• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genomics of pancreatic ductal adenocarcinoma

    2014-03-31 02:23:09ChristianPilarskyandRobertGrtzmann

    Christian Pilarsky and Robert Grützmann

    Dresden, Germany

    Genomics of pancreatic ductal adenocarcinoma

    Christian Pilarsky and Robert Grützmann

    Dresden, Germany

    Pancreatic cancer is one of the worst prognostic cancers because of the late diagnosis and the absence of effective treatment. Within all subtypes of this disease, ductal adenocarcinoma has the shortest survival time. In recent years, global genomics profiling allowed the identification of hundreds of genes that are perturbed in pancreatic cancer. The integration of different omics sources in the study of pancreatic cancer has revealed several molecular mechanisms, indicating the complex history of its development. However, validation of these genes as biomarkers for early diagnosis, prognosis or treatment efficacy is still incomplete but should lead to new approaches for the treatment of the disease in the future.

    pancreatic ductal adenocarcinoma;

    genomes;

    DNA;

    RNA;

    next-generation sequencing;

    precision medicine

    Introduction

    Pancreatic cancer is still one of the most malignant and aggressive types of cancer in humans with a very dismal prognosis. About 40 000 new cases are diagnosed in the United States each year making pancreatic cancer the fourth male and the fifth female leading cause of cancer related death.[1]The most abundant form of exocrine pancreatic cancer is ductal adenocarcinoma (PDAC).[2]In the last decades only small improvements were made in the therapy of this disease. The worse prognosis is due to the delayed diagnosis. At time of diagnosis many patients have already irresectable or/and metastasized cancer and only a small portion of patients have an opportunity of potential curative surgical treatment. The actual 5-year survival rate after surgical resection is about 20%, and 5% for all patients.[1]

    Pancreatic cancer has several subtypes. Subtyping is done either by localization of the tumor, e.g. tumors of the ampulla Vateri,[3]by histopathological definition, e.g. intraductal papillary mucinous neoplasms[4,5]or by type of the originating cells, e.g. pancreatic neuroendocrine tumors.[6]This delineation can be done with conventional technologies and it is routine. Some patients live much longer than the observed median survival time. Therefore the interesting question of the classification of PDAC patients into clinical subgroups should be answered in future. In recent years omics technologies have generated a wealth of information regarding the changes in primary tumors, metastasis and cancer models. Those technologies are an integral part of modern cancer research.

    Challenges in the analysis of primary tumors

    Many efforts to understand the cancer genome have evolved from the model system and especially cell lines. However, cell lines are poor models of cancer since solid tumor samples consist of a variety of tissues, of which the tumor cells might comprise only a small portion.[7]The adjacent other tissues contain surrounding stromal and endothelial cells. Microdissection might be needed to identify the true changes between the tumor cells and their normal counterpart. In pancreatic cancer this is the case, since the tumor contains a high content of stromal tissue.[8]Microdissection can be performed manually or with a laser-based system. Manual microdissection leads to an enrichment of the tumor tissue to about 90%, whereas with the laser-based system pure tumor cells can be obtained. Manual microdissection gives the researcher the opportunity to produce samples for analysis much faster.[9]If laser assisted microdissection is used the selection of instruments can be important for the results.[10]Microdissection is also the technique of choice if other tissues in a tumor need to beanalyzed. With microdissection usually only low amounts of nucleic acids are obtained. This is a major drawback for any omics technology, since sometimes some micrograms of nucleic acid are needed. Often microdissection is omitted for fast analysis leading to a skewed picture of the changes in the tissue analyzed and impeding the follow up analysis. Furthermore, the combination of microdissection and modern molecular analysis identifies a large number of changes. This leads to a question which changes in a cancer are associated with which type of cells, making it worthwhile to analyze not whole tumors anymore but parts of the cancer, indicating that whole tumor analysis may be a part of molecular biology heritage.[11]

    Different ome's and next generation sequencing

    Researchers in the past were partly defined by the technology they used to assess the properties of a given sample. Based on the selected technology they were able to use different omics technologies to analyze different parts of the cellular machinery focusing on their technology field instead on the complete compendium of crucial changes involved in the progress of a tumor. The field of omics research changed radically with the introduction of next generation sequencing (NGS) platforms. NGS is a converging technology like the smart phone. By the ability to integrate the different technologies relevant to cancer research (mutation detection, copy number assignment, gene expression profiling and methylation analysis), NGS frees the researcher from technical challenges of each technological platform leading to new scientific questions. Today's challenges are therefore twofold. First, defining the right tissue to use. Clinical characterization of tissue by classic histopathology in combination with microdissection to use purified nucleic acids is a good starting point. Second, to work with the amounts of data, which drop from NGS machines. At the moment this can only be done by trained biostatisticians, which should work faithfully with other scientists to identify the relevant changes in the tumor based on the questions developed beforehand. Analyzing tumors with NGS has to incorporate guidelines developed by clinical studies, with the definition of the samples to be tested and stop criteria.

