulation,living cells.

    Fig.3 Effect of NaCl(a)and Cd(b)on the SOD activity of Z.rouxii after 24 h incubation.Bars with different letters are significantly different at P < 0.01.

    Fig.4 Effect of NaCl(a)and Cd(b)on the CAT activity of Z.rouxii after 24 h incubation.Bars with different letters are significantly different at P < 0.01.

    Fig.5 Effect of NaCl(a)and Cd(b)on the POD activity of Z.rouxii after 24 h incubation.Bars with different letters are significantly different at P < 0.01.

    4.2 Effect of NaCl on Alleviating Cd Toxicity to Z.rouxii

    In this study,the presence of NaCl or Cd alone obviously inhibited the cell growth ofZ.rouxii(Fig.1).The results showed that Cd was more toxic toZ.rouxiidue to the increase in cellular ROS level,leading to more significant cell death(Fig.2).However,the growth-inhibiting effect of Cd onZ.rouxii(Fig.1)as well as the Cdinduced ROS production and cell death ofZ.rouxii(Fig.2)were reduced by combined use of NaCl.The overproduction of ROS is a common consequence of different stress factors,e.g.,high-level Cd or NaCl.Microbial cells have developed a complex antioxidative defense system to maintain metabolic functions under stress conditions,and the stimulation of antioxidant enzyme activities is one of the most important pathways through which this can be done.As the first enzyme of the enzymatic antioxidative pathway,SOD plays a key role in the cellular defense system against ROS.The activity of SOD modulates the relative amounts of O2?and H2O2while decreasing the risk of ?OH radical formation(Bowleret al.,1992).In the present study,the SOD activity increased with the concentrations of NaCl and Cd in combination,but was lower in the presence of low-level NaCl combined with Cd than in the absence of NaCl(Fig.3).A possible reason is that the two metal ions mutually decreased their penetration intoZ.rouxiicells and thus reduced NaCl and Cd accumulation in cells(Jianget al.,2013; Liet al.,2013; Lefèvreet al.,2009; Navarreteet al.,2009; Martynaet al.,2000),further preventing the stimulation of SOD in the presence of low-level NaCl and Cd but enhancing the stimulation of SOD in the presence of high-level NaCl and Cd.

    The product of SOD decomposition,i.e.,H2O2,remains toxic to cells and must be eliminated by subsequent conversion to H2O.Both CAT and POD are important enzymes that regulate intracellular H2O2levels.In our work,the CAT activity ofZ.rouxiiunder Cd stress increased after the addition of NaCl,suggesting that NaCl has a similar protective effect onZ.rouxiicells despite the presence of Cd(0–50 mg L?1)(Fig.4b).These results indicate that NaCl has a greater effect on CAT activity and can more significantly increase the CAT activity compared with Cd.Under NaCl and Cd stress,the enhanced CAT activity ofZ.rouxiicontributed to the decrease in ROS production.It was reported that CAT activity in coordination with SOD activity played a central role in accelerating the scavenging of O2?and H2O2(Badawiet al.,2004; Lianget al.,2003; Mittovaet al.,2002).

    As one of the principal enzymes involved in the elimination of ROS,POD is more efficient than CAT in H2O2scavenging because of its high substrate affinity(Zhanget al.,2007).In the present study,the presence of NaCl significantly alleviated Cd-induced inhibition of POD activity(Fig.5),thus increasing the efficiency in detoxifying H2O2.This might be another important mechanism for the decrease in Cd-induced ROS production and cell death ofZ.rouxiiafter incubation with NaCl and Cd.

    Acknowledgements

    The authors would like to thank for the financial support of the National Natural Science Foundation of China(Grant Nos.31101330 and 30972289),the Natural Science Foundation of Shandong Province in China(Grant No.ZR2010CM043),the International Joint Research Program(Grant No.2010DFA31330),and the Program for Changjiang Scholars and Innovative Research Team in University(Grant No.IRT1188).

