• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    再生障礙性貧血病因?qū)W的新探索:異常免疫誘導(dǎo)骨髓間充質(zhì)干細胞的過度脂肪化

    2014-04-01 01:38:38盧學(xué)春楊波遲小華于睿莉
    解放軍醫(yī)學(xué)雜志 2014年3期
    關(guān)鍵詞:病因?qū)W楊波障礙性

    盧學(xué)春,楊波,遲小華,于睿莉

    It has generally been accepted that the defects of hematopoietic stem cells /hematopoietic progenitors (HSCs/HPCs), which are immune system disorders and abnormalities of the bone marrow microenvironment, are concomitant in acquired aplastic anemia (AA). Currently, most investigative efforts have concentrated on the elucidation of the immune-mediated mechanisms of hematopoietic cell destruction[1-3]. Although the replacement of hematopoietic active marrow with fat cells is another characteristic feature of AA, the fat cells themselves have received little attention, and the mechanisms and underlying significance of fatty marrow replacement remain unclear. When discussing the replacement of hematopoietic active marrow by fat cells in AA, it appears that an apparent fatty marrow infiltration has been considered a secondary phenomenon.

    It is generally accepted that the bone marrow microenvironment consists of adipocytes, fibroblasts, osteoblasts, osteoclasts and endothelial cells that are derived from mesenchymal stem cells (MSCs). MSCs support hematopoiesis and regulate the function of many immune cells. Thus, abnormal MSCs affect hematopoiesis. When MSCs abnormally differentiate to fibroblasts, osteoblasts and osteoclasts, this can cause anemia with myelofibrosis, osteoporosis and osteopetrosis, respectively. AA is characterized by fatty replacement in bone marrow (BM) that results in pancytopenia. As with myelofibrosis, osteoporosis and osteopetrosis, AA appears to share this mechanism of abnormal MSC differentiation.

    Effective AA treatments, such as cyclosporine[4], androgen[5], lithium chloride[6]and Bojungbangdocktang[7], inhibit the differentiation of MSCs to adipocytes, but this characteristic is often overlooked. The same is true for the pathogenic factors related to acquired AA. The infrequently used antibiotic chloramphenicol can cause acquired AA and can also induce MSC adipogenesis.Auto-active T cells can induce both the apoptosis of HSCs/HPCs and adipogenesis differentiation of MSCs. Androgens, such as oxymetholone, were used extensively in the treatment of acquired AA for decades and could also inhibit the differentiation of human MSCs (as well as preadipocytes) to adipocytes.

    It is crucial to clarify the cause of fat cell accumulation in acquired AA, which may offer protective/therapeutic effects in acquired AA.

    1 Drugs and a series of therapy and adipogenesis

    1.1 Toxins and toxicity drugs: inducing AA via increased adipogenesis Many toxins and toxicity drugs are potential causes of acquired AA, and some of these agents can induce MSCs to differentiate into adipocytes. Chloramphenicol is the most notorious drug known to cause acquired AA. The risk of developing acquired AA in patients treated with chloramphenicol is approximately one in 20,000 or 10- to 50-fold that of the general population[8]. There is no direct evidence of the myelosuppressive effect of this drug within a normal dose range; however, there is evidence of this effect at very high doses. Though lacking robust evidence, this sensitivity is also believed to produce immunologic marrow suppression because the affected patients responded to immunosuppressive therapy[9-11]. Again, there is lack of direct evidence for toxicities against HSCs/HPCs from chloramphenicol.More recently, a series of studies failed to produce a chronic aplastic anemia mouse model using chloramphenicol succinate[12-14].The studies also indicated that chloramphenicol may cause acquired AA in humans through other time-cost avenues (such as the adipogenesis of MSCs) instead of impairing HSCs/HPCs or immune stirring.

    Chloramphenicol can damage mitochondria; this is considered to be another pathological avenue for inducing acquired AA.Although there is close relationship between mitochondrial defects and acquired AA, the mechanism of mitochondrial damage and acquired AA is unclear. Recently, Vankoningsloo et al[15]found that chloramphenicol could induce triglyceride accumulation in 3T3-L1 preadipocytes and could also increase the differentiation of adipocytes from preadipocytes; this may be the underlying mechanism of chloramphenicol-related acquired AA. Chloramphenicol may induce the MSCs to preferentially differentiate to adipocytes in AA patients. Furthermore, the HSCs/HPCs lost hematopoietic support from the MSCs, and finally pancytopenia arose. In refractory acquired AA in which stem cell transplantation failed to recover normal hematopoiesis, MSCs infusion could salvage the graft failure[16-17]. This finding indicated that normal MSCs warrant normal hematopoiesis recovery from AA and that defect MSCs, such as over adipogenesis, impair normal hematopoiesis.

    1.2 Effective therapy for acquired AA may increase hematopoiesis by inhibiting adipogenesis in bone marrow in a timeconsuming manner In addition to stem cell transplantation, immunosuppressive therapy (IST) and androgens are the two most frequently used treatments for acquired AA. IST was thought to inhibit T cell toxicities to stem/progenitor cells; if this were true,hematopoiesis should shortly recover after the depletion of T cell toxicities, just as in the treatment of immune thrombocytopenia(ITP)[18]. However, this is not true in AA clinical practice due to the recovery time of hematopoiesis[19].

    1.3 Immunosuppressive therapeutic reagents inhibit adipogenesis Cyclosporine is a standard immunosuppressive therapeutic reagent (IST) for acquired AA, though other IST types, such as sirolimus, also have therapeutic effects against this disease. The overall survival rate after IST for acquired AA is currently approximately 75% at 5 years. The relapse rate after immunosuppressive therapy was approximately 30%[4]. Patients are at risk for later clonal disease, myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML, 8%), hemolytic paroxysmal nocturnal hemoglobinuria (PNH, 10%) and solid tumors (11%) at 11 years,respectively[20]. These results warrant exploring other effective and safe methods that have the benefits of IST without its toxic side effects.

