• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Urban Boundary-Layer Stability and Turbulent Exchange during Consecutive Episodes of Particle Air Pollution in Beijing, China

    2014-03-30 02:26:40GUOXiaoFengYANGTingMIAOShiGuangandSUNYeLe

    GUO Xiao-Feng, YANG Ting, MIAO Shi-Guang, and SUN Ye-Le

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100083, China

    2Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

    Urban Boundary-Layer Stability and Turbulent Exchange during Consecutive Episodes of Particle Air Pollution in Beijing, China

    GUO Xiao-Feng1, YANG Ting1, MIAO Shi-Guang2, and SUN Ye-Le1

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100083, China

    2Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China

    Based on measurements at the Beijing 325-m Meteorological Tower, this study reports an analysis of atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing (China), primarily due to haze and dust events (15-30 April 2012). Of particular interest were relevant vertical variations within the lower urban boundary layer (UBL). First, the haze and dust events were characterized by different atmospheric conditions, as quite low wind speed and high humidity are typically observed during haze events. In addition, for the description of stability conditions, the bulk Richardson number (RiB) was calculated for three different height intervals: 8-47, 47-140, and 140-280 m. The values ofRiBindicated an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval—for the 140-280-m height interval, positive values ofRiBoccurred for about 85% of the time. The downward turbulent exchange of sensible heat was observed at 280 m for the full diurnal cycle, which, by contrast, was rarely seen at 140 m during daytime. These results reinforce the importance of implementing high-resolution UBL profile observations and addressing issues related to stably-stratified flows.

    air quality, bulk Richardson number, haze/ dust event, urban boundary layer, turbulent exchange

    1 Introduction

    Chinese metropolitan areas have experienced a significant deterioration in air quality over the past few years, with urban air pollution levels exceeding recommended standards on a regular basis (Lin et al., 2013). The heightened levels of pollution in Chinese cities are mainly caused by the increasing number of road vehicles, re-suspension of the dust, and anthropogenic activities (Quan et al., 2011; Zhao et al., 2013a, d). The prolonged exposure to air pollution of Chinese city dwellers has been found to lead to human health risks, as evidenced by a notable increase in mortality (An et al., 2013; Zhou et al., 2013). To effectively control the urban pollution loadin cities, it is important to investigate the physical and chemical aspects of the urban boundary layer (UBL) during episodes of severe air pollution—often associated with unfavorable meteorology and poor dispersal capacity (Zhao et al., 2013c). Related investigations have recently been implemented for cities in China and elsewhere, contributing valuable knowledge of boundary-layer meteorological conditions that are concurrent with persistent urban pollution (e.g., Liu and Chan, 2002; Liu et al., 2013; Sun et al., 2013). Such knowledge should be conducive to future improvements in air pollution dispersion modeling and forecasting systems for predicting the occurrence of severe pollution.

    Haze and dust events are recognized as common types of weather phenomena that can lead to notable air pollution by airborne fine particles in Beijing, a Chinese metropolis suffering from extremely high levels of air pollution (e.g., Zhao et al., 2013b). Our study is concerned with consecutive episodes of severe fine-particulate matter (PM2.5) pollution that occurred in April 2012 (primarily owing to haze and dust events). It describes atmospheric stability conditions and turbulent exchange at different heights within the lower UBL, and characterization of the related vertical structure is of particular interest, as a common concern of urban turbulence and boundary-layer investigations (cf. Roth, 2000; Arnfield, 2003). The relevant boundary-layer structure characteristics described herein should constitute a fundamental step for the mechanistic understanding of persistent haze/dust-induced particle air pollution in Beijing.

    2 Datasets and data analysis

    In addition to the surface-based monitoring of ambient mass concentrations of PM2.5, the data analyzed in this study come from measurements at the Beijing 325-m Meteorological Tower, which is located in a compact building development (39°58′N, 116°22′E; 49 m above sea level). This observational site has joined the Urban Flux Network run by the International Association for Urban Climate (http://www.urban-climate.org/). The surrounding neighborhoods represent a mixed residential, commercial, and recreational area. Adjacent buildings vary considerably in height (mostly 20-50 m) and form a“compact midrise” settlement (see Stewart and Oke, 2012).

    During the study period (15-30 April 2012), a TEOM-1400a tapered element oscillating microbalance (Thermo Scientific Inc., Waltham, Massachusetts, USA) was operated at a height of about 7.5 m to retrieve ambient mass concentrations of PM2.5. Eddy-covariance systems were installed at the 140- and 280-m levels on the tower, using CSAT3 3D sonic anemometers (Campbell Scientific Inc., Logan, Utah, USA) and LI-7500 open-path gas analyzers (Li-Cor Inc., Lincoln, Nebraska, USA). The instruments measured three components of turbulent wind velocity, virtual temperature, and water vapor and carbon dioxide concentrations (all sampled at 10 Hz). Additionally, standard meteorological elements were measured at 15 levels (8, 15, 32, 47, 65, 80, 100, 120, 140, 160, 180, 200, 240, 280, and 320 m), using EC9-1 propeller anemometers with wind vanes (Changchun Meteorological Instrument Institute) and IAP-T-B resistance thermometers (Institute of Atmospheric Physics, Chinese Academy of Sciences). Also available were CNR1 pyronometers and pyrgeometers (Kipp & Zonen, Delft, The Netherlands), which measured components of shortwave radiation and longwave radiation at three levels (47, 140, and 280 m; see Miao et al., 2012).

