• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitivity of Precipitation in Aqua-Planet Experiments with an AGCM

    2014-12-08 07:33:50YUHaiYangBAOQingZHOULinJiongWANGXiaoCongandLIUYiMin

    YU Hai-Yang, BAO Qing, ZHOU Lin-Jiong, WANG Xiao-Cong, and LIU Yi-Min

    1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

    1 Introduction

    The hydrological cycle involves the exchange of energy and has a significant impact on life and ecosystems on Earth. Precipitation is one of the most important physical parameters of this cycle and is a crucial index used for comprehensive modeling. Thus, a sensitivity study of precipitation can effectively explain the physical processes of the model and significantly improve its performance.

    Previous research has shown that the major factors affecting precipitation include orography (Houze, 2012),horizontal and vertical resolution (Pope and Stratton,2002), time step (Williamson and Olson, 2003), and the parameterization scheme (Hess et al., 1993). Some studies demonstrated that patterns of precipitation could be a response to the large-scale atmospheric circulation (Arakawa and Schubert, 1974), which is mainly determined by the dynamical core. However, few studies have focused on the impacts of the dynamic core on precipitation (Williamson and Olson, 2003).

    The aqua-planet experiment (APE) (Neale and Hoskins,2000) is a suitable coordinated numerical experiment to investigate the effects of dynamical core on the sensitivity of precipitation. On the basis of APEs, many previous studies explored the sensitivity of precipitation by using an atmospheric general circulation model (AGCM): Williamson and Olson (2003) studied the dependence of precipitation on time step; Williamson (2008) documented convergence problems of precipitation with increasing horizontal resolution; Li et al. (2011) studied the impact of horizontal resolution on the precipitation extremes in aqua-planet simulations.

    In this study, an AGCM with two dynamical cores was used in an APE to determine their effects on precipitation.We considered three important factors including the numerical method used to model the core, the length of time step, and horizontal resolution. The AGCM is described in section 2, and section 3 shows the specific experimental design. A detailed analysis of the numerical results is provided in section 4. Finally, we offer the conclusions and discussions in section 5.

    2 Model description

    The AGCM used in this study was the Finite-volume/Spectral Atmospheric Model (F/SAMIL), which was developed in by State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) of the Institute of Atmospheric Physics(IAP). F/SAMIL consists of two versions including that with a spectral dynamical core (SAMIL) and that with a finite-volume dynamical core (FAMIL). Both share a common physical package.

    The early version of SAMIL was a nine-level rhomboidal truncated spectral model that and was capable of simulating climate mean states as well as monsoon onset and interannual variability (Wu et al., 1996; Wang et al.,2004). In addition to its usage for aqua-planet research(Wang et al., 2008), SAMIL improvements include 26 levels vertically and rhombic truncation with the maximum wavenumber 42 (R42) horizontally with parallel computation (Wang and Wang, 2006). Moreover, it is combined with other model components to form a climate system model widely used for climate change and dy-namic studies (Bao et al., 2013; Wei and Bao, 2012).

    FAMIL is the latest version of F/SAMIL and contains a finite volume dynamical core (Lin, 2004). The key characters of FAMIL include flux-form semi-Lagrangian(FFSL) transport scheme (Wang et al., 2013), vertical Lagrangian control-volume discretion, and achievement of dynamical core on the cubed-sphere grid, which overcomes the polar problem and applies parallel computation efficiently (Putman and Lin, 2007). Numerical testing by a supercomputer verified its efficient computing performance (Zhou et al., 2012).

    The vertical grids in F/SAMIL are 26-level hybrid coordinates from the Earth’s surface to approximately 3 hPa.Table 1 shows the available resolutions. The physical package, is shared with SAMIL, has full parameterization modules including the main processes in the atmosphere(Table 1). In particular, the cumulus parameterization in F/SAMIL is a modified mass flux scheme, which was first designed by Tiedtke (1989), and uses convective available potential energy (CAPE) as the closure hypothesis (Nordeng, 1994).

    3 Experiment design

    APEs were conducted in this study to avoid complications from the underlying surface. Following the approach designed by Neale and Hoskins (2000), the model included a full parameterization suite and was designed for simple surface conditions that essentially assumed the earth is covered with water. That is, the effects of mountains, land, and sea ice were disregarded. The sea surface temperature (SST) was specified with special geometries such as zonal symmetry. A diurnal cycle of solar radiation was included with the sun remaining over the equator.Because the only radiatively active aerosols detected were greenhouse species symmetric about the equator, the aqua-planet climate is also expected to be symmetric about the equator.