    IST was also found to decrease both the adipocyte numbers and cell mass in animals and patients taking IST. Adipogenesis decreased both in the bone marrow and throughout the body. When rats were given sirolimus 1.0mg/kg three times per week for 12 weeks, both the body mass index and adipocyte diameters were lower than those of the control group (356g vs 507g, P<0.01,25μm vs 36μm, P=0.009)[21]. After kidney transplantation, the recipients took cyclosporine. Two years later, the body mass indexes of the patients decreased significantly[22]. Cyclosporine and other ISTs could decrease adipogenesis, and this may have underlying significance in its pharmacodynamics. Nuclear factor of activated T cells (NFAT) is a family of transcription factors that are present in 3T3-L1 adipocytes and MSCs, and also participates in adipocyte differentiation[23]. Cyclosporine A could prevent NFAT nuclear localization and thus inhibit fat cell differentiation. These results demonstrated that, with the exception of its immune inhibition effect, cyclosporine A could also inhibit the differentiation of fat cells; this may play an important role in the treatment of acquired AA.

    1.4 Inhibitive effects of androgens on adipogenesis An association between androgens and erythropoiesis has been acknowledged for decades. Oxymetholone was used extensively in the treatment of acquired AA. In some patients, oxymetholone can stimulate erythropoiesis in particular but sometimes can produce a trilineage response. Oxymetholone in combination with IST more significantly increases this response compared with IST alone[24-25]. The mechanism of how androgens stimulate hematopoiesis is poorly understood. It has been thought that the stimulation of erythropoietin release and increases bone marrow activity[26].An anecdotal use of rHuEpo in acquired AA has shown that it is ineffective, which is not surprising in view of the demonstration of markedly elevated serum erythropoietin levels in the majority of patients with acquired AA[27]. Thus, androgens may stimulate hematopoiesis through other mechanisms instead of the EPO pathway.

    Recently, Gupta et al[5]found that androgens could inhibit the differentiation of human mesenchymal stem cells and preadipocytes to adipocytes. In this study, dihydrotestosterone (DHT) (0–30nmol/L) downregulated the expression of adipocyte differentiation genes, including aP2, leptin, and PPARγ mRNAs, in a dose-dependent manner.

    This suggested that androgens may reverse normal hematopoiesis by inhibiting MSC adipogenesis.

    1.5 Response time of AA is significantly longer than that of immune-related cytopenia disorders Immune inhibitors require significantly more time to recover hematopoiesis in acquired AA than immune-related cytopenia such as ITP. Acquired AA responses to ATG and cyclosporine are delayed, and the response usually does not begin before 3–4 months of treatment. For ITP, which is considered a typical immune disorder-related, platelet-destroying disease, 4 weeks or less are usually required to recover normal platelet counts[18]. This recovery time is significantly longer than that of neutrophils; and platelet after stem cell transplantation are approximately 28 days[19], which is also the length of time that it takes for hematopoiesis to recover (without other disturbances).Not surprisingly, the platelet count recovery time after effective ITP treatment is the same as that of stem cell transplantation; this may be the time course of platelet production. In acquired AA, the scenario may be significantly more complex because a longer recovery time is required after IST treatment.

    In summary, the response time of IST in the treatment of acquired AA is significantly longer than that of IST in the treatment of ITP. There must be an additional contributor to cytopenia in acquired AA (in addition to direct toxicities against hematopoiesis by T lymphocytes). Over adipocytosis of the MSCs in bone marrow requires time and may account for this.

    2 Cell-mediated immunity and adipogenesis

    2.1 Abnormal immunity may increase adipogenesis in bone marrow Although the replacement of hematopoietic marrow with fat cells is the primary characteristic feature of acquired AA, the fat cells themselves have received little attention, and the mechanisms of fatty marrow replacement remain unclear. Study results have shown that abnormal T lymphocytes may increase the adipogenesis differentiation of MSCs by excreting cytokines such as IFN-γ and TNF-α. In a non-random controlled clinical trial including seven patients with AA and nine normal age-matched controls, Hara et al[28]measured T-cell-derived intracellular cytokine production levels in the peripheral blood and bone marrow of patients with AA. The results demonstrated that BM lymphocytes in patients with AA produced significantly larger amounts of IFN-γ compared with controls.

    It has been demonstrated that auto reactive T lymphocytes can induce adipogenesis from MSC. A variety of cytokines,including IFN-γ and TNF-α, have been confirmed as the key mediators of hematopoietic suppression and could also cause MSCs to differentiate to adipocytes. The transcription factor GATA-2 may play an important role in the balance between hematopoiesis and adipogenesis in bone marrow. GATA-2 is specifically expressed not only in hematopoietic tissues but also in preadipocytes, and it is known to be an important adipogenic regulator[29].

    Xu et al[30]found that both the protein and mRNA levels of GATA-2 were lower in the marrow MSCs from AA patients than those in normal subjects. They further verified that incubation with interferon-γ induced the downregulation of GATA-2 levels in MSCs in normal subjects; this increased the differentiation of MSCs to adipocytes. These results showed that auto active T lymphocytes may increase adipogenesis in marrow by excreting cytokines such as IFN-γ. Other cytokines from T lymphocytes,such as IL-15, have similar effects in adipogenesis[31].

    2.2 Over adipogenesis decreases B lymphocytes in AA Bone marrow failure has been considered to be related to the strong immunologic function of T lymphocytes in a scenario of concurrently reduced B lymphocyte levels. Li et al[32]found that there are fewer CD19+B lymphocytes in the bone marrow of AA patients than that of healthy controls (P=0.002). It appears that the relative decrease in B lymphocytes could not be due to the proliferation of T lymphocytes in AA because NK cells, which are another of the three main lymphocyte subsets, did not obviously decrease in AA. It appears likely, therefore, that a reduction in (CD34+/CD19+)B lymphocyte progenitors explains the B lymphocyte decrease observed in AA in the course of the disease, whereas the number of adult B lymphocytes is significantly decreased. Unfortunately, it remains unknown why the earliest B cell progenitors, CD34+/CD19+B lymphocyte progenitors, decreased in AA. It appears that adipocytes may negatively regulate the production of B lymphocytes in AA.