    Our study analyzed the following parameters to describe atmospheric stability conditions and turbulent exchange at different heights (or height intervals for certain parameters):

    In Eqs. (1) and (2), the vertical potential temperature gradient (Γθ) and bulk Richardson number (RiB) involve the differences in potential temperature (θ; Δθ=θU?θL) and wind speed (V; ΔV=VU?VL), as defined for the height interval betweenzLandzU(the subscripts “L” and“U” represent the lower and upper levels, respectively, i.e.,zU>zLand Δz=zU?zL);, the reference temperature, is equal to (θU+θL)/2; andgis the gravitational acceleration. In Eqs. (3) and (4), the turbulent sensible heat (H) and latent heat (LE) fluxes involve the covariancesand, respectively, where the fluctuations of vertical velocity (w'), temperature (θ'), specific humidity (q'), and water vapor density (ρv') come from the eddy-covariance turbulence measurements;ρis the air density;cpis the specific heat capacity of air; andLvis the latent heat for moisture exchange. The eddycovariance raw data and turbulent fluxes were subjected to necessary corrections (e.g., Webb et al., 1980; Feigenwinter et al., 2012). The heat-flux sign convention is: positive and negative values ofH(LE) indicate upward and downward transport of heat (water vapor), respectively. In Eq. (5), the vertical transport efficiency of sensible heat (Rwθ) is equal to the linear correlation coefficient betweenw' and 'θ, and values ofRwθrange from 0 (no correlation) to ±1 (optimally efficient transport);σwandσθare the standard deviations ofw' and 'θ, respectively.

    For the analysis of the boundary-layer stability parameters and turbulent fluxes (results presented in section 3), different heights (or intervals) were addressed. Specifically,Γθwas calculated for the 32-63- and 63-160-m intervals; andRiBwas calculated for the 8-47-, 47-140-, and 140-280-m intervals. Assuming the average building height as approximately 30 m, the above intervals should represent various portions of the lower UBL, including the canopy layer, roughness sub-layer, and surface layer (the roughness sub-layer typically extends for two to five times the average building height). Other parameters, namelyH, LE, andRwθ, were calculated for both the 140-and 280-m heights, where the eddy-covariance instruments were installed.

    The Beijing 325-m Meteorological Tower has provided a large amount of measurements for the analysis of stability conditions and turbulent exchange within the lower UBL. For example, interesting data were presented by Bi et al. (2005), in which complex vertical distributions of stability were found based on calculations ofRiBduring different seasons.

    3 Results

    3.1 Micrometeorological characteristics

    In the period 15-30 April 2012, consecutive episodes of air pollution occurred in Beijing, as illustrated by ambient mass concentrations of PM2.5(Mc, see Fig. 1). The duration of the air pollution was composed primarily of haze and dust events, which were separated by a clean-air day, i.e., 25 April. In Fig. 1, daily levels of air pollution are indicated by 24-h average values of Mc. Overall, 17-23 April saw elevated levels of haze-induced pollution, with daily Mc values frequently exceeding 100 μg m?3.Figure 1 also shows processes associated with the accumulation and removal of PM2.5particles. For instance, gradual increases and rapid decreases in Mc are observed in the period 17-20 April. In addition, the dust events (i.e., during 26-30 April) produced high concentrations of PM2.5, with the daily average Mc peaking at about 200 μg m?3on 29 April.

    Figure 1 Time series of ambient mass concentrations of PM2.5(Mc, red curve). The blue dashed line indicates the 24-h average values of Mc 25 April 2012 is a clean-air day.

    Figure 2 presents time series of the measured wind speed (V), relative humidity (RH),Γθ, incoming/reflected shortwave radiation (Rs), and downwelling/upwelling longwave radiation (Rl). Overall,Vand RH varied in opposite directions during the haze events (see Figs. 2a and 2b). For instance,Vat the 160-m height often exceeded 6 m s?1before 19 April, but always remained below 5 m s?1from 20 April onwards; while RH at both 63 and 100 m saw a remarkable climb, from below 20% to over 70%. These variations inVand RH coincided with the development of haze, dominated by southwesterly winds (see the inset of wind roses in Fig. 2a). It is worth noting that, as shown in Fig. 2b, RH occasionally exceeded 90% (such as on 20 and 24 April), which probably resulted from the occurrence of fog rather than haze (see Wu, 2012). Given the relatively infrequent occurrence of fog, the period of 17-23 April is consistently deemed as“haze-induced pollution” herein.