    Agnieszka,S.C.,Anna,S.,Maria,S.,Teresa,K.,Renata,S.,Roman,P.,Dariusz,A.,Jozef,F.,and Martyna,K.S.,2000.The inhibitory effect of zinc on Cd-induced cell apoptosis and reactive oxygen species(ROS)production in cell cultures.Toxicology,145:159-171.

    An,B.,Li,B.Q.,Qin,G.Z.,and Tian,S.P.,2012.Exogenous calcium improves viability of biocontrol yeasts under heat stress by reducing ROS accumulation and oxidative damage of cellular protein.Current Microbiology,65:122-127.

    Badawi,G.H.,Yamauchi,Y.,Shimada,E.,Sasaki,R.,Kawano,N.,Tanaka,K.,and Tanaka,K.,2004.Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco(Nicotiana tabacum)chloroplasts.Plant Science,166:919-928.

    Bowler,C.,Montagu,M.V.,and Inze,D.,1992.Superoxide dismutase and stress tolerance.Annual Review of Plant Biology,43:83-116.

    Cruz,C.C.V.,Costa,A.C.A.da,Henriques,C.A.,and Luna,A.S.,2004.Kinetic modeling and equilibrium studies during Cd biosorption by deadSargassumsp.biomass.Bioresource Technology,91:249-257.

    Finkel,T.,and Holbrook,N.J.,2000.Oxidants,oxidative stress and the biology of ageing.Nature,408:239-247.

    Guo,B.,Liang,Y.C.,Zhu,Y.G.,and Zhao,F.J.,2007.Role of salicylic acid in alleviating oxidative damage in rice roots.Environmental Pollution,147:743-749.

    Jiang,W.,Xu,Y.,Li,C.,Lv,X.,and Wang,D.,2013.Effect of inorganic salts on the growth and Cd2+bioaccumulation ofZygosaccharomyces rouxiicultured under Cd2+stress.Bioresource Technology,128:831-834.

    Kumar,S.,Kalyanasundaram,G.T.,and Gummadi,S.N.,2011.Differential response of the catalase,superoxide dismutase and glycerol-3-phosphate dehydrogenase to different environmental stresses inDebaryomyces nepalensisNCYC 341.Current Microbiology,62:382-387.

    Latinwo,L.M.,Badisa,V.L.,Ikediobi,C.O.,Odewumi,C.O.,Lambert,A.T.,and Badisa,R.B.,2006.Effect of Cd-induced oxidative stress on antioxidative enzymes in mitochondria and cytoplasm of CRL-1439 rat liver cells.International Journal of Molecular Medicine,18:477-481.

    Lefèvre,I.,Marchal,G.,Meerts,P.,Correal,E.,and Lutts,S.,2009.Chloride salinity reduces Cd accumulation by the Mediterranean halophyte speciesAtriplex halimusL.Environmental and Experimental Botany,65:142-152.

    Li,C.,Xu,Y.,Jiang,W.,Dong,X.,Wang,D.,and Liu,B.,2013.Effect of NaCl on the heavy metal tolerance and bioaccumulation ofZygosaccharomyces rouxiiandSaccharomyces cerevisiae.Bioresource Technology,143:46-52.

    Liang,Y.,Chen,Q.,Liu,Q.,Zhang,W.,and Ding,R.,2003.Exogenous silicon(Si)increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley(Hordeum vulgareL.).Journal of Plant Physiology,160:1157-1164.

    Mittova,V.,Tal,M.,Volokita,M.,and Guy,M.,2002.Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt tolerant wild tomato speciesLycopersicon pennelliibut not in the cultivated species.Physiologia Plantarum,115:393-400.

    Navarrete,C.,Siles,A.,Martínez,J.L.,Calero,F.,and Ramos,J.,2009.Oxidative stress sensitivity inDebaryomyces hansenii.FEMS Yeast Research,9:582-590.