    We followed the control case of Neale and Hoskins(2000), in which the SST is defined in °C for latitude only:

    where λ and φ are longitude and latitude, respectively.

    The simulations began from an idealized state and ran for two years. The first year was treated as the “spin-up”period because the model transitioned from its initial conditions to the aqua-planet climate in less than two months(Williamson, 2008). All parameters in the physical packages remained untuned because no known correct solution was available for comparison (Williamson, 2008). Nevertheless, it was determined that the simple environment of the APE provided the necessary conditions for examining the sensitivity of model simulations such as precipitation.

    4 Sensitivity analysis

    On the basis of the control APEs with F/SAMIL, the sensitivity of precipitation was analyzed relative to the three aforementioned factors. Generally, more global averaged precipitation was simulated by SAMIL than thatby FAMIL at 0.2–0.4 mm d-1. The global averaged precipitation, particularly that on a large scale, increased with increasing horizontal resolution (Table 2). In this section,we will show that a decrease in time step associated with an increase in horizontal resolution may be the main factor in the change of the partition of precipitation.

    Table 1 Finite-volume/Spectral Atmospheric Model (F/SAMIL) for atmospheric general circulation.

    For the zonal averaged pattern, SAMIL simulated a broad equatorial precipitation belt with double peaks,while FAMIL simulated a stronger single narrow peak(Fig. 1). An increase in horizontal resolution associated with a decrease in time step resulted in stronger peaks of total precipitation in SAMIL but weak changes in FAMIL.Thus, FAMIL likely gives a more reasonable result such that the equatorial convective precipitation decreases while large-scale precipitation peaks increases with a rise in horizontal resolution. Generally, the dynamical core is the primary influence of the structure of precipitation,while the horizontal resolution, which is associated with time step, is a secondary factor and affects magnitude.Actually, the resolution change consists of many factors that can be isolated from each other (Williamson, 2008).In this study, we considered time step separately and combined the effects of grid interval, truncation in SAMIL only, and diffusive smoothing together as a pure resolution effect.

    4.1 Sensitivity of dynamical core

    As shown in Fig. 2, SAMIL R42 simulated a broad ascending belt with double peaks in the tropics (10°S–10°N), while FAMIL C48 (global cubed-sphere grid with 48×48 cells on each tile) showed a much stronger andnarrower belt. The mean vertical profiles of equatorial vertical velocity (5°S–5°N) in Figs. 2a and 2c also show that SAMIL R42 simulated a lower (~ 850 hPa) and weaker (–0.062 Pa s-1) major peak of upward motion than that of FAMIL C48 (–0.097 Pa s-1at ~ 780 hPa) and a weaker (–0.048 Pa s-1) but higher (~ 340 hPa) secondary peak than that of FAMIL C48 (–0.072 Pa s-1at ~ 400 hPa).

    Table 2 Time- and global-averaged precipitation determined by aqua-planet experiments (APEs) with F/SAMIL. Units: mm d-1.

    These results indicate that FAMIL has a much stronger sensitive response on the specified maximum SST at the equator. Further studies showed that the equatorial air temperature on the bottom model level of FAMIL C48 was lower than that of SAMIL R42 by 0.8 K, indicating higher sensible heating over the tropical ocean surface.Meanwhile, the tropical moisture content near the ocean surface in FAMIL C48 was more than that of SAMIL R42 by ~ 2 g kg-1. These two factors led to a larger equatorial CAPE (Figs. 2b and 2d), thus stronger convective precipitation over tropics in FAMIL C48 (Figs. 1b and 1e).Furthermore, the stronger latent heating from condensation accelerated the equatorial ascending and induced additional low-level moisture convergence. This type of positive feedback could explain the narrower equatorial precipitation belt with a single peak in FAMIL C48 rather than the broad weak belt with double peaks in SAMIL R42 (Figs. 1a and 1d). Finally, the equatorial divergence of moisture flux in FAMIL C48 corresponding to the vertical velocity was substantially more concentrated and stronger than that of SAMIL R42 (not shown), which indicates that the advection scheme may have played an additional role in influencing the equatorial precipitation(Wang et al., 2013). Further experiments are needed to demonstrate the effects of the advection scheme.

    4.2 Sensitivity of time step

    The time step in this analysis represents the coupling frequency between the dynamical core and the physical package only (Table 1) because previous studies indicated that the precipitation in APE does not have significant sensitivity on sub-time step in the dynamical core (Williamson and Olson, 2003).

    Figure 1 Time- and zonal-averaged total precipitation (left column), convective precipitation (middle column), and large-scale precipitation (right column) determined by aqua-planet experiments (APEs) including atmospheric models with a spectral dynamical core (SAMIL, upper panels) and that with a finite-volume dynamical core (FAMIL, bottom panels).