    Values ofΓθin Fig. 2c reveal that stable conditions (i.e.,Γθ> 0) prevailed during the haze events, which occurred for about 56% and 64% of the time for the 32-63-and 63-160-m height intervals, respectively. Absolute values ofΓθ, as expected, tended to fall with increases in height (see the inset of Fig. 2c). Moreover, as shown in Figs. 2d and 2e, bothRsandRlhad a marked evolution during the haze events. Overcast skies prevailed from 18 April onwards. Accordingly, the net radiative energy input due toRsandRlwas significantly diminished, with daily averages declining from over 110 W m?2to less than 20 W m?2. Such a reduced energy input should weaken the daytime development of unstable boundary layers, thereby facilitating the accumulation of PM2.5particles (see Fig. 1).

    Compared with the haze events, the dust events exhibited different micrometeorological characteristics, such as moderately high wind speed (Fig. 2a), quite low relative humidity (Fig. 2b), and typically high radiative energy exchange (Figs. 2d and 2e). Of particular note are the differences in Γθ (Fig. 2c). Specifically, nighttime values ofΓθ(i.e.,Γθ> 0 for stable stratification) during the dust events were notably higher than those during the haze events. Such a difference should result partly from the clear dusty sky conditions, as opposed to the overcast hazy sky conditions, because clear-sky nights are more conducive to higher stability of the nocturnal boundary layers (i.e.,Γθas an indicator). Further comparison reveals that, during the dust events, stable conditions (i.e.,Γθ> 0) occurred for about 75% of the time for the 32-63-m height interval, much more frequently than those duringthe haze events (i.e., 56%).

    Figure 2 Time series of meteorological measurements: (a) wind speed (V) at the 32-, 63-, and 160-m heights; (b) relative humidity (RH) at the 63-and 100-m heights; (c)Γθfor the 32-63- and 63-160-m height intervals; (d)Rs; and (e)Rl. In (a), the inset shows the wind roses at the individual heights. In (c), the inset is a scatter plot to compareΓθ.Rsin (d) andRlin (e) are measurements at 140 m. The study period is 15-30 April 2012.

    To summarize, the haze and dust events were characterized by typically stable stratification within lower portions of the UBL.

    3.2 Atmospheric stability conditions and turbulent heat exchange

    To describe boundary-layer stability conditions, Fig. 3 shows temporal evolutions inRiBfor three height intervals: 8-47, 47-140, and 140-280 m. Interesting evolution and vertical differences inRiBcan be identified in Fig. 3.

    First, diurnal variations inRiBwere noticeable, which, for each height interval, indicated typically unstable conditions during the daytime and stable conditions at night. Interestingly, such a diurnal shift of stability was not consistently evident throughout the entire duration of air pollution, but was almost absent on the days with elevated levels of haze pollution (i.e., 20-23 April, see Fig. 1). This apparent absence of diurnal variations in stability could provide a clue to the persistent nature of the occurrence of heavy haze events (as practically experienced in Beijing).

    Second, diurnal cycles ofRiBappeared most evident for the lower intervals (i.e., 8-47 and 47-140 m). In comparison, for the 140-280-m interval, positive values ofRiB(RiB> 0 for stable stratification) were predominant, occurring for about 85% of the time. It is therefore of interest to identify such a frequent presence of stably-stratified layers higher within the lower UBL under conditions of air pollution. Their presence, typically associated with suppressed turbulence, could have constrained the vertical dispersion of PM2.5particles, thereby contributing to their accumulation. Because any change in the observed PM2.5concentrations involves a series of complex physical and chemical mechanisms (mixed-layer evolution and gas-particle conversion, for example), possible explanations by stability conditions alone are therefore not attempted using the present dataset. Instead, to further depict the observed upper stable layer (i.e., 140-280 m), we examined the diurnal behavior of stability conditions and turbulent exchange in terms ofRiB,H,Rwθ, and LE at two different heights (or intervals); the results are presented in Fig. 4 without distinguishing the data between haze and dust events.

    Figure 4a highlights the vertical discrepancy in stability conditions between the two height intervals, as evidenced by the remarkably more frequent presence of stable conditions in the upper layer, i.e., 140-280 m (RiB> 0 throughout the entire diurnal cycle). Confirmatory evidence can be gained from Figs. 4b and 4c. Briefly, negative values ofH(downward turbulent transport of sensible heat) are observed at 280 m for the entire diurnal cycle, which, in contrast, are rarely seen at 140 m during the daytime periods. Accordingly, in Fig. 4c, the sensible heat is typically found to be much less efficiently transported at the 280-m height, which implies largely suppressed turbulence in the upper stably-stratified flows. Figure 4d shows the typically upward transport of water vapor during episodes of air pollution, while downward transport appears more frequently at 280 m. The injected water vapor into the lower UBL through turbulent latent heat exchange is regarded as conducive, in particular, to the maintenance of haze-induced pollution, because the moistening processes enhance certain photochemical reactions related to the generation of fine-particulate matters.