    Transcriptome

    Transcriptome analysis is a common practice in modern molecular biology. It roots in the application of DNA microarrays to analyze the gene expression of different samples. Within PDAC large studies to understand the differential expression between tumor and normal tissue have been performed successfully.[12-15]Gene expression profiling has several disadvantages, which can be overcome using a different technology for expression profiling like NGS. The first approach combining transcriptomics and sequencing employed the use of cDNA libraries to understand which part of the genome is transcribed; the so called expressed sequence tags.[16]As a result from these efforts databases were created allowing for expression profiling in the computer for the identification of candidate genes in PDAC.[17]With the advent of NGS instruments large scale sequencing of RNA (RNA-Seq) regained focus of the scientists. RNA-Seq can be used to master major shortcomings of other transcriptomics techniques and is complementary to other methods of NGS like exome sequencing. It can detect somatic mutations and is important in the discovery of recurrent mutations in cancer.[18]RNA-Seq can be used for gene expression profiling with a high sensitivity, since the detection rate of transcripts is only limited by the number of reads produced. This has to be balanced against intrinsic problems of RNA-Seq. Since every available RNA molecule is sequenced and the gene expression profiling is biased to highly expressed genes, if low amounts of reads are produced. In contrast to other techniques such as microarrays, RNA-Seq tends to limit the signal strength of expressed genes. The generated expression profiles with such methods over-represent genes with intermediately expression.[19,20]

    RNA-Seq is a one-stop shop for the determination of mutations, allele frequency and gene expression (mRNA, but also non-coding RNAs). It is also able to detect chimeric RNA molecule, differential splicing events and identification of unknown classes of RNA molecules. The detection of chimeric RNA molecules enables researchers to identify the translocation candidates for further analysis. Translocations are notoriously hard to identify, since the partners are unknown and conventional cytogenetic analysis lacks the resolution. However, the current limits of RNA-Seq limit the usable samples with large amounts of high quality RNA typically found in cell lines and tumor xenografts.[21]

    Methylome

    Hypermethylation of DNA in the coding areas of the human genome is a hallmark of cancer development.[22,23]It can be assumed that hypermethylation of genes is an early event in tumorigenesis.[24]Methylation marker might be identified in different ways, direct by analysis of the methylome[25,26]or by bioinformatic analysis of gene expression data. NGS can be used to identify new marker and give insights in the basic changes of tumor development by interrogating the methylome.[27-29]Sequencing of the complete human methylome is cost and time-consuming, therefore other large-scale methods for the detection of promoter methylation are used. Illumina's Infinium HumanMethylation450 BeadChip is a standard method of choice to investigate the methylation status for over 450 000 sites.[30-32]The availability of such tools leads to the need of post discovery validation of the identified methylated sites. This validation can be done by different techniques like pyrosequencing or methylation specific PCR, and the latter remains the quick and easy method for such purposes.

    DNA hypermethylation has been used to investigate PDAC extensively and it has been shown that it occurs in pancreatic intraepithelial neoplasia (PanIN) lesions indicating that epigenetic changes might be interesting candidates for the development of an early diagnosis marker.[22,33,34]Studies[33,35-52]revealed that hypermethylation without NGS in tumor tissue and body fluids might serve as more than 100 possible marker genes.

    Genome

    The biggest impact of NGS can be found in the area of DNA sequencing. NGS leads to a reduction in cost and time needed for the process of sequencing. Advancements in computer sciences made it easier to analyze the data produced by the NGS machines. The concept of NGS, which employs massive parallel shotgun sequencing was envisioned by the work of Craig Venter in the late 1990s.[53]It is based on the already obtained knowledge of the human genome since short read sequences are mapped against the known human DNA sequence. A typical NGS instrument goes through billions of fragmented DNAs (reads) simultaneously. The occurring sequencing errors in the reads are compensated by reading multiple (30-40×) DNA fragments for an accurate determination of the sequence, thereby determining somatic mutations and allelic status of polymorphisms at the same time. Typically around 90 Gb of sequence representing 30-fold coverage is obtained to call 99% of all variant alleles.[54,55]Additionally high coverage with multiple reads is needed to identify mutations which may exist only in low allele frequencies since multiple tumor sub-clones within a tumor, comprising intra-tumor heterogeneity, exist. This aggravates the need for even more coverage.[56]The pathogenesis of cancer is heterogeneous in terms of the spectrum of gene mutations within the same histology subtype. Sequencing of many different tumor samples is necessary to understand the full spectrum of causative mutations. Several ongoing projects are analyzing large numbers of cancer specimens; in The Cancer Genome Atlas (TCGA) initiated by NIH/NCI in the USA and the International Cancer Genome Consortium (ICGC) a network of institutes from multiple nations.[57]These efforts might not be adequate since the number of tumors analyzed is not enough to comprise a picture of all changes in the tumor genome for each subtype. Two numbers easily explain this fact. Each year roughly 40 000 new cases of pancreatic cancer are diagnosed in the USA, whereas the total number of sequenced pancreatic cancer is in the hundreds. This resembles the work done in the field of high throughput expression profiling which lead to the result, that each published dataset showed different candidate genes with only a small overlap.[12]At the moment sequencing of tumors might help to identify major clades of tumor subtypes but for the true delineation of cancers, more data are needed. Comparison of the two key data sets on pancreatic cancer sequencing revealed an overlap of only already well known mutated genes in pancreatic cancer, like KRAS, TP53 CDKN2A and SMAD4 and two less known mutated genes TGFBR2 and MLL3.[58,59]Since the technology in NGS is proceeding rapidly, sequencing of thousands of PDAC cancer genomes will occur in the following years and will give us new insights in the different subtypes during progression of this disease.