    Many adipocyte products, including type 1 IFN, PGs, leptin, and sex steroids, are known modulators of lymphohematopoiesis.Adiponectin is an abundant protein made exclusively by adipocytes. Hematopoietic cells and the microenvironment that supports their differentiation are also adiponectin targets. Yokota et al[33]used long bone marrow cultures to investigate the effects of adiponectin on lymphohematopoietic cells. They found that recombinant adiponectin strongly inhibited B lymphopoiesis in longterm bone marrow cultures. These results indicate that adipocytes in bone marrow can contribute to the regulation of B lymphocyte formation.

    2.3 Over adipogenesis may decrease the T-cell suppression effect of MSCs Bone marrow MSCs have immunosuppressive activity both in vitro and in vivo[33-36]. It is generally accepted that abnormal immunity is the primary factor mediating the pathogenesis of acquired AA. This abnormal immunity may be the result of the decreased suppression effect against T cells by MSCs after their adipogenesis differentiation. In a clinical experiment of 23 severe AA cases and 19 healthy controls, Bacigalupo et al[37]compared the suppressive effect of MSCs (derived from the two patient groups) on T-cell activation. They found that the abnormalities of MSCs from severe AA patients included 1) a significantly lower suppression of T-cell proliferation induced by alloantigens; 2) an impaired capacity to suppress CD38 expression on PHA-primed T cells; 3) an impaired ability to suppress IFN-γ production in PHA cultures. The ability of MSCs to downregulate T-cell priming, proliferation, and cytokine release is deficient in patients with SAA.In another study, Liu et al[38]and Li et al[39]found that MSCs lost their immune regulation effect after differentiating to adipocytes.Thus, we could deduce that the inhibition of MSC differentiation to adipogenesis (restoring the T-cell suppression of MSCs) may be beneficial in recovering normal hematopoiesis in acquired AA.

    3 Over adipogenesis in marrow and hematopoiesis

    3.1 Over adipogenesis of MSCs and the excretion of hematopoietic inhibitors During aging, hematopoietic bone marrow is increasingly replaced by adipose tissue[40]; this may at least in part explain the high rate of anemia in the aging population. This phenomenon can also be observed in hematopoiesis diseases and especially in AA. Adipose tissue produces a number of cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-6, IFN-γ and others[41-43]. Present data indicate that IL-6, IFN-γ and TNF-α[44]belong to myelosuppressive cytokines. IL-6, IFN-γ and TNF-α could induce the death of hematopoietic progenitor cells by increased apoptosis at very low cytokine concentrations[45-47]. Adipocytes may exert their inhibitory effects on hematopoiesis by excreting these negative cytokines in AA.

    3.2 The increased adipogenesis of MSCs decreases normal hematopoiesis It is well known that MSCs support hematopoiesis and that they are impaired in acquired AA, especially in scenarios of over adipogenesis. Recently, Wu et al[48]directly verified this via the co-transplantation of MSCs following hematopoietic stem cell transplantation in a severe AA patient; this treatment increased the reconstitution of normal hematopoiesis. Over adipogenesis of MSCs can have negative effects on normal hematopoiesis via the reduced production of hematopoietic supporting factors and the excessive excretion of hematopoietic inhibitors (Figure 1); these could retard the recovery of normal hematopoiesis after hematopoietic stem cell transplantation or radiation damage.

    To explore if adipocytes influence hematopoiesis or if they simply fill the marrow space as a secondary result after radiation,Naveiras et al[40]used a "fatless" mice model and found that hematopoiesis in fatless marrow engraftments after irradiation was accelerated compared with that of fatty marrow. This indicated that over adipogenesis participated at least in part with the origin of acquired AA. It also indicated that an increased adipocyte level is an initiating and not a secondary phenomenon in acquired AA. These data showed that antagonizing marrow over adipogenesis may enhance normal hematopoietic recovery in the over adipogenesis of marrow observed in AA.

    Fig 1. Mesenchymal stem cells (MSCs) are the primary components of the hematopoietic niche in bone marrow. In a homeostatic condition, hematopoiesis is maintained via support from MSCs. When bone marrow is attacked by acquired AA pathogenic factors(such as abnormal immune reactions, chemicals, virus infections, radiation, etc.), however, over adipogenesis happened and adipocytes predominantly suppress hematopoiesis.(...> increase; ...| inhibit)

    Although acquired AA is a heterous cytopenia syndrome, most cases share the same pathological characteristics of over adipogenesis in bone marrow. This abnormal adipogenesis may be both the stirrer and result of abnormal immunity. This cycle of abnormal immunity and over adipogenesis may account for the cytopenia in most acquired AA patients (Figure 1). This finding warrants further exploration for new target drugs against adipogenesis in the treatment of acquired AA.

    [1] Ascensao J, Pahwa R, Kagan W, et al. Aplastic anaemia: evidence for an immunological mechanism[J]. Lancet, 1976, 1(7961): 669-671.

    [2] Bacigalupo A, Valle M, Podestà M, et al. T-cell suppression mediated by mesenchymal stem cells is deficient in patients with severe aplastic anemia[J]. Exp Hematol, 2005, 33(7): 819-827.

    [3] Young NS, Maciejewski J. The pathophysiology of acquired aplastic anemia[J]. N Engl J Med, 1997, 336(19): 1365-1372.

    [4] Schrezenmeier H, Marin P, Raghavachar A, et al. Relapse of aplastic anaemia after immunosuppressive treatment: a report from the European Bone Marrow Transplantation Group SAA Working Party[J]. Br J Haematol, 1993, 85(2): 371-377.

    [5] Gupta V, Bhasin S, Guo W, et al. Effects of dihydrotestosterone on differentiation and proliferation of human mesenchymal stem cells and preadipocytes[J]. Mol Cell Endocrinol, 2008, 296(1-2): 32-40.

    [6] Zhang N, Dai YL, Huang LF, et al. Therapeutic effect of lithium chloride combined with cyclosporine A on mouse model with aplastic anemia[J]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2012, 20(3): 654-657.