    4 Summary

    Using measurements at the Beijing 325-m Meteorological Tower, we addressed atmospheric stability conditions and turbulent exchange during consecutive episodes of particle air pollution in Beijing (China) in the period 15-30 April 2012. Specific findings include:

    First, haze and dust events are characterized by different atmospheric conditions. Relatively low wind speed and high humidity are typically observed during haze events.

    Second, under sustained air pollution, UBLs over the megacity of Beijing have a complex vertical structure, as evidenced by vertically varied stability distributions from the present dataset. There appears to be an apparent increase in the occurrence frequency of stably-stratified air layers in the upper height interval, such as 140-280-m above the surface. Simultaneously, the downward turbu-lent exchange of sensible heat is observed at 280 m for the entire diurnal cycle, which, by contrast, is rarely seen at 140 m during the daytime.

    Figure 3 Time series of the calculated bulk Richardson number (RiB, absolute values) for the three height intervals: (a) 8-47 m; (b) 47-140 m; and (c) 140-280 m. The study period is 15-30 April 2012.

    Figure 4 Composite diurnal behaviors of (a)RiB, (b)H, (c)Rwθ, and (d) LE. In (a) and (c), filled circles denote hourly median values of |RiB| (using data with the predominant +/? sign) andRwθ, respectively. The study period is 15-30 April 2012.

    The above findings underline the importance, for the mechanistic understanding of haze/dust-induced air pollution, of implementing profile observations at a sufficiently high vertical resolution within the UBL.

    Acknowledgements. This study was funded by the National Basic Research Program of China (Grant No. 2014CB447900). Xiaofeng GUO acknowledges the support of the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences (Grant No. LAPC-KF-2009-02).

    An, X., Q. Hou, N. Li, et al., 2013: Assessment of human exposure level to PM10in China,Atmos. Environ., 70, 376-386.

    Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island,Int. J. Climatol., 23, 1-26.

    Bi, X.-Y., F. Liu, and D. Wu, 2005: Comparison of some limit for stability classification,J. Trop. Meteor.(in Chinese), 21, 402-409.

    Feigenwinter, C., R. Vogt, and A. Christen, 2012: Eddy covariance measurements over urban areas, in:Eddy Covariance—A Practical Guide to Measurement and Data Analysis, Springer, Heidelberg, 377-397.

    Lin, J.-T., D. Pan, and R.-X. Zhang, 2013: Trend and interannual variability of Chinese air pollution since 2000 in association with socioeconomic development: A brief overview,Atmos. Oceanic Sci. Lett., 6, 84-89.

    Liu, H. P., and J. C. L. Chan, 2002: Boundary layer dynamics associated with a severe air-pollution episode in Hong Kong,Atmos. Environ., 36, 2013-2025.

    Liu, X. G., J. Li, Y. Qu, et al., 2013: Formation and evolution mechanism of regional haze: A case study in the megacity Beijing,Atmos. Chem. Phys., 13, 4501-4514.

    Miao, S. G., J. X. Dou, and F. Chen, et al., 2012: Analysis of observations on the urban surface energy balance in Beijing,Sci. China Ser. D-Earth Sci., 55, 1881-1890.

    Quan, J., Q. Zhang, H. He, et al., 2011: Analysis of the formation of fog and haze in North China Plain (NCP),Atmos. Chem. Phys., 11, 8205-8214.

    Roth, M., 2000: Review of atmospheric turbulence over cities,Quart. J. Roy. Meteor. Soc., 126, 941-990.

    Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies,Bull. Amer. Meteor. Soc., 93, 1879-1900.

    Sun, Y., T. Song, G. Tang, et al., 2013: The vertical distribution of PM2.5and boundary-layer structure during summer haze in Beijing,Atmos. Environ., 74, 413-421.

    Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer,Quart. J. Roy. Meteor. Soc., 106, 85-100.

    Wu, D., 2012: Hazy weather research in China in the last decade: A review,Acta Sci. Circumst.(in Chinese), 32, 257-269.

    Zhao, B., S. Wang, X. Dong, et al., 2013a: Environmental effects of the recent emission changes in China: Implications for particulate matter pollution and soil acidification,Environ. Res. Lett., 8, 024031, doi:10.1088/1748-9326/8/2/024031.

    Zhao, P. S., F. Dong, D. He, et al., 2013b: Characteristics of concentrations and chemical compositions for PM2.5in the region of Beijing, Tianjin, and Hebei, China,Atmos. Chem. Phys., 13, 4631-4644.

    Zhao, X. J., P. S. Zhao, J. Xu, et al., 2013c: Analysis of a winter regional haze event and its formation mechanism in the North China Plain,Atmos. Chem. Phys., 13, 5685-5696.

    Zhao, Y., J. Zhang, and C. P. Nielsen, 2013d: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2in China,Atmos. Chem. Phys., 13, 487-508.

    Zhou, B., B. Zhao, X. Guo, et al., 2013: Investigating the geographical heterogeneity in PM10-mortality associations in the China Air Pollution and Health Effects Study (CAPES): A potential role of indoor exposure to PM10of outdoor origin,Atmos. Environ., 75, 217-223.