    Pribylova,L.,Papouskova,K.,and Sychrova,H.,2008.The salt tolerant yeastZygosaccharomyces rouxiipossesses two plasmamembrane Na+/H+-antiporters(ZrNha1p and ZrSod2– 22p)playing different roles in cation homeostasis and cell physiology.Fungal Genetics and Biology,45:1439-1447.

    Qun,H.Z.,Xing,H.C.,Bin,Z.Z.,Rong,Z.Z.,and Song,W.H.,2007.Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress.Colloids and Surfaces B- Biointerfaces,59:128-133.

    Reed,R.H.,Chudek,J.A.,Foster,R.,and Gada,G.M.,1987.Osmotic significance of glycerol accumulation in exponentially growing yeast.Applied and Environmental Microbiology,53:2119-2123.

    Srivastava,A.K.,Bhargava,P.,and Rai L.C.,2005.Salinity and copper-induced oxidative damage and changes in antioxidative defense system ofAnabaena doliolum.World Journal of Microbiology and Biotechnology,22:1291-1298.

    Stankovic,S.,and Jovic,M.,2012.Health risks of heavy metals in the mediterranean mussels as seafood.Environmental Chemistry Letters,10:119-130.

    Tomita,M.,Yamamoto,S.,Yamaguchi,K.,Ohigashi,H.,Yagi,T.,Kohata,K.,and Berden,J.A.,2000.Theasaponin E1destroys the salt tolerance of yeasts.Journal of Bioscience Bioengineering,90:637-642.

    Watanabe,Y.,Hirasaki,M.,Tohnai,N.,Yagi,K.,Abe,S.,and Tamai,Y.,2003.Salt shock enhances the expression ofZrATp2,the gene for the mitochondrial ATPase β subunit ofZygosaccharomyces rouxii.Journal of Bioscience and Bioengineering,96:193-195.

    Whyte,A.L.,Hook,G.R.,Greening,G.E.,Gibbs-Smith,E.,and Gardner,J.P.,2009.Human dietary exposure to heavy metals via the consumption of greenshell mussels(Perna canaliculusGmelin 1791)from the Bay of Islands,northern New Zealand.Science of the Total Environment,407:4348-4355.

    Woodmansee,A.N.,and Imlay,J.A.,2002.Reduced flavins promote oxidative DNA damage in non-respiringEscherichia coliby delivering electron to intracellular free iron.The Journal of Biological Chemistry,277:34055-34066.

    Xu,Y.,Liu,Q.,Li,C.S.,Sun,J.P.,and Wang,D.F.,2009.Removal of Cd2+from aqueous solution byZygosaccharomyces rouxii.Food and Fermentation Industries,35:54-56.

    Yoshikawa,S.,Chikara,K.,Hashimoto,H.,Mitsui,N.,Shimosaka,M.,and Okazaki,M.,1995.Isolation and characterization ofZygosaccharomyces rouxiimutants defective in proton pumpout activity and salt tolerance.Journal of Fermentation and Bioengineering,79:6-10.

    Yuan,Y.Y.,Ke,X.,Chen,F.J.,Krogh,P.H.,and Ge,F.,2011.Decrease in catalase activity ofFolsomia candidafed a Bt rice diet.Environmental Pollution,159:3714-3720.

    Zhang,F.Q.,Wang,Y.S.,Lou,Z.P.,and Dong,J.D.,2007.Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings(Kandelia candelandBruguiera gymnorrhiza).Chemosphere,67:44-50.