    Figure 2 Averaged vertical profiles of equatorial vertical velocity(5°S–5°N) determined by APEs (units: Pa s-1) with (a) an atmospheric model with a SAMIL R42 and (c) that with a FAMIL C48. The height-latitude cross section shows vertical velocity from APEs determined by (b) SAMIL R42 and (d) FAMIL C48. Red lines represent zonal-averaged convective available potential energy (CAPE) (units: J kg-1) from APEs of (b) SAMIL R42 and (d) FAMIL C48.

    The equatorial maximum precipitation increased with a decrease in time step for each specific horizontal resolution (Figs. 3a–d), which primarily contributed to the sensitivity of precipitation to the horizontal resolution (Fig.1). Moreover, the time step had a remarkable influence on the structure of precipitation in FAMIL but nearly no impact on that of SAMIL. Because the two share the same physical package, it is indicated that the dynamical core of FAMIL (e.g., advection scheme) is more sensitive to the coupling frequency with physical processes that that of SAMIL. For FAMIL with high resolution (C96 and C192), the single equatorial peak of precipitation split into double peaks with an increase in time step (Figs. 3c and 3d). The increased precipitation farther from the equator appeared to ascend because additional water was placed into the atmosphere by the surface exchange parameterizations with a longer time step (Williamson and Olson, 2003).

    When the time step was increased, more water vapor was evaporated from the equatorial warm ocean rather than being transported to the equator by the advection scheme. The additional moisture had ample time to be distributed by vertical diffusion, which resulted in a larger CAPE and stronger convection over and away from the equator. Furthermore, once the convection farther from the equator was initiated, positive feedback led to enhanced convection, which consumed more low-level moisture convergence and resulted in double peaks of precipitation. This hypothesis is proved by Fig. 3e. As the time step increases, the fraction of tropical convective precipitation also increases, particularly in the region away from the equator.

    In addition, the cumulus parameterization in F/SAMIL included a fixed relaxation time scale of the consumption rate of CAPE. During a longer time step, more CAPE was consumed in the convective adjustment; thus, the air became more stable prior to the formation of large-scale condensation. This process led to a smaller fraction of large-scale precipitation and a larger convective fraction(Figs. 3e–h).

    4.3 Impacts of the horizontal resolution

    Two series of APEs were conducted for F/SAMIL with the same time step but different horizontal resolutions for each group. All of the spectral versions of SAMIL R42,R85, and R106 used the same time step of 300 s; that for FAMIL C48, C96, and C192 was 1800 s (Fig. 4).

    Figure 3 Upper panels: Time- and zonal-averaged precipitation determined by APEs with different time steps (DT) including (a) atmospheric models with a SAMIL and (b)–(d) those with a FAMIL. Bottom panels: Same as that in upper panels but for ratio of convective precipitation against total precipitation.

    Figure 4 APEs including atmospheric models with a SAMIL, upper panels and those with a FAMIL, bottom panels at various resolutions. (a) and(e): Distributions of the zonal averaged precipitation. (b) and (f): Kinetic energy spectrum (approximately 200 hPa) on the two-dimensional wavenumber n. Dashed lines in (b) and (f) represent divergence components. Black lines in (b) and (f) are reference lines with a slope of –3. (c) and(g): Probability distributions of daily tropical vertical velocity (850 hPa, 30°S–30°N). (d) and (h): Probability distributions of daily tropical precipitation (30°S–30°N).

    Precipitation frequency, rather than zonal averaged pattern, showed remarkable sensitivity to the horizontal resolution. Precipitation extremes, particularly those of convective precipitation such as the 99th percentile of probability distribution of daily precipitation, increased with increasing horizontal resolution (Figs. 4d and 4h).This result is attributed mainly to an increase in dynamical extremes such as those of vertical velocity. Many studies have shown that daily precipitation has a high linear correlation with daily vertical velocity (Li et al.,2011; Emori and Brown, 2005). As shown in Figs. 4c and 4g, the increase in horizontal resolution caused a broader probability distribution of daily vertical velocity, which indicates stronger extremes of upward and downward motions. Such vertical velocity extremes are generally associated with atmospheric motions at a scale near the grid interval. As the horizontal resolution increases,weaker diffusive smoothing is required for maintaining computational stability and a reasonable kinetic energy spectrum (Table 1) to resolve the small-scale kinetic energy, particularly the convergence component (Figs. 4b and 4f). Such processes are sub-grid and cannot be explicitly resolved in lower horizontal resolution simulations. Therefore, a higher horizontal resolution model could resolve additional convergence energy near the grid interval scale, and thus vertical velocity extremes, resulting in stronger convective precipitation generally corresponding to a scale close to the grid interval.