    :Guo, X.-F., T. Yang, S.-G. Miao, et al., 2014: Urban boundary-layer stability and turbulent exchange during consecutive episodes of particle air pollution in Beijing, China,Atmos. Oceanic Sci. Lett., 7, 62-66,

    10.3878/j.issn.1674-2834.13.0067.

    Received 16 July 2013; revised 13 September 2013; accepted 16 September 2013; published 16 January 2014

    YANG Ting, yangting0207@126.com

    久久鲁丝午夜福利片| 制服人妻中文乱码| 热99久久久久精品小说推荐| 亚洲精华国产精华液的使用体验| 国产av国产精品国产| 国产男女超爽视频在线观看| 国产精品无大码| 韩国精品一区二区三区 | 国产xxxxx性猛交| 亚洲欧美日韩另类电影网站| 最后的刺客免费高清国语| 国产成人av激情在线播放| 狂野欧美激情性xxxx在线观看| 亚洲精品乱久久久久久| 亚洲av.av天堂| 天堂8中文在线网| 精品第一国产精品| 在线 av 中文字幕| 九九爱精品视频在线观看| 亚洲丝袜综合中文字幕| 精品国产一区二区三区久久久樱花| 成人黄色视频免费在线看| 大码成人一级视频| 日韩欧美精品免费久久| 纯流量卡能插随身wifi吗| 久久久欧美国产精品| 老司机影院毛片| 街头女战士在线观看网站| 久久久久视频综合| 天美传媒精品一区二区| 国产黄色视频一区二区在线观看| 国产xxxxx性猛交| videosex国产| 婷婷色综合大香蕉| 亚洲精品av麻豆狂野| 青春草国产在线视频| 十八禁高潮呻吟视频| 免费大片黄手机在线观看| 亚洲精品自拍成人| 国产亚洲最大av| 女性被躁到高潮视频| 国产乱人偷精品视频| 少妇精品久久久久久久| 美女脱内裤让男人舔精品视频| 一级毛片黄色毛片免费观看视频| 十分钟在线观看高清视频www| 啦啦啦视频在线资源免费观看| 熟女人妻精品中文字幕| 国产欧美日韩一区二区三区在线| 午夜福利,免费看| 美女大奶头黄色视频| 男人操女人黄网站| 中文字幕最新亚洲高清| 一级黄片播放器| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 国产视频首页在线观看| 国产日韩欧美视频二区| 国产成人一区二区在线| 欧美日韩精品成人综合77777| 久久人人爽av亚洲精品天堂| 婷婷成人精品国产| 中国美白少妇内射xxxbb| 亚洲精品自拍成人| 久久人人爽av亚洲精品天堂| 久久99热6这里只有精品| 男人添女人高潮全过程视频| 蜜桃国产av成人99| 亚洲成色77777| 捣出白浆h1v1| 日本-黄色视频高清免费观看| av.在线天堂| 日韩,欧美,国产一区二区三区| 赤兔流量卡办理| 国产精品久久久av美女十八| 国产亚洲精品第一综合不卡 | 国产在线一区二区三区精| 午夜精品国产一区二区电影| 国产日韩欧美亚洲二区| 日韩欧美一区视频在线观看| 十八禁网站网址无遮挡| 国产av精品麻豆| 欧美精品一区二区大全| 街头女战士在线观看网站| 日韩中文字幕视频在线看片| 国产精品免费大片| 综合色丁香网| 一级毛片我不卡| 51国产日韩欧美| 丝瓜视频免费看黄片| 国产日韩欧美在线精品| 女性生殖器流出的白浆| 精品人妻偷拍中文字幕| 制服人妻中文乱码| 高清毛片免费看| 久久女婷五月综合色啪小说| 国产精品秋霞免费鲁丝片| 97在线视频观看| 制服人妻中文乱码| 久久国产亚洲av麻豆专区| 国产精品99久久99久久久不卡 | kizo精华| 欧美+日韩+精品| 午夜免费男女啪啪视频观看| 五月开心婷婷网| 最近最新中文字幕大全免费视频 | 男女啪啪激烈高潮av片| 亚洲性久久影院| 波多野结衣一区麻豆| 亚洲欧洲国产日韩| 亚洲精品av麻豆狂野| 老熟女久久久| 亚洲欧美一区二区三区黑人 | 亚洲精品美女久久久久99蜜臀 | 国产一区二区在线观看av| 久久热在线av| a级毛片黄视频| 在线观看免费视频网站a站| 日本黄色日本黄色录像| 成人手机av| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 国产男女超爽视频在线观看| 国产精品欧美亚洲77777| 久久精品国产综合久久久 | 亚洲av日韩在线播放| freevideosex欧美| 欧美国产精品一级二级三级| 亚洲精品中文字幕在线视频| 国产伦理片在线播放av一区| 亚洲av中文av极速乱| 久久综合国产亚洲精品| a级毛色黄片| 国产免费又黄又爽又色| 