    Precision medicine

    The new scientific knowledge from the large NGS programs will ultimately have impact on the treatment decisions made in the hospital. From the past, we have learned that the progress gained from this insight will take 10 to 15 years until it reaches the practical medicine. However, NGS leads to new possibilities to radically change the treatment of such patients in a very short time. The combination of NGS to determine critical mutations in one patient and then to treat this mutation in this patient with already approved drugs might give small patient groups the opportunity to survive longer than the average. This has been demonstrated beautifully in lung cancer, where the treatment of patients with EML4/ALK positive cancer with crizotinib enhances their survival considerably.[60]This targeted therapy enables the clinicians to treat each patient with an oncogenic ALK activation regardless of the origin of the tumor.[61]NGS sequencing of cancer patients might focus on mutations with known susceptibilities for different drugs overcoming the major drawback in NGS, the need of large amounts of nucleic acid material. Systems for targeted resequencing of mutations need only minute amounts of DNA and will enable the clinician to analyze nucleic acids from pure tumor tissue in a short period.[62]This will also reduce the cost considerably.Analyzing the results of the combination of sequencing and adapted therapy will not be easy and might result in a large set of N-of-1 trials since the treatment is based on the genotype of an individual patient.[63]

    In PDAC, such mutations still have to be identified. It has to be proven that pharmaceutical intervention adds to the survival time of such patients and precision medicine will shape the therapeutic landscape for PDAC patients into different treatment options with much better efficacy than the chemotherapies.

    Contributors:GR proposed the study. PC and GR performed research and wrote the first draft. All authors contributed to the design and interpretation of the study and to further drafts. GR is the guarantor.

    Funding:None.

    Ethical approval:Not needed.

    Competing interest:No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

    1 Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013;63:11-30.

    2 Schneider G, Siveke JT, Eckel F, Schmid RM. Pancreatic cancer: basic and clinical aspects. Gastroenterology 2005;128: 1606-1625.

    3 Ehehalt F, Rümmele P, Kersting S, Lang-Schwarz C, Rückert F, Hartmann A, et al. Hepatocyte nuclear factor (HNF) 4α expression distinguishes ampullary cancer subtypes and prognosis after resection. Ann Surg 2011;254:302-310.

    4 Ehehalt F, Saeger HD, Schmidt CM, Grützmann R. Neuroendocrine tumors of the pancreas. Oncologist 2009;14:456-467.

    5 Distler M, Kersting S, Niedergethmann M, Aust DE, Franz M, Rückert F, et al. Pathohistological subtype predicts survival in patients with intraductal papillary mucinous neoplasm (IPMN) of the pancreas. Ann Surg 2013;258:324-330.

    6 Reid MD, Saka B, Balci S, Goldblum AS, Adsay NV. Molecular genetics of pancreatic neoplasms and their morphologic correlates: an update on recent advances and potential diagnostic applications. Am J Clin Pathol 2014;141:168-180.

    7 Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-674.

    8 Pilarsky C, Ammerpohl O, Sipos B, Dahl E, Hartmann A, Wellmann A, et al. Activation of Wnt signalling in stroma from pancreatic cancer identified by gene expression profiling. J Cell Mol Med 2008;12:2823-2835.

    9 Kristiansen G. Manual microdissection. Methods Mol Biol 2010;576:31-38.

    10 Vandewoestyne M, Goossens K, Burvenich C, Van Soom A, Peelman L, Deforce D. Laser capture microdissection: should an ultraviolet or infrared laser be used? Anal Biochem 2013;439:88-98.

    11 Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012;366:883-892.

    12 Grützmann R, Boriss H, Ammerpohl O, Lüttges J, Kalthoff H, Schackert HK, et al. Meta-analysis of microarray data on pancreatic cancer defines a set of commonly dysregulated genes. Oncogene 2005;24:5079-5088.

    13 Alldinger I, Dittert D, Peiper M, Fusco A, Chiappetta G, Staub E, et al. Gene expression analysis of pancreatic cell lines reveals genes overexpressed in pancreatic cancer. Pancreatology 2005;5:370-379.

    14 Grützmann R, Pilarsky C, Ammerpohl O, Lüttges J, B?hme A, Sipos B, et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia 2004;6:611-622.

    15 Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006;103:2257-2261.

    16 Adams MD, Dubnick M, Kerlavage AR, Moreno R, Kelley JM, Utterback TR, et al. Sequence identification of 2,375 human brain genes. Nature 1992;355:632-634.

    17 Grützmann R, Pilarsky C, Staub E, Schmitt AO, Foerder M, Specht T, et al. Systematic isolation of genes differentially expressed in normal and cancerous tissue of the pancreas. Pancreatology 2003;3:169-178.

    18 Shah SP, K?bel M, Senz J, Morin RD, Clarke BA, Wiegand KC, et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med 2009;360:2719-2729.

    19 Mastrokolias A, den Dunnen JT, van Ommen GB, 't Hoen PA, van Roon-Mom WM. Increased sensitivity of next generation sequencing-based expression profiling after globin reduction in human blood RNA. BMC Genomics 2012;13:28.

    20 Mooney M, Bond J, Monks N, Eugster E, Cherba D, Berlinski P, et al. Comparative RNA-Seq and microarray analysis of gene expression changes in B-cell lymphomas of Canis familiaris. PLoS One 2013;8:e61088.

    21 Edgren H, Murumagi A, Kangaspeska S, Nicorici D, Hongisto V, Kleivi K, et al. Identification of fusion genes in breast cancer by paired-end RNA-sequencing. Genome Biol 2011;12:R6.

    22 Kulis M, Esteller M. DNA methylation and cancer. Adv Genet 2010;70:27-56.

    23 Nakhasi HL, Lynch KR, Dolan KP, Unterman RD, Feigelson P. Covalent modification and repressed transcription of a gene in hepatoma cells. Proc Natl Acad Sci U S A 1981;78:834-837.

    24 Wissmann C, Wild PJ, Kaiser S, Roepcke S, Stoehr R, Woenckhaus M, et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate, breast, lung, and bladder cancer. J Pathol 2003;201:204-212.