    [7] Lim J, Jeong SJ, Koh W, et al. JAK2/STAT5 signaling pathway mediates Bojungbangdocktang enhanced hematopoiesis[J]. Phytother Res,2011, 25(3): 329-337.

    [8] Lichtman MA, Beutler E, Seligsohn U, et al. Williams hematology[M]. 7th ed. McGraw-Hill Companies. 2006. 419.

    [9] Holt DE, Andrews CM, Payne JP, et al. The myelotoxicity of chloramphenicol: in vitro and in vivo studies: Ⅱ: In vivo myelotoxicity in the B6C3F1 mouse[J]. Hum Exp Toxicol, 1998, 17(1): 8-17.

    [10] Turton JA, Yallop D, Andrews CM, et al. Haemotoxicity of chloramphenicol succinate in the CD-1 mouse and Wistar Hanover rat[J]. Hum Exp Toxicol, 1999, 18(9): 566-576.

    [11] Turton JA, Havard AC, Robinson S, et al. An assessment of chloramphenicol and thiamphenicol in the induction of aplastic anaemia in the BALB/c mouse[J]. Food Chem Toxicol, 2000, 38(10): 925-938.

    [12] Festing MF, Diamanti P, Turton JA. Strain differences in haematological response to chloramphenicol succinate in mice: implications for toxicological research[J]. Food Chem Toxicol, 2001, 39(4): 375-383.

    [13] Turton JA, Andrews CM, Havard AC, et al. Haemotoxicity of thiamphenicol in the BALB/c mouse and Wistar Hanover rat[J]. Food Chem Toxicol, 2002, 40(12): 1849-1861.

    [14] Turton JA, Andrews CM, Havard AC, et al. Studies on the haemotoxicity of chloramphenicol succinate in the Dunkin Hartley guinea pig[J].Int J Exp Pathol, 2002, 83(5): 225-238.

    [15] Vankoningsloo S, De Pauw A, Houbion A, et al. CREB activation induced by mitochondrial dysfunction triggers triglyceride accumulation in 3T3-L1 preadipocytes[J]. J Cell Sci, 2006, 119(Pt 7): 1266-1282.

    [16] Jaganathan BG, Tisato V, Vulliamy T, et al. Effects of MSC co-injection on the reconstitution of aplastic anemia patient following hematopoietic stem cell transplantation[J]. Leukemia, 2010, 24(10): 1791-1795.

    [17] Fang B, Li N, Song Y, et al. Cotransplantation of haploidentical mesenchymal stem cells to enhance engraftment of hematopoietic stem cells and to reduce the risk of graft failure in two children with severe aplastic anemia[J]. Pediatr Transplant, 2009, 13(4): 499-502.

    [18] Emilia G, Luppi M, Morselli M, et al. A possible role for low-dose cyclosporine in refractory immune thrombocytopenic purpura[J].Haematologica, 2008, 93(7): 1113-1115.

    [19] Richard EC, Waleska SP, Jakob RP, et al. Bone marrow transplantation for severe aplastic anemia: a randomized controlled study of conditioning regimens[J]. Blood, 2007, 109(10): 4582-4585.

    [20] Frickhofen N, Heimpel H, Kaltwasser JP, et al. Antithymocyte globulin with or without cyclosporin A: 11-year follow-up of a randomised trial comparing treatments of aplastic anaemia[J]. Blood, 2003, 101(4): 1236-1242.

    [21] Rovira J, Marcelo AE, Burke JT, et al. Effect of mTOR inhibitor on body weight: from an experimental rat model to human transplant patients[J]. Transpl Int, 2008, 21(10): 992-998.

    [22] Huang H, Chang EJ, Ryu J, et al. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway[J]. Biochem Biophys Res Commun, 2006, 351(1): 99-105.

    [23] Ho IC, Kim JHJ, Rooney JW, et al. A potential role for the nuclear factor of activated T cells family of transcriptional regulatory proteins in adipogenesis[J]. Proc Natl Acad Sci USA, 1998, 95(26): 15537-15541.

    [24] Bacigalupo A, Chaple M, Hows J, et al. Treatment of aplastic anaemia (AA) with antilymphocyte globulin (ALG) and methylprednisolone(Mpred) with or without androgens: a randomized trial from the EBMT SAA Working Party[J]. Br J Haematol, 1993, 83(1): 145-151.

    [25] Leleu X, Terriou L, Duhamel A, et al. Long-term outcome in acquired aplastic anemia treated with an intensified dose schedule of horse antilymphocyte globulin in combination with androgens[J]. Annals Hematol, 2006, 85(10): 711-716.

    [26] Shahani S, Braga-Basaria M, Maggio M, et al. Androgens and erythropoiesis: past and present[J]. Endocrinol Invest, 2009, 32(8): 704-716.

    [27] Marsh JCW, Ganser A, Stadler M. Hematopoietic growth factors in the treatment of acquired bone marrow failure states[J]. Semin Hematol,2007, 44(3): 138-147.

    [28] Hara T, Ando K, Tsurumi H, et al. Excessive production of tumor necrosis factor-alpha by bone marrow T lymphocytes is essential in causing bone marrow failure in patients with aplastic anemia[J]. Eur J Haematol, 2004, 73(1): 10-16.

    [29] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411):143-147.

    [30] Xu Y, Takahashi Y, Wang Y, et al. Downregulation of GATA-2 and overexpression of adipogenic gene-PPARgamma in mesenchymal stem cells from patients with aplastic anemia[J]. Exp Hematol, 2009, 37(12): 1393-1399.

    [31] Almendro V, Fuster G, Ametller E, et al. Interleukin-15 increases calcineurin expression in 3T3-L1 cells: possible involvement on in vivo adipocyte differentiation[J]. Int J Mol Med, 2009, 24(4): 453-458.

    [32] Li X, Xu F, He Q, et al. Comparison of immunological abnormalities of lymphocytes in bone marrow in myelodysplastic syndrome (MDS) and aplastic anemia (AA)[J]. Intern Med, 2010, 49(14):1349-1355.