成人毛片60女人毛片免费| 男女高潮啪啪啪动态图| 亚洲精品第二区| 久久精品熟女亚洲av麻豆精品| 日韩av在线免费看完整版不卡| 精品久久蜜臀av无| 亚洲精品国产av成人精品| 成人综合一区亚洲| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频 | 桃花免费在线播放| 亚洲高清免费不卡视频| 亚洲丝袜综合中文字幕| 22中文网久久字幕| 黄片播放在线免费| 久久久久国产精品人妻一区二区| 国产av一区二区精品久久| 国产 一区精品| 成人漫画全彩无遮挡| 黄色视频在线播放观看不卡| 久久精品国产a三级三级三级| 免费在线观看完整版高清| 1024视频免费在线观看| www.熟女人妻精品国产 | 国产伦理片在线播放av一区| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 香蕉精品网在线| 亚洲国产精品999| 一级片免费观看大全| 观看美女的网站| 三级国产精品片| 国产日韩欧美在线精品| 69精品国产乱码久久久| 看免费av毛片| 精品国产一区二区三区四区第35| 中文天堂在线官网| 久久 成人 亚洲| 在线观看www视频免费| 国产又色又爽无遮挡免| 制服诱惑二区| 伦理电影免费视频| 999精品在线视频| 欧美+日韩+精品| 日韩av在线免费看完整版不卡| 天美传媒精品一区二区| 久久久久久人妻| 欧美日韩一区二区视频在线观看视频在线| 久久久久久伊人网av| 欧美日韩av久久| 美女中出高潮动态图| 亚洲欧美精品自产自拍| 在线观看国产h片| 黄色视频在线播放观看不卡| 精品视频人人做人人爽| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 26uuu在线亚洲综合色| av不卡在线播放| 国产高清三级在线| 狠狠婷婷综合久久久久久88av| 大码成人一级视频| 久久精品久久精品一区二区三区| www.熟女人妻精品国产 | 男女无遮挡免费网站观看| 欧美成人午夜免费资源| 亚洲三级黄色毛片| 大香蕉久久网| 日产精品乱码卡一卡2卡三| 欧美bdsm另类| 少妇被粗大猛烈的视频| 中文字幕人妻丝袜制服| 国产一区二区激情短视频 | 丝袜在线中文字幕| 久久久精品区二区三区| 亚洲欧美中文字幕日韩二区| 中文字幕亚洲精品专区| 极品少妇高潮喷水抽搐| 国产亚洲精品第一综合不卡 | 国产有黄有色有爽视频| 成年美女黄网站色视频大全免费| 亚洲av日韩在线播放| 中文欧美无线码| 国产精品人妻久久久影院| 国产女主播在线喷水免费视频网站| 亚洲成色77777| 又粗又硬又长又爽又黄的视频| 又黄又粗又硬又大视频| 赤兔流量卡办理| 极品人妻少妇av视频| 91在线精品国自产拍蜜月| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 视频区图区小说| 国产精品99久久99久久久不卡 | 亚洲精品日本国产第一区| 久久久久久久亚洲中文字幕| 亚洲欧洲国产日韩| 国产精品嫩草影院av在线观看| 成年人免费黄色播放视频| 最黄视频免费看| 免费观看无遮挡的男女| 秋霞伦理黄片| 成人黄色视频免费在线看| 综合色丁香网| 精品99又大又爽又粗少妇毛片| 国产福利在线免费观看视频| 亚洲精品色激情综合| 国产精品久久久久久精品电影小说| 午夜视频国产福利| 黄片无遮挡物在线观看| 黄色毛片三级朝国网站| 欧美成人午夜免费资源| 国产女主播在线喷水免费视频网站| 天美传媒精品一区二区| 亚洲国产欧美日韩在线播放| 少妇被粗大的猛进出69影院 | 一区二区三区精品91| 又黄又粗又硬又大视频| 亚洲av电影在线进入| 国产视频首页在线观看| 精品视频人人做人人爽| 各种免费的搞黄视频| 99热全是精品| 22中文网久久字幕| 精品久久久精品久久久| 日韩熟女老妇一区二区性免费视频| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 欧美亚洲 丝袜 人妻 在线| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 免费不卡的大黄色大毛片视频在线观看| 午夜91福利影院| 午夜福利,免费看| 亚洲成国产人片在线观看| 色婷婷久久久亚洲欧美| 国产探花极品一区二区| 成人国产麻豆网| 欧美成人午夜精品| 亚洲国产日韩一区二区| 国产一区亚洲一区在线观看| 超碰97精品在线观看| 欧美激情极品国产一区二区三区 | 亚洲欧美色中文字幕在线| 22中文网久久字幕| 国产免费视频播放在线视频| 久久亚洲国产成人精品v| 国产麻豆69| 一本久久精品| 18禁国产床啪视频网站| av免费在线看不卡| 高清毛片免费看| 国产av精品麻豆| 免费av中文字幕在线| 国产日韩欧美亚洲二区| 男女下面插进去视频免费观看 | 亚洲图色成人| 日韩中字成人| 