    久久久久久久久中文| 看片在线看免费视频| 亚洲成人久久爱视频| 麻豆国产97在线/欧美| 成人av一区二区三区在线看| 小蜜桃在线观看免费完整版高清| 国产69精品久久久久777片| 亚洲七黄色美女视频| 成人三级黄色视频| 亚洲色图av天堂| 亚洲人成网站高清观看| 欧美激情在线99| 十八禁网站免费在线| 人人妻人人澡欧美一区二区| 国产乱人伦免费视频| 免费一级毛片在线播放高清视频| 国内久久婷婷六月综合欲色啪| 性色avwww在线观看| 国产91精品成人一区二区三区| 精品一区二区三区人妻视频| 在线观看舔阴道视频| 久久精品国产99精品国产亚洲性色| 极品教师在线免费播放| 黄色女人牲交| 熟女电影av网| 搡老熟女国产l中国老女人| 亚洲久久久久久中文字幕| 成人性生交大片免费视频hd| 久久6这里有精品| 99在线人妻在线中文字幕| 亚洲成人中文字幕在线播放| 婷婷亚洲欧美| 欧美国产日韩亚洲一区| 亚洲欧美精品综合久久99| 毛片女人毛片| 色综合站精品国产| 久久精品国产清高在天天线| 精品一区二区三区视频在线观看免费| 变态另类成人亚洲欧美熟女| 国产在视频线在精品| 亚洲欧美日韩高清专用| 久久久精品欧美日韩精品| 日本精品一区二区三区蜜桃| 亚洲激情在线av| 国内精品美女久久久久久| 丁香六月欧美| 亚洲avbb在线观看| 18禁黄网站禁片午夜丰满| 毛片一级片免费看久久久久 | 18+在线观看网站| 国产av一区在线观看免费| 很黄的视频免费| 中国美女看黄片| 亚洲狠狠婷婷综合久久图片| 国产欧美日韩一区二区三| 婷婷精品国产亚洲av在线| 国产老妇女一区| 欧美高清成人免费视频www| 波多野结衣巨乳人妻| 18禁黄网站禁片午夜丰满| 久久久国产成人免费| 国产精品久久久久久人妻精品电影| 国产精品,欧美在线| 一区福利在线观看| 日本免费一区二区三区高清不卡| 精品不卡国产一区二区三区| 国产乱人伦免费视频| 好看av亚洲va欧美ⅴa在| 美女被艹到高潮喷水动态| 亚洲精品456在线播放app | 黄色女人牲交| 搡老岳熟女国产| 自拍偷自拍亚洲精品老妇| 人妻夜夜爽99麻豆av| 一个人看视频在线观看www免费| 免费在线观看日本一区| 久久精品国产99精品国产亚洲性色| 桃红色精品国产亚洲av| 亚洲av成人av| 久久精品久久久久久噜噜老黄 | 免费高清视频大片| 中文字幕人成人乱码亚洲影| 亚洲 国产 在线| 成人特级黄色片久久久久久久| 国产伦在线观看视频一区| 高清在线国产一区| xxxwww97欧美| 桃色一区二区三区在线观看| 性色avwww在线观看| 免费人成视频x8x8入口观看| 久久6这里有精品| 亚洲熟妇熟女久久| 国产高清激情床上av| 2021天堂中文幕一二区在线观| 又粗又爽又猛毛片免费看| av在线蜜桃| 亚洲 欧美 日韩 在线 免费| 国产精品1区2区在线观看.| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲天堂国产精品一区在线| 色尼玛亚洲综合影院| 欧美高清性xxxxhd video| 麻豆av噜噜一区二区三区| 日韩 亚洲 欧美在线| bbb黄色大片| 美女 人体艺术 gogo| 禁无遮挡网站| 一个人观看的视频www高清免费观看| 欧美一区二区亚洲| 欧美一区二区国产精品久久精品| 高清日韩中文字幕在线| 亚洲美女视频黄频| 一级a爱片免费观看的视频| 欧美+亚洲+日韩+国产| 每晚都被弄得嗷嗷叫到高潮| 小说图片视频综合网站| 亚洲av五月六月丁香网| 国产熟女xx| 在线国产一区二区在线| 国产精品野战在线观看| 国产精品一区二区免费欧美| av黄色大香蕉| 成人亚洲精品av一区二区| 欧美黄色淫秽网站| 欧美3d第一页| 一卡2卡三卡四卡精品乱码亚洲| 美女 人体艺术 gogo| 