    [33] Yokota T, Meka CS, Kouro T, et al. Adiponectin, a fat cell product, influences the earliest lymphocyte precursors in bone marrow cultures by activation of the cyclooxygenase-prostaglandin pathway in stromal cells[J]. J Immunol, 2003, 171(10): 5091-5099.

    [34] Prockop DJ. Marrow stromal cells as stem cells for non hematopoietic tissues[J]. Science, 1997, 276(5309): 71-74.

    [35] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.

    [36] Di Nicola M, Carlo-Stella C, Magni M, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli[J]. Blood, 2002, 99(10): 3838-3843.

    [37] Bacigalupo A, Bruno B, Saracco P, et al. Antilymphocyte globulin, cyclosporine, prednisolone and granulocyte colony stimulating factor for severe aplastic anemia: an update of the GITMO/EBMT study on 100 patients[J]. Blood, 2000, 95(6): 1931-1934.

    [38] Liu H, Kemeny DM, Heng BC, et al. The immunogenicity and immunomodulatory function of osteogenic cells differentiated from mesenchymal stem cells[J]. J Immunol, 2006, 176(5): 2864-2871.

    [39] Li J, Yang S, Lu S, et al. Differential gene expression profile associated with the abnormality of bone marrow mesenchymal stem cells in aplastic anemia[J]. PLoS One, 2012, 7(11): e47764.

    [40] Naveiras O, Nardi V, Wenzel PL, et al. Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment[J]. Nature,2009, 460(7252): 259-263.

    [41] Muschler GF, Nitto H, Boehm CA, et al. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors[J]. J Orthop Res, 2001, 19(1): 117-125.

    [42] Chan JL, Moschos SJ, Bullen J, et al. Recombinant methionyl human leptin administration activates signal transducer and activator of transcription 3 signaling in peripheral blood mononuclear cells in vivo and regulates soluble tumor necrosis factor-alpha receptor levels in humans with relative leptin deficiency[J]. J Clin Endocrinol Metab, 2005, 90(3):1625-1631.

    [43] Freedman MH, Cohen A, Grunberger T, et al. Central role of tumour necrosis factor, GM-CSF, and interleukin 1in the pathogenesis of juvenile chronic myelogenous leukaemia[J]. Br J Haematol, 1992, 80(1):40-48.

    [44] Hall PD, Benko H, Hogan KR, et al. The influence of serum tumor necrosis factor-a and interleukin-6 concentrations on nonhematologic toxicity and hematologic recovery in patients with acute myelogenous leukemia[J]. Exp Hematol, 1995, 23(12):1256-1260.

    [45] Vinante F, Rigo A, Tecchio C, et al. Serum levels of p55 and p75 soluble TNF receptors in adult acute leukaemia at diagnosis: correlation with clinical and biological features and outcome[J]. Br J Haematol, 1998, 102(4): 1025-1034.

    [46] Belaid-Choucair Z, Lepelletier Y, Poncin G, et al. Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition[J]. Stem Cells, 2008, 26(6): 1556-1564.

    [47] Rathbun RK, Faulkner GR, Ostroski MH, et al. Inactivation of the Fanconi anemia group C gene augments interferon-γ- induced apoptotic responses in hematopoietic cells[J]. Blood, 1997, 90(3): 974-985.

    [48] Wu Y, Cao Y, Li X, et al. Cotransplantation of haploidentical hematopoietic and umbilical cord mesenchymal stem cells for severe aplastic anemia: Successful engraftment and mild GVHD[J]. Stem Cell Res, 2013, 12(1): 132-138.