成人二区视频| 制服诱惑二区| 热re99久久精品国产66热6| 22中文网久久字幕| 下体分泌物呈黄色| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 内地一区二区视频在线| 99热国产这里只有精品6| 99热全是精品| 午夜福利网站1000一区二区三区| 在线 av 中文字幕| 成人毛片60女人毛片免费| 人妻人人澡人人爽人人| 国产成人精品福利久久| 最近中文字幕高清免费大全6| 18禁国产床啪视频网站| 91久久精品国产一区二区三区| 久久久a久久爽久久v久久| 欧美日韩精品成人综合77777| www日本在线高清视频| www.av在线官网国产| 成人18禁高潮啪啪吃奶动态图| videos熟女内射| 亚洲av欧美aⅴ国产| 国产亚洲精品久久久com| 亚洲成色77777| 亚洲综合色网址| 十八禁高潮呻吟视频| 最黄视频免费看| 欧美人与性动交α欧美软件 | 久久99一区二区三区| 日韩成人av中文字幕在线观看| 久久亚洲国产成人精品v| 午夜av观看不卡| 一边摸一边做爽爽视频免费| 在线看a的网站| 青春草亚洲视频在线观看| 欧美97在线视频| 黑人高潮一二区| 日韩 亚洲 欧美在线| 久久久久国产网址| 一区二区三区四区激情视频| 乱人伦中国视频| 国产精品一国产av| 欧美成人精品欧美一级黄| 精品熟女少妇av免费看| 一二三四中文在线观看免费高清| 看十八女毛片水多多多| 久久久国产一区二区| 久久国产精品男人的天堂亚洲 | 国产乱来视频区| 精品国产露脸久久av麻豆| 男男h啪啪无遮挡| 天堂8中文在线网| 男女无遮挡免费网站观看| 爱豆传媒免费全集在线观看| 久久久久久久国产电影| 看免费成人av毛片| av又黄又爽大尺度在线免费看| 少妇熟女欧美另类| 男女边摸边吃奶| 99久久精品国产国产毛片| 成人亚洲精品一区在线观看| 国产男人的电影天堂91| 日韩一区二区视频免费看| 超色免费av| 九色亚洲精品在线播放| 日韩av在线免费看完整版不卡| 亚洲国产精品成人久久小说| 大陆偷拍与自拍| 丰满少妇做爰视频| 亚洲精品美女久久av网站| 国产成人精品婷婷| 免费人成在线观看视频色| 黄色毛片三级朝国网站| 久久这里有精品视频免费| 国产精品免费大片| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 少妇被粗大的猛进出69影院 | 国产乱来视频区| 最近最新中文字幕大全免费视频 | av女优亚洲男人天堂| 九色亚洲精品在线播放| 国产成人一区二区在线| 欧美人与性动交α欧美精品济南到 | 国产精品蜜桃在线观看| 国产成人一区二区在线| 天天操日日干夜夜撸| 桃花免费在线播放| 人妻人人澡人人爽人人| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 美女主播在线视频| 日本爱情动作片www.在线观看| 亚洲精品国产av蜜桃| 国产欧美亚洲国产| 少妇人妻 视频| 又黄又粗又硬又大视频| 久久精品国产亚洲av涩爱| 免费观看a级毛片全部| 最近中文字幕高清免费大全6| 在线亚洲精品国产二区图片欧美| 熟女av电影| av免费在线看不卡| 亚洲国产色片| 国产一区二区激情短视频 | 国产福利在线免费观看视频| 久久午夜综合久久蜜桃| 在现免费观看毛片| 国产白丝娇喘喷水9色精品| 菩萨蛮人人尽说江南好唐韦庄| 免费黄色在线免费观看| 制服丝袜香蕉在线| 丰满乱子伦码专区| 国产亚洲av片在线观看秒播厂| 国产精品无大码| a 毛片基地| 99国产综合亚洲精品| 91在线精品国自产拍蜜月| 两个人免费观看高清视频| 国产精品偷伦视频观看了| 美女国产高潮福利片在线看| 波野结衣二区三区在线| 天美传媒精品一区二区| kizo精华| 国产精品三级大全| 一级爰片在线观看| 日韩伦理黄色片| 在线免费观看不下载黄p国产| 全区人妻精品视频| 91精品国产国语对白视频| 国产毛片在线视频| 日韩av免费高清视频| 中文字幕制服av| 久久久久精品人妻al黑| 人人妻人人澡人人看| 麻豆精品久久久久久蜜桃| 精品国产一区二区三区四区第35| 亚洲精品乱久久久久久| 91成人精品电影| 亚洲精品乱码久久久久久按摩| 免费黄色在线免费观看| 丝袜人妻中文字幕| 在线免费观看不下载黄p国产| 国产欧美亚洲国产| 久久久久人妻精品一区果冻| 国产深夜福利视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 成人午夜精彩视频在线观看| 2018国产大陆天天弄谢| 亚洲,欧美,日韩| 国产1区2区3区精品| 国产精品国产av在线观看| www.