热99re8久久精品国产| 18美女黄网站色大片免费观看| 夜夜爽天天搞| 欧美zozozo另类| 欧美激情在线99| 日韩av在线大香蕉| 久久亚洲真实| 欧美黑人巨大hd| 午夜老司机福利剧场| 日日干狠狠操夜夜爽| 午夜福利在线观看吧| 国产精品嫩草影院av在线观看 | 每晚都被弄得嗷嗷叫到高潮| 精品一区二区三区视频在线观看免费| 精品不卡国产一区二区三区| 亚洲人成网站在线播放欧美日韩| 老熟妇乱子伦视频在线观看| 欧美最新免费一区二区三区 | 91字幕亚洲| 亚洲专区国产一区二区| 欧美激情久久久久久爽电影| 色综合婷婷激情| 小蜜桃在线观看免费完整版高清| 久久久久久久久中文| 特级一级黄色大片| 搞女人的毛片| 麻豆久久精品国产亚洲av| 一区二区三区激情视频| 在线天堂最新版资源| 动漫黄色视频在线观看| 999久久久精品免费观看国产| 变态另类成人亚洲欧美熟女| 人妻夜夜爽99麻豆av| 人人妻人人澡欧美一区二区| 午夜福利18| 国产不卡一卡二| 日本 av在线| 亚洲激情在线av| 变态另类丝袜制服| or卡值多少钱| 夜夜爽天天搞| a在线观看视频网站| 别揉我奶头~嗯~啊~动态视频| 99riav亚洲国产免费| 国产成人影院久久av| 国产亚洲精品久久久com| a在线观看视频网站| 亚洲av免费高清在线观看| 久久性视频一级片| 国产淫片久久久久久久久 | 在线看三级毛片| 中出人妻视频一区二区| 欧美极品一区二区三区四区| 亚洲av不卡在线观看| www.熟女人妻精品国产| 亚洲天堂国产精品一区在线| 成人美女网站在线观看视频| 可以在线观看毛片的网站| 少妇的逼水好多| 熟妇人妻久久中文字幕3abv| 伦理电影大哥的女人| 亚洲国产高清在线一区二区三| .国产精品久久| 九九在线视频观看精品| 免费在线观看影片大全网站| 美女免费视频网站| 一区二区三区高清视频在线| 嫩草影视91久久| 18禁黄网站禁片免费观看直播| 精品国产三级普通话版| 香蕉av资源在线| 九色成人免费人妻av| 综合色av麻豆| 日本免费a在线| 免费搜索国产男女视频| 国产成人影院久久av| 麻豆成人午夜福利视频| 久99久视频精品免费| 麻豆av噜噜一区二区三区| 午夜福利成人在线免费观看| 天堂影院成人在线观看| 成人一区二区视频在线观看| 在线国产一区二区在线| 三级男女做爰猛烈吃奶摸视频| 欧美区成人在线视频| 91午夜精品亚洲一区二区三区 | 国产高清视频在线播放一区| 神马国产精品三级电影在线观看| 午夜免费成人在线视频| 中文字幕人成人乱码亚洲影| 我的女老师完整版在线观看| 一个人免费在线观看的高清视频| 搡老妇女老女人老熟妇| 欧美成人a在线观看| 三级毛片av免费| 老司机福利观看| 亚洲三级黄色毛片| 老熟妇乱子伦视频在线观看| 日韩欧美国产一区二区入口| 亚洲av.av天堂| av在线天堂中文字幕| 亚洲黑人精品在线| 久久久色成人| 国产成人欧美在线观看| 亚洲av成人精品一区久久| 久久精品国产亚洲av涩爱 | 亚洲在线观看片| 日日摸夜夜添夜夜添av毛片 | 91在线观看av| h日本视频在线播放| 不卡一级毛片| 淫妇啪啪啪对白视频| 欧美乱色亚洲激情| 国产乱人伦免费视频| 一进一出抽搐gif免费好疼| 真实男女啪啪啪动态图| 成年女人毛片免费观看观看9| 啦啦啦观看免费观看视频高清| 免费无遮挡裸体视频| 欧美日本亚洲视频在线播放| 免费电影在线观看免费观看| 丰满乱子伦码专区| 中国美女看黄片| 色视频www国产| 又黄又爽又刺激的免费视频.