    猜你喜歡
    病因?qū)W楊波障礙性
    母牛繁殖障礙性疾病的發(fā)生原因、臨床表現(xiàn)及防治
    某型飛機主起機輪艙改進設(shè)計
    Parameterized Post-Post-Newtonian Light Propagation in the Field of One Spherically-Symmetric Body?
    豬繁殖障礙性病毒病鑒別診斷及綜合防控
    楊波藏品欣賞
    寶藏(2017年10期)2018-01-03 01:53:45
    妊娠期高血壓疾病的病因?qū)W及護理研究進展
    交感—腎上腺素能神經(jīng)系統(tǒng)與主動脈夾層的關(guān)系研究
    膝關(guān)節(jié)自發(fā)性骨壞死的病因?qū)W研究進展
    一個非綜合征型聾家系的分子病因?qū)W研究
    氯米芬結(jié)合熱敏點灸治療排卵障礙性不孕癥32例
    国产精品三级大全| 天堂√8在线中文| 1000部很黄的大片| 淫秽高清视频在线观看| 国产精品影院久久| 成人国产综合亚洲| 国产69精品久久久久777片| 亚洲精华国产精华精| 精品久久国产蜜桃| 亚洲av美国av| 波多野结衣高清作品| 少妇人妻一区二区三区视频| 欧美三级亚洲精品| 国产乱人伦免费视频| 国产伦在线观看视频一区| 免费在线观看日本一区| 欧美日韩国产亚洲二区| 亚洲精品亚洲一区二区| 免费电影在线观看免费观看| 给我免费播放毛片高清在线观看| 女人被狂操c到高潮| 男女那种视频在线观看| 特级一级黄色大片| 精华霜和精华液先用哪个| 99在线人妻在线中文字幕| av视频在线观看入口| x7x7x7水蜜桃| 啦啦啦观看免费观看视频高清| 欧美日本视频| 一区二区三区高清视频在线| 国产一区二区亚洲精品在线观看| 在线观看午夜福利视频| 内地一区二区视频在线| 熟女电影av网| 性色av乱码一区二区三区2| 国产亚洲av嫩草精品影院| 丰满人妻熟妇乱又伦精品不卡| 午夜免费男女啪啪视频观看 | 欧美+亚洲+日韩+国产| 免费电影在线观看免费观看| 中亚洲国语对白在线视频| 老司机午夜十八禁免费视频| 午夜免费男女啪啪视频观看 | 亚洲在线观看片| 国产免费男女视频| 日韩中字成人| 午夜亚洲福利在线播放| 亚洲人成伊人成综合网2020| 两性午夜刺激爽爽歪歪视频在线观看| 国产三级中文精品| 精品乱码久久久久久99久播| 毛片女人毛片| av在线老鸭窝| 九九在线视频观看精品| 2021天堂中文幕一二区在线观| 99热只有精品国产| 亚洲精品久久国产高清桃花| 免费黄网站久久成人精品 | 欧美性感艳星| 无人区码免费观看不卡| 国产在线精品亚洲第一网站| 精品一区二区三区人妻视频| 草草在线视频免费看| 最新中文字幕久久久久| 嫩草影院精品99| 久久性视频一级片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产免费av片在线观看野外av| 美女xxoo啪啪120秒动态图 | 久久精品国产自在天天线| 亚洲av日韩精品久久久久久密| 熟女人妻精品中文字幕| 亚洲三级黄色毛片| 国产一级毛片七仙女欲春2| 免费电影在线观看免费观看| a在线观看视频网站| 桃色一区二区三区在线观看| 午夜视频国产福利| 午夜福利18| 国产一区二区激情短视频| 亚洲精品久久国产高清桃花| 国产色爽女视频免费观看| 一个人看的www免费观看视频| 村上凉子中文字幕在线| 国产黄色小视频在线观看| 欧美日韩福利视频一区二区| 国产精品电影一区二区三区| 此物有八面人人有两片| 亚洲av日韩精品久久久久久密| 给我免费播放毛片高清在线观看| 久久草成人影院| 日本三级黄在线观看| 99久久成人亚洲精品观看| 少妇被粗大猛烈的视频| 男人舔奶头视频| www.色视频.com| 99在线人妻在线中文字幕| 国产一区二区三区在线臀色熟女| 中文字幕熟女人妻在线| 午夜福利在线观看吧| 真人一进一出gif抽搐免费| 热99re8久久精品国产| 亚洲一区高清亚洲精品| 国产精品久久电影中文字幕| 国产单亲对白刺激| 成人欧美大片| 在线国产一区二区在线| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 欧美最黄视频在线播放免费| 窝窝影院91人妻| 91九色精品人成在线观看| 欧美激情久久久久久爽电影| 亚洲成人免费电影在线观看| 亚洲一区二区三区色噜噜| 午夜福利在线在线| av欧美777| 国产主播在线观看一区二区| 深夜精品福利| 亚洲自偷自拍三级| 亚洲内射少妇av| 欧美性猛交╳xxx乱大交人| 黄色视频,在线免费观看| 91久久精品国产一区二区成人| 俺也久久电影网| 国产精品美女特级片免费视频播放器| 成年女人毛片免费观看观看9| 日本三级黄在线观看| 久久伊人香网站| 久久精品国产亚洲av天美| 日本一本二区三区精品| 赤兔流量卡办理| 国产精品亚洲美女久久久| 国语自产精品视频在线第100页| 欧美三级亚洲精品| 久久久久亚洲av毛片大全| avwww免费| 国产欧美日韩精品亚洲av| 一级毛片久久久久久久久女| 97热精品久久久久久| 最近在线观看免费完整版| 亚洲久久久久久中文字幕| 午夜久久久久精精品| 国产精品电影一区二区三区| 乱码一卡2卡4卡精品| 一级av片app| 人妻久久中文字幕网| 免费黄网站久久成人精品 | 91字幕亚洲| 欧美日本亚洲视频在线播放| avwww免费| 国产黄a三级三级三级人| 我要看日韩黄色一级片| 欧美黑人巨大hd| 国产美女午夜福利| 欧美高清性xxxxhd video| 精品一区二区三区av网在线观看| 成人精品一区二区免费| 内射极品少妇av片p| 亚洲美女黄片视频| 亚洲av第一区精品v没综合| 麻豆av噜噜一区二区三区| 国产亚洲精品av在线| 2021天堂中文幕一二区在线观| 久久6这里有精品| 久久草成人影院| 人妻制服诱惑在线中文字幕| 男女做爰动态图高潮gif福利片| 91久久精品国产一区二区成人| 日韩欧美在线二视频| 欧美高清成人免费视频www| 久久热精品热| 亚洲七黄色美女视频| 久久草成人影院| 757午夜福利合集在线观看| 在线观看一区二区三区| 禁无遮挡网站| 亚洲在线观看片| 麻豆久久精品国产亚洲av| 精品久久国产蜜桃| 中出人妻视频一区二区| av天堂中文字幕网| 男女床上黄色一级片免费看| 欧美乱妇无乱码| 十八禁国产超污无遮挡网站| 变态另类成人亚洲欧美熟女| 亚洲激情在线av| 亚洲五月婷婷丁香| 亚洲av中文字字幕乱码综合| 91av网一区二区| 