熟女人妻精品国产 | 亚洲美女视频黄频| 国产精品蜜桃在线观看| 爱豆传媒免费全集在线观看| 一边摸一边做爽爽视频免费| 久久99蜜桃精品久久| 成人二区视频| 最近最新中文字幕大全免费视频 | 中文字幕人妻丝袜制服| 人妻少妇偷人精品九色| 中文字幕免费在线视频6| 永久网站在线| 中文字幕av电影在线播放| 熟女电影av网| 国产1区2区3区精品| 另类亚洲欧美激情| 啦啦啦中文免费视频观看日本| 欧美变态另类bdsm刘玥| 日韩中文字幕视频在线看片| 国产成人午夜福利电影在线观看| 高清av免费在线| 成年av动漫网址| 亚洲熟女精品中文字幕| 青春草国产在线视频| 视频区图区小说| 亚洲国产欧美日韩在线播放| 成人亚洲精品一区在线观看| 欧美国产精品va在线观看不卡| 色94色欧美一区二区| 成人无遮挡网站| 午夜福利网站1000一区二区三区| 9191精品国产免费久久| 日韩av不卡免费在线播放| 成人二区视频| 亚洲天堂av无毛| 欧美成人午夜免费资源| 午夜久久久在线观看| 一个人免费看片子| 国产日韩一区二区三区精品不卡| 欧美激情极品国产一区二区三区 | 国产在线视频一区二区| 黄色怎么调成土黄色| 精品一区二区免费观看| 欧美97在线视频| 在线观看美女被高潮喷水网站| 99精国产麻豆久久婷婷| 秋霞在线观看毛片| 国产福利在线免费观看视频| 婷婷成人精品国产| 国产精品人妻久久久影院| 在线观看一区二区三区激情| 精品久久国产蜜桃| 免费看光身美女| 免费观看性生交大片5| 在线天堂中文资源库| 2021少妇久久久久久久久久久| 全区人妻精品视频| 久久久精品区二区三区| 日韩av不卡免费在线播放| 97精品久久久久久久久久精品| 久久精品久久久久久噜噜老黄| 九九爱精品视频在线观看| xxx大片免费视频| 成人综合一区亚洲| 色哟哟·www| 国产成人精品福利久久| 卡戴珊不雅视频在线播放| 人成视频在线观看免费观看| 欧美日韩av久久| 国产欧美日韩综合在线一区二区| 欧美 日韩 精品 国产| 香蕉国产在线看| 国产高清三级在线| xxx大片免费视频| 国产精品人妻久久久久久| 国产视频首页在线观看| 日本欧美视频一区| 久久99热这里只频精品6学生| 国产探花极品一区二区| 黑人欧美特级aaaaaa片| 亚洲成人av在线免费| 国产免费视频播放在线视频| 久久久亚洲精品成人影院| 狂野欧美激情性bbbbbb| 国产精品 国内视频| 亚洲国产成人一精品久久久| 又大又黄又爽视频免费| 欧美变态另类bdsm刘玥| 亚洲精品国产色婷婷电影| 亚洲精品久久成人aⅴ小说| 国产av国产精品国产| 女人久久www免费人成看片| 91在线精品国自产拍蜜月| 午夜福利网站1000一区二区三区| 亚洲精品第二区| 日日撸夜夜添| 超碰97精品在线观看| 国产福利在线免费观看视频| 国产精品嫩草影院av在线观看| 伦理电影大哥的女人| av.在线天堂| 国产国拍精品亚洲av在线观看| 精品99又大又爽又粗少妇毛片| 成人手机av| 天堂俺去俺来也www色官网| 亚洲欧美色中文字幕在线| av免费观看日本| 亚洲国产最新在线播放| 国产精品蜜桃在线观看| 午夜日本视频在线| 亚洲av免费高清在线观看| 国产成人精品福利久久| 日本爱情动作片www.在线观看| 亚洲成色77777| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 女人精品久久久久毛片| 妹子高潮喷水视频| 欧美日本中文国产一区发布| 777米奇影视久久| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 五月天丁香电影| 精品酒店卫生间| av电影中文网址| 大香蕉久久网| 久久人人爽人人爽人人片va| 香蕉精品网在线| 日韩av不卡免费在线播放| 美国免费a级毛片| 在线天堂最新版资源| 免费观看无遮挡的男女| 久久狼人影院| 精品久久久久久电影网| 最近的中文字幕免费完整| 久久久国产精品麻豆| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| 亚洲一级一片aⅴ在线观看| 欧美 日韩 精品 国产| 国产精品 国内视频| 王馨瑶露胸无遮挡在线观看| 女人久久www免费人成看片| 亚洲av男天堂| 久久久久网色| 深夜精品福利| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区大全| 一级片'在线观看视频| 国产成人aa在线观看| 久久99精品国语久久久| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 免费播放大片免费观看视频在线观看| 一二三四在线观看免费中文在 | 免费黄色在线免费观看| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 久久久精品免费免费高清| 桃花免费在线播放| 黄色视频在线播放观看不卡| videosex国产| 日本爱情动作片www.在线观看| 日本欧美视频一区| 国产精品.久久久|