    25 Lofton-Day C, Model F, Devos T, Tetzner R, Distler J, Schuster M, et al. DNA methylation biomarkers for blood-based colorectal cancer screening. Clin Chem 2008;54:414-423.

    26 Tan AC, Jimeno A, Lin SH, Wheelhouse J, Chan F, Solomon A, et al. Characterizing DNA methylation patterns in pancreatic cancer genome. Mol Oncol 2009;3:425-438.

    27 Murphy PJ, Cipriany BR, Wallin CB, Ju CY, Szeto K, Hagarman JA, et al. Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc Natl Acad Sci U S A 2013;110:7772-7777.

    28 Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-322.

    29 Stirzaker C, Taberlay PC, Statham AL, Clark SJ. Miningcancer methylomes: prospects and challenges. Trends Genet 2014;30:75-84.

    30 Slieker RC, Bos SD, Goeman JJ, Bovée JV, Talens RP, van der Breggen R, et al. Identification and systematic annotation of tissue-specific differentially methylated regions using the Illumina 450k array. Epigenetics Chromatin 2013;6:26.

    31 Sánchez-Vega F, Gotea V, Petrykowska HM, Margolin G, Krivak TC, DeLoia JA, et al. Recurrent patterns of DNA methylation in the ZNF154, CASP8, and VHL promoters across a wide spectrum of human solid epithelial tumors and cancer cell lines. Epigenetics 2013;8:1355-1372.

    32 Morris TJ, Butcher LM, Feber A, Teschendorff AE, Chakravarthy AR, Wojdacz TK, et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 2014;30:428-430.

    33 Dutruel C, Bergmann F, Rooman I, Zucknick M, Weichenhan D, Geiselhart L, et al. Early epigenetic downregulation of WNK2 kinase during pancreatic ductal adenocarcinoma development. Oncogene 2014;33:3401-3410.

    34 Sato N, Fukushima N, Hruban RH, Goggins M. CpG island methylation profile of pancreatic intraepithelial neoplasia. Mod Pathol 2008;21:238-244.

    35 Wehrum D, Grützmann R, Hennig M, Saeger HD, Pilarsky C. Recent patents concerning diagnostic and therapeutic applications of aberrantly methylated sequences in pancreatic cancer. Recent Pat DNA Gene Seq 2008;2:97-106.

    36 Thun M, Jemal A, Desantis C, Blackard B, Ward E. An overview of the cancer burden for primary care physicians. Prim Care 2009;36:439-454.

    37 Kuroki T, Yendamuri S, Trapasso F, Matsuyama A, Aqeilan RI, Alder H, et al. The tumor suppressor gene WWOX at FRA16D is involved in pancreatic carcinogenesis. Clin Cancer Res 2004;10:2459-2465.

    38 Zhao G, Qin Q, Zhang J, Liu Y, Deng S, Liu L, et al. Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer. Ann Surg Oncol 2013;20:S301-311.

    39 Yao F, Sun M, Dong M, Jing F, Chen B, Xu H, et al. NPTX2 hypermethylation in pure pancreatic juice predicts pancreatic neoplasms. Am J Med Sci 2013;346:175-180.

    40 Yang L, Yang H, Li J, Hao J, Qian J. ppENK Gene Methylation Status in the Development of Pancreatic Carcinoma. Gastroenterol Res Pract 2013;2013:130927.

    41 Yamamura A, Miura K, Karasawa H, Morishita K, Abe K, Mizuguchi Y, et al. Suppressed expression of NDRG2 correlates with poor prognosis in pancreatic cancer. Biochem Biophys Res Commun 2013;441:102-107.

    42 Wang P, Chen L, Zhang J, Chen H, Fan J, Wang K, et al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting Rac1. Oncogene 2014;33:514-524.

    43 Thu KL, Radulovich N, Becker-Santos DD, Pikor LA, Pusic A, Lockwood WW, et al. SOX15 is a candidate tumor suppressor in pancreatic cancer with a potential role in Wnt/β-catenin signaling. Oncogene 2014;33:279-288.

    44 Park JS, Park YN, Lee KY, Kim JK, Yoon DS. P16 hypermethylation predicts surgical outcome following curative resection of mid/distal bile duct cancer. Ann Surg Oncol 2013;20:2511-2517.

    45 Zhao L, Cui Q, Lu Z, Chen J. Aberrant methylation of RASSF2A in human pancreatic ductal adenocarcinoma and its relation to clinicopathologic features. Pancreas 2012;41:206-211.

    46 Zhang L, Gao J, Li Z, Gong Y. Neuronal pentraxin II (NPTX2) is frequently down-regulated by promoter hypermethylation in pancreatic cancers. Dig Dis Sci 2012;57:2608-2614.

    47 Wu Y, Li J, Sun CY, Zhou Y, Zhao YF, Zhang SJ. Epigenetic inactivation of the canonical Wnt antagonist secreted frizzled-related protein 1 in hepatocellular carcinoma cells. Neoplasma 2012;59:326-332.

    48 Li M, Zhao ZW. Clinical implications of mismatched repair gene promoter methylation in pancreatic cancer. Med Oncol 2012;29:970-976.

    49 Hong SM, Omura N, Vincent A, Li A, Knight S, Yu J, et al. Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res 2012;18:700-712.

    50 Heichman KA, Warren JD. DNA methylation biomarkers and their utility for solid cancer diagnostics. Clin Chem Lab Med 2012;50:1707-1721.