| 韩国av一区二区三区四区| 小说图片视频综合网站| 欧美又色又爽又黄视频| 在线免费观看的www视频| 一区二区三区四区激情视频 | 丰满乱子伦码专区| 国产精品久久久久久人妻精品电影| 欧美乱妇无乱码| 首页视频小说图片口味搜索| 国产色爽女视频免费观看| 99久久99久久久精品蜜桃| 婷婷亚洲欧美| 91字幕亚洲| 国产欧美日韩一区二区三| 国产一区二区三区在线臀色熟女| 久久午夜福利片| 午夜激情福利司机影院| 亚洲第一电影网av| 欧美日本视频| 动漫黄色视频在线观看| 搡老岳熟女国产| 少妇的逼好多水| 91久久精品国产一区二区成人| 欧美色欧美亚洲另类二区| 成人鲁丝片一二三区免费| 日本一本二区三区精品| 亚洲无线观看免费| 一区二区三区高清视频在线| 精品午夜福利在线看| 欧美zozozo另类| 在线免费观看不下载黄p国产 | 一本一本综合久久| 老司机福利观看| 国产午夜精品论理片| 91午夜精品亚洲一区二区三区 | 无遮挡黄片免费观看| 亚洲熟妇中文字幕五十中出| 最近最新免费中文字幕在线| 国产成人欧美在线观看| a级一级毛片免费在线观看| 国产精品亚洲一级av第二区| 亚洲精品日韩av片在线观看| a级毛片a级免费在线| 桃红色精品国产亚洲av| 国产69精品久久久久777片| 中文字幕久久专区| .国产精品久久| 色在线成人网| 久久久久久国产a免费观看| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲av一区麻豆| av专区在线播放| 九九在线视频观看精品| 精品久久久久久久久亚洲 | 日韩欧美三级三区| 一区二区三区四区激情视频 | 午夜激情福利司机影院| 日本一本二区三区精品| 亚洲av二区三区四区| 亚洲美女黄片视频| 琪琪午夜伦伦电影理论片6080| 一本久久中文字幕| 免费黄网站久久成人精品 | 亚洲av成人av| 18禁裸乳无遮挡免费网站照片| 一卡2卡三卡四卡精品乱码亚洲| 在线国产一区二区在线| 国产一区二区三区视频了| 色综合亚洲欧美另类图片| 日韩欧美精品免费久久 | 久久精品国产自在天天线| 少妇裸体淫交视频免费看高清| 久久久色成人| 精品一区二区三区av网在线观看| 婷婷精品国产亚洲av| 久久精品久久久久久噜噜老黄 | 国内精品久久久久精免费| 精品一区二区三区视频在线观看免费| 在线观看一区二区三区| 我要看日韩黄色一级片| 国产亚洲精品久久久com| 尤物成人国产欧美一区二区三区| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 少妇的逼好多水| 成年人黄色毛片网站| 天堂影院成人在线观看| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 一个人免费在线观看电影| 国内精品久久久久久久电影| 中文字幕高清在线视频| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 亚洲成av人片免费观看| 男女那种视频在线观看| 国产一级毛片七仙女欲春2| 色综合婷婷激情| 久久久久久九九精品二区国产| 十八禁网站免费在线| 毛片女人毛片| 高潮久久久久久久久久久不卡| 精品一区二区三区视频在线观看免费| 99热只有精品国产| 毛片女人毛片| 看免费av毛片| ponron亚洲| 国内毛片毛片毛片毛片毛片| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区免费观看 | 国产一区二区三区视频了| 欧美精品国产亚洲| 精品欧美国产一区二区三| 免费一级毛片在线播放高清视频| 国产三级中文精品| 国产精品女同一区二区软件 | 日韩亚洲欧美综合| 夜夜躁狠狠躁天天躁| 午夜福利在线观看免费完整高清在 | 久久久久免费精品人妻一区二区| 男人舔奶头视频| 欧美性猛交黑人性爽| 中文字幕精品亚洲无线码一区| 中文字幕高清在线视频| 午夜福利在线在线| 18禁在线播放成人免费| 国产69精品久久久久777片| 久久久久免费精品人妻一区二区| 人人妻,人人澡人人爽秒播| 