18禁在线播放成人免费| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 九色成人免费人妻av| 午夜精品久久久久久毛片777| 成人美女网站在线观看视频| 亚洲精品在线观看二区| 久久久久国内视频| 亚洲三级黄色毛片| 国产午夜精品久久久久久一区二区三区 | 免费大片18禁| 欧美高清性xxxxhd video| 国产视频一区二区在线看| 国产成年人精品一区二区| 别揉我奶头~嗯~啊~动态视频| 国产三级黄色录像| 久久精品国产亚洲av天美| 精品不卡国产一区二区三区| 亚洲精品色激情综合| 可以在线观看的亚洲视频| 9191精品国产免费久久| 精品人妻视频免费看| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 国产极品精品免费视频能看的| 亚洲乱码一区二区免费版| 男人舔女人下体高潮全视频| 我要看日韩黄色一级片| 成人无遮挡网站| 性欧美人与动物交配| 国产色爽女视频免费观看| 在线十欧美十亚洲十日本专区| 一区二区三区激情视频| 精品久久久久久久久亚洲 | 在线观看免费视频日本深夜| av在线观看视频网站免费| 免费电影在线观看免费观看| 一个人免费在线观看电影| av女优亚洲男人天堂| 欧美极品一区二区三区四区| 啦啦啦观看免费观看视频高清| 黄色日韩在线| 97人妻精品一区二区三区麻豆| 国产精品三级大全| 十八禁人妻一区二区| 国产精品久久久久久久久免 | 1000部很黄的大片| 18禁在线播放成人免费| 真实男女啪啪啪动态图| 午夜福利在线在线| 国产人妻一区二区三区在| 国产熟女xx| 婷婷六月久久综合丁香| 国产成人aa在线观看| 亚洲,欧美,日韩| 丁香欧美五月| 亚洲成av人片免费观看| 人妻制服诱惑在线中文字幕| 色吧在线观看| 性欧美人与动物交配| 变态另类成人亚洲欧美熟女| 精品一区二区免费观看| 成人无遮挡网站| 日韩大尺度精品在线看网址| 成人高潮视频无遮挡免费网站| 国产爱豆传媒在线观看| 男女床上黄色一级片免费看| 国产精品久久久久久人妻精品电影| 99热6这里只有精品| 免费在线观看日本一区| 亚洲中文字幕日韩| 午夜a级毛片| 性色av乱码一区二区三区2| 麻豆成人午夜福利视频| 一本一本综合久久| 尤物成人国产欧美一区二区三区| 免费看光身美女| 午夜福利18| 免费看美女性在线毛片视频| 两人在一起打扑克的视频| 久久久久国产精品人妻aⅴ院| 国产成人福利小说| 亚洲久久久久久中文字幕| 精品国产亚洲在线| 国产精品久久久久久人妻精品电影| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 欧美成人一区二区免费高清观看| 国产精品一区二区免费欧美| 午夜福利在线观看免费完整高清在 | 1000部很黄的大片| 男女视频在线观看网站免费| 99国产精品一区二区三区| 99热只有精品国产| 国产精品久久久久久久久免 | 人人妻人人澡欧美一区二区| 18禁裸乳无遮挡免费网站照片| 免费一级毛片在线播放高清视频| www日本黄色视频网| 国产亚洲精品久久久com| 色5月婷婷丁香| 国产欧美日韩精品亚洲av| 如何舔出高潮| 精品一区二区三区人妻视频| 老鸭窝网址在线观看| 99热这里只有是精品50| 色综合亚洲欧美另类图片| 国产成人av教育| 国产乱人伦免费视频| 99在线人妻在线中文字幕| 国产在视频线在精品| av在线观看视频网站免费| 性色avwww在线观看| 韩国av一区二区三区四区| 亚州av有码| 精品人妻熟女av久视频| 99久久99久久久精品蜜桃| 久久99热这里只有精品18| 精品一区二区三区视频在线| 国产精品99久久久久久久久| 色吧在线观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看| av在线天堂中文字幕| 内地一区二区视频在线| 老熟妇仑乱视频hdxx| 69av精品久久久久久| 亚洲三级黄色毛片| eeuss影院久久| 在现免费观看毛片| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 级片在线观看| 村上凉子中文字幕在线| 国产成人aa在线观看| 国产免费一级a男人的天堂| 成人午夜高清在线视频| 午夜视频国产福利| av中文乱码字幕在线| 亚洲欧美清纯卡通| 成年女人看的毛片在线观看| 最近最新免费中文字幕在线| 久久久久免费精品人妻一区二区| 久久久久久国产a免费观看| 国产单亲对白刺激| 大型黄色视频在线免费观看| 日韩av在线大香蕉| 少妇高潮的动态图| 亚洲av日韩精品久久久久久密| 亚洲不卡免费看| 精华霜和精华液先用哪个| 日韩 亚洲 欧美在线| 女同久久另类99精品国产91| 免费看美女性在线毛片视频| 俄罗斯特黄特色一大片| 久久久久久久久久成人| 男女之事视频高清在线观看| 色综合婷婷激情| АⅤ资源中文在线天堂| 在线播放国产精品三级| av中文乱码字幕在线| 国内精品久久久久久久电影| 悠悠久久av| а√天堂www在线а√下载| 中文资源天堂在线| 久久精品影院6| 蜜桃亚洲精品一区二区三区| 亚洲精品日韩av片在线观看| 很黄的视频免费| 成人特级黄色片久久久久久久| 深爱激情五月婷婷| 免费av观看视频| 久久精品国产清高在天天线| 亚洲av电影不卡..在线观看| 日韩欧美精品v在线| a级毛片免费高清观看在线播放| 久久人人精品亚洲av| 精品乱码久久久久久99久播| 18美女黄网站色大片免费观看| 欧美国产日韩亚洲一区| av福利片在线观看| 少妇被粗大猛烈的视频| 免费人成视频x8x8入口观看| 亚洲人成网站在线播| 日本成人三级电影网站| 美女黄网站色视频| 精品熟女少妇八av免费久了| 日日摸夜夜添夜夜添av毛片 | 日日摸夜夜添夜夜添av毛片 | 一本综合久久免费| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| 亚洲一区二区三区不卡视频| 国产精品av视频在线免费观看| 亚洲成av人片免费观看| 久久久久免费精品人妻一区二区| 日韩欧美免费精品| 国产伦精品一区二区三区四那| 亚洲美女黄片视频| 中文字幕熟女人妻在线| 看免费av毛片| 午夜福利18| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 少妇人妻精品综合一区二区 | 制服丝袜大香蕉在线| 国产免费男女视频| 日本 欧美在线| .国产精品久久| 18禁裸乳无遮挡免费网站照片| 成人特级黄色片久久久久久久| 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 成人性生交大片免费视频hd| 人人妻人人澡欧美一区二区| 亚洲av电影不卡..