    51 Giovannetti E, Erozenci A, Smit J, Danesi R, Peters GJ. Molecular mechanisms underlying the role of microRNAs (miRNAs) in anticancer drug resistance and implications for clinical practice. Crit Rev Oncol Hematol 2012;81:103-122.

    52 Park JK, Ryu JK, Yoon WJ, Lee SH, Lee GY, Jeong KS, et al. The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 2012;41:95-101.

    53 Venter JC, Adams MD, Sutton GG, Kerlavage AR, Smith HO, Hunkapiller M. Shotgun sequencing of the human genome. Science 1998;280:1540-1542.

    54 Li H, Ruan J, Durbin R. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 2008;18:1851-1858.

    55 Yoshida K, Sanada M, Ogawa S. Deep sequencing in cancer research. Jpn J Clin Oncol 2013;43:110-115.

    56 Martinez P, Birkbak NJ, Gerlinger M, McGranahan N, Burrell RA, Rowan AJ, et al. Parallel evolution of tumour subclones mimics diversity between tumours. J Pathol 2013;230:356-364.

    57 Cancer Genome Atlas Research Network, Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 2013;45:1113-1120.

    58 Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-1806.

    59 Biankin AV, Waddell N, Kassahn KS, Gingras MC, Muthuswamy LB, Johns AL, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012;491:399-405.

    60 Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in nonsmall-cell lung cancer. N Engl J Med 2010;363:1693-1703.

    61 Godbert Y, Henriques de Figueiredo B, Bonichon F, Chibon F, Hostein I, Pérot G, et al. Remarkable response to crizotinib in woman with anaplastic lymphoma kinase-rearranged anaplastic thyroid carcinoma. J Clin Oncol 2014 Mar 31.

    62 Mendelsohn J. Personalizing oncology: perspectives and prospects. J Clin Oncol 2013;31:1904-1911.

    63 Brannon AR, Sawyers CL. "N of 1" case reports in the era of whole-genome sequencing. J Clin Invest 2013;123:4568-4570.

    Received April 10, 2014

    Accepted after revision May 6, 2014

    (Hepatobiliary Pancreat Dis Int 2014;13:381-385)

    Author Affiliations: Department of Vascular-, Thoracic and Visceral Surgery, University Hospital Dresden, Technische Universit?t Dresden, Fetscherstr. 74, Dresden 01307, Germany (Pilarsky C and Grützmann R)

    Christian Pilarsky, PhD, Department of Vascular-, Thoracic and Visceral Surgery, University Hospital Dresden, Technische Universit?t Dresden, Fetscherstr. 74, Dresden 01307, Germany (Tel: +49-351-4587020; Fax: +49-351-4587338; Email: christian.pilarsky@gmail.com) ? 2014, Hepatobiliary Pancreat Dis Int. All rights reserved.

    10.1016/S1499-3872(14)60281-2

    Published online July 21, 2014.