亚洲狠狠婷婷综合久久图片| 亚洲一区高清亚洲精品| 国产精品99久久久久久久久| 精品人妻视频免费看| 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 女同久久另类99精品国产91| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 久久久久免费精品人妻一区二区| av在线观看视频网站免费| 我要搜黄色片| 色av中文字幕| 亚洲精品一卡2卡三卡4卡5卡| 久久久成人免费电影| 99riav亚洲国产免费| 精品一区二区三区av网在线观看| 精品一区二区三区人妻视频| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 白带黄色成豆腐渣| 在线免费观看的www视频| 日韩有码中文字幕| 亚洲无线观看免费| 婷婷六月久久综合丁香| 久久九九热精品免费| 国内精品久久久久精免费| av天堂在线播放| 欧美黑人巨大hd| 国产色婷婷99| 欧美+亚洲+日韩+国产| 亚洲av第一区精品v没综合| 91麻豆av在线| 中文亚洲av片在线观看爽| 亚洲av免费在线观看| 好男人在线观看高清免费视频| 91在线观看av| eeuss影院久久| 亚洲最大成人手机在线| 中文字幕久久专区| 村上凉子中文字幕在线| 精品久久久久久久末码| 真实男女啪啪啪动态图| 国产精品一区二区性色av| 露出奶头的视频| 精品午夜福利视频在线观看一区| 一个人看的www免费观看视频| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 内射极品少妇av片p| 草草在线视频免费看| 亚洲国产色片| 国产午夜精品论理片| 国产高清激情床上av| 亚洲欧美日韩高清专用| 在线播放无遮挡| 热99在线观看视频| 久9热在线精品视频| 国产精品国产高清国产av| 国产精品一及| 一级黄片播放器| 国产精品1区2区在线观看.| 哪里可以看免费的av片| 丰满人妻一区二区三区视频av| 国产精品精品国产色婷婷| 亚洲av成人精品一区久久| avwww免费| 久久久国产成人精品二区| 日韩中文字幕欧美一区二区| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 精品人妻偷拍中文字幕| 女人十人毛片免费观看3o分钟| 成人美女网站在线观看视频| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 欧美日韩国产亚洲二区| 他把我摸到了高潮在线观看| av女优亚洲男人天堂| 日本熟妇午夜| 五月玫瑰六月丁香| 首页视频小说图片口味搜索| 国产老妇女一区| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 老熟妇仑乱视频hdxx| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 2021天堂中文幕一二区在线观| 欧美成狂野欧美在线观看| 一个人看视频在线观看www免费| 在线免费观看的www视频| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 看十八女毛片水多多多| 国产欧美日韩精品亚洲av| 99热这里只有精品一区| 午夜免费成人在线视频| 午夜免费激情av| 亚洲欧美日韩东京热| 亚洲内射少妇av| 别揉我奶头 嗯啊视频| 波多野结衣高清无吗| www.www免费av| 日日摸夜夜添夜夜添av毛片 | ponron亚洲| 亚洲五月天丁香| 亚洲午夜理论影院| 97超视频在线观看视频| 久久久国产成人精品二区| 精品一区二区三区视频在线观看免费| 日本免费a在线| 看免费av毛片| 国产高清激情床上av| 