在线观看| 色吧在线观看| 丁香六月欧美| 在线观看美女被高潮喷水网站 | 舔av片在线| 亚洲国产日韩欧美精品在线观看| 亚洲av美国av| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 狂野欧美白嫩少妇大欣赏| 国产一级毛片七仙女欲春2| 日本 欧美在线| 国产精品一区二区三区四区免费观看 | 亚洲美女黄片视频| 高清毛片免费观看视频网站| 国产亚洲精品av在线| 国产精品av视频在线免费观看| 亚洲成人久久爱视频| 午夜精品一区二区三区免费看| 亚洲av成人不卡在线观看播放网| 一个人免费在线观看电影| 亚洲第一电影网av| 成人av一区二区三区在线看| а√天堂www在线а√下载| 最近最新中文字幕大全电影3| 国产男靠女视频免费网站| 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 午夜激情福利司机影院| 欧美又色又爽又黄视频| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 亚洲欧美日韩高清专用| 欧美日本视频| 深爱激情五月婷婷| 国产成+人综合+亚洲专区| 国产一区二区三区在线臀色熟女| 别揉我奶头 嗯啊视频| 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 国产亚洲精品久久久com| 国产成+人综合+亚洲专区| 欧美性猛交黑人性爽| 久久精品国产99精品国产亚洲性色| av天堂中文字幕网| 国产一区二区亚洲精品在线观看| 国产v大片淫在线免费观看| 黄色日韩在线| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 亚洲av日韩精品久久久久久密| 特大巨黑吊av在线直播| 国产视频一区二区在线看| a级毛片免费高清观看在线播放| 中文字幕免费在线视频6| 亚洲精品在线美女| 嫩草影院新地址| 国产av一区在线观看免费| 欧美+亚洲+日韩+国产| 99在线视频只有这里精品首页| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 精品久久久久久成人av| 男女下面进入的视频免费午夜| 可以在线观看的亚洲视频| 久久热精品热| 亚洲人成伊人成综合网2020| 亚洲自拍偷在线| 国产av一区在线观看免费| 高清日韩中文字幕在线| 国产精品野战在线观看| 我要看日韩黄色一级片| 国产精品99久久久久久久久| 最近最新免费中文字幕在线| 日本黄色视频三级网站网址| 好男人在线观看高清免费视频| 亚洲成人免费电影在线观看| 男人的好看免费观看在线视频| 亚洲精品在线美女| 国产真实乱freesex| 精品人妻视频免费看| 亚洲成人久久爱视频| av国产免费在线观看| 十八禁国产超污无遮挡网站| 国产精品自产拍在线观看55亚洲| 国产精品99久久久久久久久| 99riav亚洲国产免费| 日本黄大片高清| 亚洲欧美日韩高清专用| 国产真实伦视频高清在线观看 | 男女视频在线观看网站免费| 两个人的视频大全免费| 熟女人妻精品中文字幕| av中文乱码字幕在线| 夜夜看夜夜爽夜夜摸| 免费看光身美女| 免费看光身美女| 美女高潮喷水抽搐中文字幕| 亚洲精品色激情综合| av国产免费在线观看| 俄罗斯特黄特色一大片| 亚洲久久久久久中文字幕| 变态另类成人亚洲欧美熟女| 久久久成人免费电影| 日本 欧美在线| 看片在线看免费视频| av中文乱码字幕在线| 精品免费久久久久久久清纯| 99久国产av精品| 精品福利观看| 亚洲综合色惰| 一本一本综合久久| 午夜日韩欧美国产| 亚洲精品日韩av片在线观看| 国产精品久久视频播放| 免费在线观看日本一区| av在线观看视频网站免费| 精品久久国产蜜桃| 免费看日本二区| 国产一级毛片七仙女欲春2| 午夜福利免费观看在线| 亚洲欧美精品综合久久99| .国产精品久久| 精品午夜福利在线看| 欧美黄色淫秽网站| 中文在线观看免费www的网站| 91字幕亚洲| 午夜福利视频1000在线观看| 91在线观看av| 国产欧美日韩一区二区三| 女人被狂操c到高潮| 我的老师免费观看完整版| 90打野战视频偷拍视频| 中文字幕免费在线视频6| 日本黄大片高清| 美女xxoo啪啪120秒动态图 | 成熟少妇高潮喷水视频| 波野结衣二区三区在线| 99热只有精品国产| av女优亚洲男人天堂| 国产精品野战在线观看| 亚洲av成人不卡在线观看播放网| av在线天堂中文字幕| 成年女人毛片免费观看观看9| 日韩国内少妇激情av| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利在线观看吧| 国产大屁股一区二区在线视频| 国内精品美女久久久久久| 美女xxoo啪啪120秒动态图 | 精品国内亚洲2022精品成人| 午夜福利在线在线| 日本 欧美在线| 在线国产一区二区在线| 欧美+亚洲+日韩+国产| 亚洲国产精品成人综合色| 免费观看精品视频网站| 无遮挡黄片免费观看| 精品欧美国产一区二区三| 欧美激情久久久久久爽电影| 十八禁网站免费在线| 美女免费视频网站| 亚洲18禁久久av| 在线免费观看不下载黄p国产 | 最新中文字幕久久久久| 国产真实乱freesex| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 亚洲成a人片在线一区二区| 欧美一区二区精品小视频在线| 中亚洲国语对白在线视频| 在线播放无遮挡| 日韩欧美三级三区| 国产v大片淫在线免费观看| 亚洲国产精品999在线| 精品午夜福利视频在线观看一区| www日本黄色视频网| 99国产综合亚洲精品| 日韩有码中文字幕| 亚洲三级黄色毛片| 精品一区二区三区视频在线观看免费| 国产伦人伦偷精品视频| 国产av麻豆久久久久久久| 日本 av在线| 国产中年淑女户外野战色| 日韩中文字幕欧美一区二区| 欧美激情在线99| 伊人久久精品亚洲午夜| 噜噜噜噜噜久久久久久91| 欧美一级a爱片免费观看看| 精品一区二区免费观看| 精品午夜福利视频在线观看一区| 亚洲av成人不卡在线观看播放网| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| av视频在线观看入口| 久久久久久久久久成人| 色综合站精品国产| 窝窝影院91人妻| 精品久久久久久久久av| 久久久精品大字幕| 亚洲自偷自拍三级| 午夜久久久久精精品| 亚洲综合色惰| 国产色爽女视频免费观看| 色综合亚洲欧美另类图片| 亚洲久久久久久中文字幕|