    成人特级黄色片久久久久久久| 好男人电影高清在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日韩精品免费视频一区二区三区| 亚洲18禁久久av| 51午夜福利影视在线观看| 国产av又大| 免费看日本二区| 欧美国产日韩亚洲一区| 久久久精品大字幕| 日韩大尺度精品在线看网址| 欧美一级毛片孕妇| 精品欧美一区二区三区在线| 国产精品久久电影中文字幕| 精品久久久久久久久久久久久| 日韩大尺度精品在线看网址| 亚洲va日本ⅴa欧美va伊人久久| 国产亚洲av高清不卡| 免费高清视频大片| 亚洲在线自拍视频| 久久久精品欧美日韩精品| 国产成人精品无人区| 久久久久性生活片| 一本综合久久免费| 色在线成人网| 性色av乱码一区二区三区2| 亚洲人与动物交配视频| 国产1区2区3区精品| 国产一区二区三区视频了| 日韩 欧美 亚洲 中文字幕| 亚洲中文av在线| 久久久精品欧美日韩精品| 国产亚洲精品久久久久5区| 搡老妇女老女人老熟妇| 天堂动漫精品| 午夜福利免费观看在线| 亚洲国产欧洲综合997久久,| 亚洲精品美女久久av网站| 国产精品av久久久久免费| 亚洲国产精品成人综合色| 99在线视频只有这里精品首页| 桃色一区二区三区在线观看| 日本三级黄在线观看| 啦啦啦观看免费观看视频高清| 国产午夜精品论理片| 又紧又爽又黄一区二区| 久久精品人妻少妇| 国产一区二区在线观看日韩 | 无限看片的www在线观看| av天堂在线播放| 久久久国产精品麻豆| 在线观看免费午夜福利视频| 99精品在免费线老司机午夜| 国产精品久久久久久亚洲av鲁大| 午夜亚洲福利在线播放| 午夜成年电影在线免费观看| 一级黄色大片毛片| 波多野结衣高清作品| 在线观看免费日韩欧美大片| 国产久久久一区二区三区| 成年版毛片免费区| 99久久精品热视频| 国产亚洲av嫩草精品影院| 日本一本二区三区精品| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品综合一区在线观看 | 国产v大片淫在线免费观看| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 99精品久久久久人妻精品| 亚洲精品av麻豆狂野| 午夜视频精品福利| 欧美性猛交╳xxx乱大交人| 一个人观看的视频www高清免费观看 | 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 悠悠久久av| 久久久久久久午夜电影| 狂野欧美激情性xxxx| 欧美乱色亚洲激情| 男女下面进入的视频免费午夜| av超薄肉色丝袜交足视频| 日本三级黄在线观看| 黑人巨大精品欧美一区二区mp4| 精品乱码久久久久久99久播| 别揉我奶头~嗯~啊~动态视频| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 日本成人三级电影网站| 琪琪午夜伦伦电影理论片6080| 国产成人av教育| 午夜日韩欧美国产| 国产一区二区在线观看日韩 | 国产精品一及| 成年人黄色毛片网站| 脱女人内裤的视频| 男女午夜视频在线观看| 99国产精品一区二区蜜桃av| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 中文字幕熟女人妻在线| 99久久综合精品五月天人人| 精品一区二区三区视频在线观看免费| 床上黄色一级片| 免费在线观看成人毛片| 国产精品免费视频内射| 久久久水蜜桃国产精品网| 国产麻豆成人av免费视频| 9191精品国产免费久久| 五月伊人婷婷丁香| 后天国语完整版免费观看| 天堂av国产一区二区熟女人妻 | 午夜精品久久久久久毛片777| 国产1区2区3区精品| 久久人人精品亚洲av| 成人午夜高清在线视频| 亚洲av成人精品一区久久| ponron亚洲| 国产精品久久电影中文字幕| 欧美极品一区二区三区四区| 国产91精品成人一区二区三区| 亚洲国产精品999在线| 香蕉av资源在线| 欧美黑人巨大hd| 婷婷丁香在线五月| 国产伦在线观看视频一区| 欧美日韩黄片免| 久久精品人妻少妇| 男女床上黄色一级片免费看| 亚洲欧美一区二区三区黑人| 欧美人与性动交α欧美精品济南到| 精品欧美一区二区三区在线| 久久国产精品人妻蜜桃| 精品久久久久久久久久免费视频| 99热这里只有是精品50| 亚洲专区字幕在线| 12—13女人毛片做爰片一| 久久99热这里只有精品18| 极品教师在线免费播放| 可以在线观看的亚洲视频| 成人18禁高潮啪啪吃奶动态图| 757午夜福利合集在线观看| 嫩草影视91久久| 天堂动漫精品| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 亚洲中文日韩欧美视频| 欧美+亚洲+日韩+国产| 国产伦人伦偷精品视频| 99热这里只有是精品50| 国产三级在线视频| 国产亚洲av嫩草精品影院| 人人妻人人看人人澡| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| tocl精华| 精品国产美女av久久久久小说| 国产精品av久久久久免费| 精品一区二区三区四区五区乱码| 成年女人毛片免费观看观看9| 麻豆一二三区av精品| 妹子高潮喷水视频| 亚洲精品久久成人aⅴ小说| 少妇裸体淫交视频免费看高清 | 精品免费久久久久久久清纯| av视频在线观看入口| 久久久精品国产亚洲av高清涩受| 久久久久久久久免费视频了| 免费无遮挡裸体视频| 亚洲乱码一区二区免费版| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区免费观看 | 国产91精品成人一区二区三区| 久久久国产成人免费| 国产免费男女视频| 哪里可以看免费的av片| 国产精品 欧美亚洲| 天天躁夜夜躁狠狠躁躁| 老鸭窝网址在线观看| 国产探花在线观看一区二区| 免费在线观看影片大全网站| 欧美黄色片欧美黄色片| 可以在线观看的亚洲视频| 日本一本二区三区精品| 2021天堂中文幕一二区在线观| 1024视频免费在线观看| 国产激情偷乱视频一区二区| 香蕉av资源在线| 国内精品久久久久久久电影| 动漫黄色视频在线观看| 51午夜福利影视在线观看| 九色国产91popny在线| 最好的美女福利视频网| 亚洲欧美日韩高清专用| 