很黄的视频免费| 一区二区三区激情视频| 男女之事视频高清在线观看| 怎么达到女性高潮| 男女下面进入的视频免费午夜| 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| 九九热线精品视视频播放| 天堂影院成人在线观看| 最好的美女福利视频网| 亚洲欧美清纯卡通| 国产免费男女视频| 噜噜噜噜噜久久久久久91| 午夜精品一区二区三区免费看| 色噜噜av男人的天堂激情| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 嫩草影院入口| 特级一级黄色大片| 国产一区二区亚洲精品在线观看| 丰满人妻熟妇乱又伦精品不卡| 午夜福利18| 在线免费观看不下载黄p国产 | 久久精品国产亚洲av涩爱 | 国产成年人精品一区二区| 国产精品久久电影中文字幕| 欧美日本亚洲视频在线播放| 国产美女午夜福利| 亚洲电影在线观看av| 亚洲欧美日韩卡通动漫| 搡老熟女国产l中国老女人| 国产高清激情床上av| 亚洲一区高清亚洲精品| 国内少妇人妻偷人精品xxx网站| 亚洲精品影视一区二区三区av| 国产精品人妻久久久久久| 99热只有精品国产| 欧美国产日韩亚洲一区| 欧美日本亚洲视频在线播放| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费| 一个人观看的视频www高清免费观看| 色5月婷婷丁香| 国产亚洲欧美在线一区二区| 国产高清三级在线| 久久亚洲精品不卡| 99久国产av精品| 最好的美女福利视频网| 亚洲成人久久爱视频| 国产极品精品免费视频能看的| 日本 欧美在线| 久久精品国产亚洲av涩爱 | 国产成年人精品一区二区| 国产精品久久电影中文字幕| 少妇人妻一区二区三区视频| 国产中年淑女户外野战色| 1000部很黄的大片| 日本一二三区视频观看| 黄色日韩在线| 日韩av在线大香蕉| 国产精品99久久久久久久久| 99国产综合亚洲精品| 天堂av国产一区二区熟女人妻| 男女床上黄色一级片免费看| 午夜久久久久精精品| 午夜a级毛片| 欧美极品一区二区三区四区| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 自拍偷自拍亚洲精品老妇| 别揉我奶头~嗯~啊~动态视频| 永久网站在线| 国产亚洲精品久久久com| 久久精品91蜜桃| 国产亚洲av嫩草精品影院| 一区二区三区激情视频| 男插女下体视频免费在线播放| 99视频精品全部免费 在线| 久久天躁狠狠躁夜夜2o2o| 波野结衣二区三区在线| 男女视频在线观看网站免费| 伦理电影大哥的女人| 欧美在线一区亚洲| 亚洲av五月六月丁香网| 国产精品久久久久久人妻精品电影| 757午夜福利合集在线观看| 成人午夜高清在线视频| 激情在线观看视频在线高清| 日本a在线网址| 欧美不卡视频在线免费观看| 久久6这里有精品| 91九色精品人成在线观看| 欧美性猛交╳xxx乱大交人| 亚洲国产日韩欧美精品在线观看| 亚洲av电影在线进入| 亚洲午夜理论影院| 中文字幕熟女人妻在线| 中文资源天堂在线| 我要搜黄色片| 日本熟妇午夜| 狠狠狠狠99中文字幕| 日韩精品中文字幕看吧| 69av精品久久久久久| 婷婷亚洲欧美| 男女视频在线观看网站免费| 午夜两性在线视频| 精品熟女少妇八av免费久了| 亚洲真实伦在线观看| 一卡2卡三卡四卡精品乱码亚洲| 97人妻精品一区二区三区麻豆| 男人狂女人下面高潮的视频| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 国产主播在线观看一区二区| 亚洲美女搞黄在线观看 | 桃色一区二区三区在线观看| 亚洲自拍偷在线| 亚洲欧美精品综合久久99| 精品国产三级普通话版| 国产av一区在线观看免费|