变态另类成人亚洲欧美熟女| 男女之事视频高清在线观看| 丁香六月欧美| 国产精品,欧美在线| 很黄的视频免费| 亚洲专区国产一区二区| 国产黄色小视频在线观看| 成人18禁高潮啪啪吃奶动态图| 免费看a级黄色片| 桃红色精品国产亚洲av| 欧美激情久久久久久爽电影| 舔av片在线| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 国产熟女午夜一区二区三区| av福利片在线观看| 久久中文字幕一级| 看片在线看免费视频| 日本 av在线| 无人区码免费观看不卡| 精品一区二区三区视频在线观看免费| 精品免费久久久久久久清纯| 色综合婷婷激情| 国产私拍福利视频在线观看| 久久精品国产99精品国产亚洲性色| 日本黄色视频三级网站网址| 一个人观看的视频www高清免费观看 | 精品久久久久久久久久久久久| 日本五十路高清| 国产成人影院久久av| 欧美日本视频| 国产精品日韩av在线免费观看| www.熟女人妻精品国产| 免费看a级黄色片| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 亚洲精品国产精品久久久不卡| 亚洲男人的天堂狠狠| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 欧美日韩瑟瑟在线播放| 久久人妻福利社区极品人妻图片| 中文字幕久久专区| 免费在线观看完整版高清| 久久精品国产99精品国产亚洲性色| 久久婷婷成人综合色麻豆| 夜夜爽天天搞| 亚洲一区中文字幕在线| 一个人免费在线观看电影 | 午夜福利高清视频| 制服诱惑二区| 欧美三级亚洲精品| 欧美色视频一区免费| 免费一级毛片在线播放高清视频| 丰满的人妻完整版| 校园春色视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 97超级碰碰碰精品色视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久中文字幕一级| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 亚洲国产精品久久男人天堂| 亚洲真实伦在线观看| 久久九九热精品免费| 国产精品国产高清国产av| 午夜福利免费观看在线| 日日摸夜夜添夜夜添小说| 午夜免费观看网址| svipshipincom国产片| 免费看a级黄色片| 久久久国产成人免费| av福利片在线观看| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 90打野战视频偷拍视频| 观看免费一级毛片| 精品国产美女av久久久久小说| 久久草成人影院| 国内少妇人妻偷人精品xxx网站 | 国产激情偷乱视频一区二区| 久久久久久久久久黄片| www.熟女人妻精品国产| 男女做爰动态图高潮gif福利片| 欧美黄色淫秽网站| 2021天堂中文幕一二区在线观| 在线观看日韩欧美| 色哟哟哟哟哟哟| a级毛片在线看网站| 日韩国内少妇激情av| 视频区欧美日本亚洲| 精品第一国产精品| 国产精品久久久人人做人人爽| 国产单亲对白刺激| 在线视频色国产色| 国产69精品久久久久777片 | 我要搜黄色片| 91在线观看av| av在线天堂中文字幕| 亚洲精品av麻豆狂野| 亚洲av美国av| 精品久久久久久久久久免费视频| 在线免费观看的www视频| 老司机福利观看| 久久人人精品亚洲av| 三级毛片av免费| 悠悠久久av| 久久性视频一级片| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 麻豆av在线久日| 手机成人av网站| 丝袜美腿诱惑在线| 国产伦一二天堂av在线观看| 黄色视频,在线免费观看| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 国产在线精品亚洲第一网站| 中文字幕人妻丝袜一区二区| 日韩大尺度精品在线看网址| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 免费在线观看影片大全网站| 久久久精品欧美日韩精品| 女人被狂操c到高潮| 色综合婷婷激情| 波多野结衣高清无吗| av视频在线观看入口| 在线播放国产精品三级| 嫩草影视91久久| 一个人观看的视频www高清免费观看 | 精品国产乱码久久久久久男人| 级片在线观看| 久久精品人妻少妇| 免费人成视频x8x8入口观看| 高潮久久久久久久久久久不卡| 亚洲欧美日韩无卡精品| 高清毛片免费观看视频网站| 国产熟女xx| 丰满的人妻完整版| 最新在线观看一区二区三区| 777久久人妻少妇嫩草av网站| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看 | 两个人看的免费小视频| 天堂动漫精品| 日日爽夜夜爽网站| a级毛片a级免费在线| 可以在线观看毛片的网站| 国产欧美日韩精品亚洲av| 国产在线精品亚洲第一网站| 亚洲av成人av| 麻豆一二三区av精品| 亚洲中文av在线| 看片在线看免费视频| 女生性感内裤真人,穿戴方法视频| 看免费av毛片| 女生性感内裤真人,穿戴方法视频| 99精品在免费线老司机午夜| 亚洲无线在线观看| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 婷婷亚洲欧美| 国产精品久久久久久人妻精品电影| 国内精品一区二区在线观看| cao死你这个sao货| 日本成人三级电影网站| 两性夫妻黄色片| 亚洲一区二区三区色噜噜| 国产亚洲av嫩草精品影院| 国产99白浆流出| 后天国语完整版免费观看| 老司机靠b影院| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 美女 人体艺术 gogo| 午夜福利在线在线| 久久久久久亚洲精品国产蜜桃av| 无遮挡黄片免费观看| www国产在线视频色| 18禁黄网站禁片免费观看直播| 特大巨黑吊av在线直播| 草草在线视频免费看| 高清在线国产一区| 亚洲,欧美精品.| 久久人妻av系列| 亚洲av美国av| 看片在线看免费视频| 91成年电影在线观看| 在线国产一区二区在线| 欧美日韩亚洲综合一区二区三区_| 亚洲一区二区三区不卡视频| 日韩av在线大香蕉| 国产亚洲av高清不卡| 成人手机av| 每晚都被弄得嗷嗷叫到高潮| 黄色片一级片一级黄色片| 欧美+亚洲+日韩+国产| 欧美色欧美亚洲另类二区| 午夜福利18| 精品欧美一区二区三区在线| 黄色女人牲交| 怎么达到女性高潮| 久久久精品欧美日韩精品| 成人永久免费在线观看视频| 啪啪无遮挡十八禁网站| 日本黄色视频三级网站网址| 日韩有码中文字幕| 村上凉子中文字幕在线| 美女扒开内裤让男人捅视频| 免费在线观看完整版高清| 一级毛片女人18水好多| 90打野战视频偷拍视频| 天天一区二区日本电影三级| 最近最新免费中文字幕在线| 一区二区三区激情视频| 国产麻豆成人av免费视频| 波多野结衣高清无吗| 女人被狂操c到高潮| 色噜噜av男人的天堂激情| 在线播放国产精品三级| АⅤ资源中文在线天堂| 91在线观看av| 啪啪无遮挡十八禁网站| 国产一级毛片七仙女欲春2| 久99久视频精品免费| 欧美+亚洲+日韩+国产| 国产97色在线日韩免费| 男女做爰动态图高潮gif福利片| 最新美女视频免费是黄的| 天堂√8在线中文| 看黄色毛片网站| 香蕉丝袜av| 久久久久国产精品人妻aⅴ院| 夜夜爽天天搞| 久久婷婷成人综合色麻豆| 中文字幕精品亚洲无线码一区| 国产野战对白在线观看| 国产久久久一区二区三区| 这个男人来自地球电影免费观看| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 国产亚洲精品第一综合不卡| xxxwww97欧美| 村上凉子中文字幕在线| svipshipincom国产片| 中文字幕人妻丝袜一区二区| 久久精品国产综合久久久| 精品免费久久久久久久清纯| 手机成人av网站| 午夜福利视频1000在线观看| 国产精品影院久久| 欧美中文综合在线视频| 亚洲18禁久久av| 国产亚洲精品综合一区在线观看 | 亚洲精品在线美女| 久久久久性生活片| 草草在线视频免费看| 久久久久久久久免费视频了| 舔av片在线| 亚洲午夜精品一区,二区,三区| 一边摸一边抽搐一进一小说| 18禁观看日本| 精品日产1卡2卡| 宅男免费午夜| 国产亚洲精品综合一区在线观看 | 久久婷婷成人综合色麻豆| 日本撒尿小便嘘嘘汇集6| av国产免费在线观看| 久久午夜综合久久蜜桃| 露出奶头的视频| 国产精品乱码一区二三区的特点| 99riav亚洲国产免费| 每晚都被弄得嗷嗷叫到高潮| 国产单亲对白刺激| 99热只有精品国产| 亚洲国产欧美网| 色播亚洲综合网| 老汉色∧v一级毛片| 免费在线观看成人毛片| 99久久精品热视频| 一级毛片高清免费大全| 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 非洲黑人性xxxx精品又粗又长| 国产又色又爽无遮挡免费看| 亚洲在线自拍视频| 最近视频中文字幕2019在线8| 777久久人妻少妇嫩草av网站| 久9热在线精品视频| 久久人人精品亚洲av| 国产av一区在线观看免费| 黄片小视频在线播放| 一区二区三区国产精品乱码| cao死你这个sao货| 国产高清视频在线播放一区| 特大巨黑吊av在线直播| 免费高清视频大片| 在线十欧美十亚洲十日本专区| 禁无遮挡网站| 村上凉子中文字幕在线| 观看免费一级毛片| 欧美性猛交╳xxx乱大交人| 亚洲专区国产一区二区| 午夜老司机福利片| 久久精品夜夜夜夜夜久久蜜豆 | 日韩欧美一区二区三区在线观看| 一级毛片高清免费大全| 一级片免费观看大全| 亚洲成人久久性| 99久久综合精品五月天人人| 国产欧美日韩精品亚洲av| 熟妇人妻久久中文字幕3abv| 欧美乱妇无乱码| 日韩欧美精品v在线| 国产aⅴ精品一区二区三区波| 舔av片在线| 又紧又爽又黄一区二区| 久久久久性生活片| 国产91精品成人一区二区三区| 亚洲午夜理论影院| 欧美成人一区二区免费高清观看 | 久久中文字幕人妻熟女| 欧美成人午夜精品| 亚洲成a人片在线一区二区| 91麻豆精品激情在线观看国产| 国产亚洲精品综合一区在线观看 | 国产三级中文精品| 法律面前人人平等表现在哪些方面| 亚洲精品国产精品久久久不卡| 婷婷亚洲欧美| 女警被强在线播放| 日本 av在线| 一级毛片高清免费大全| 久久精品91无色码中文字幕| 99国产极品粉嫩在线观看| 欧美国产日韩亚洲一区| 中文字幕熟女人妻在线| 全区人妻精品视频| www国产在线视频色| 亚洲精品美女久久久久99蜜臀| 久久精品国产综合久久久| 51午夜福利影视在线观看| 国产乱人伦免费视频| 一级片免费观看大全| 夜夜看夜夜爽夜夜摸| 久99久视频精品免费| 嫩草影视91久久| 国产69精品久久久久777片 | 88av欧美| 日日爽夜夜爽网站| 哪里可以看免费的av片| 看免费av毛片| 床上黄色一级片| 黄色毛片三级朝国网站| 久久久久久大精品| 欧美高清成人免费视频www| 最近视频中文字幕2019在线8| 久久久久免费精品人妻一区二区| 我要搜黄色片| 757午夜福利合集在线观看| 亚洲狠狠婷婷综合久久图片| 免费在线观看日本一区| videosex国产| 亚洲av中文字字幕乱码综合| 国产精品,欧美在线| 黄色丝袜av网址大全| 亚洲精品美女久久久久99蜜臀| 一区二区三区国产精品乱码| 精品免费久久久久久久清纯| 国产精品免费视频内射| 亚洲色图 男人天堂 中文字幕| 日韩精品青青久久久久久| www国产在线视频色| 男女做爰动态图高潮gif福利片| 日本一本二区三区精品| 国产精品九九99| 欧美乱色亚洲激情| 亚洲精华国产精华精| 国产一区二区三区视频了| 久久久久久亚洲精品国产蜜桃av| 香蕉av资源在线| 波多野结衣巨乳人妻| 一夜夜www| 日本免费一区二区三区高清不卡| 正在播放国产对白刺激| 日本免费a在线| 欧美一区二区精品小视频在线| 色尼玛亚洲综合影院| 欧美日韩亚洲综合一区二区三区_| 人妻夜夜爽99麻豆av| 国产精品 欧美亚洲| 叶爱在线成人免费视频播放| 老司机靠b影院| 伦理电影免费视频| 精品国产乱码久久久久久男人| 午夜视频精品福利| 午夜久久久久精精品| 日日干狠狠操夜夜爽| 亚洲全国av大片| xxx96com| 啪啪无遮挡十八禁网站| 国产三级在线视频| 啦啦啦韩国在线观看视频| 久久精品成人免费网站| 亚洲成人精品中文字幕电影| 黄色毛片三级朝国网站| 男人的好看免费观看在线视频 | 久久久精品大字幕| a级毛片在线看网站| 欧美av亚洲av综合av国产av| 一级毛片精品|