    5 Conclusions and discussions

    A series of control APEs were conducted for F/SAMIL to study the sensitivity of precipitation on dynamical core,time-step length, and horizontal resolution.

    Sensitivity to the sensible heating of the equatorial maximum SST was stronger in FAMIL than that in SAMIL. The stronger surface sensible heating and larger low-level water vapor content in FAMIL led to larger CAPE and heavier equatorial rainfalls. The equatorial enhanced convections in FAMIL caused condensation heating to occur at a higher altitude. As a result, FAMIL usually formed strong maximum precipitation with a single peak over the equator, while SAMIL simulated weak double peaks in the tropics.

    Moreover, the zonal averaged precipitation showed remarkable sensitivity to time step. When the time step was increased, the magnitude of the maximum precipitation over the equator decreased, particularly the largescale precipitation fraction, and the single equatorial peak of FAMIL split into double peaks. Further studies showed that a longer time step created more time for the low-level atmosphere to produce and consume the CAPE, which led to stronger convection away from the equator, resulting in double peaks and a large convective fraction in the tropics.

    Further, the probability distribution of precipitation,rather than the zonal mean, showed sensitivity to the horizontal resolution such that the precipitation extremes increased with increasing horizontal resolution. Higher resolution associated with weaker diffusive smoothing enabled more small-scale convergence energy to be resolved. Thus, more vertical motions associated with the extreme event were resolved, which led to more extreme vertical velocity and stronger precipitation extremes, particularly those of convective precipitation.

    Previous studies showed that precipitation in APEs is also sensitive to the convection scheme. Lee et al. (2003)simulated the dependence of interseasonal oscillation on the cumulus parameterization. Moreover, Hess et al.(1993) showed the sensitivity of the intertropical convergence zone to Kuo parameterization and moist convective adjustment. Because the physical package used here was fixed, it is necessary to explore the sensibility on parameterization coupled with the dynamical core. The dependences of precipitation on the advection scheme and vertical resolution are also meaningful issues for further study.

    Acknowledgements.This research is supported by the Chinese Academy of Sciences (XDA11010402 and XDA05110303), the National Basic Research Program of China (973 Program,2012CB417203 and 2013CB955803), and the National Natural Science Foundation of China (91337110 and 41023002).

    Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci., 31, 674–701.

    Bao, Q., P. Lin, T. Zhou, et al., 2013: The flexible global oceanatmosphere-land system model, spectral version 2: FGOALS-s2,Adv. Atmos. Sci., 30, 561–576, doi:10.1007/s00376-012-2113-9.

    Brinkop, S., and E. Roeckner, 1995: Sensitivity of a general circulation model to parameterizations of cloud-turbulence interactions in the atmospheric boundary layer, Tellus A, 47, 197–220.

    Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate, Geophys. Res. Lett., 32, L17706, doi:10.1029/2005GL 023272.

    Gregory, D., R. Kershaw, and P. M. Inness, 1997: Parameterization of momentum transports by convection. II: Tests in singlecolumn and general circulation models, Quart. J. Roy. Meteor.Soc., 123, 1153–1183.

    Hess, P. G., D. S. Battisti, and P. J. Rasch, 1993: Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth, J. Atmos. Sci., 50, 691–713.

    Houze, R. A. Jr., 2012: Orographic effects on precipitating clouds,Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

    Lee, M. I., I. S. Kang, and B. E. Mapes, 2003: Impacts of cumulus convection parameterization on aqua-planet AGCM simulations of tropical intraseasonal variability, J. Meteor. Soc. Japan, 81,963–992.

    Li, F., W. D. Collins, M. F. Wehner, et al., 2011: Impact of horizontal resolution on simulation of precipitation extremes in an aquaplanet version of Community Atmospheric Model (CAM3), Tellus, 63A, 884–892.

    Li, J. D., 2009: Numerical Simulation Research of Radiation Process in Spectral Atmospheric Model of LASG/IAP (SAMIL) (in Chinese), PhD’s thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 118pp.

    Lin, S. J., 2004: A “vertical Lagrangian” finite-volume dynamical core for global models, Mon. Wea. Rev., 132, 2291–2307.

    Neale, R. B., and B. J. Hoskins, 2000: A standard test for AGCMs including their physical parametrizations. I: The proposal, Atmos. Sci. Lett., 1, 101–107.

    Nordeng, T. E., 1994: Extended Versions of the Convection Parametrization Scheme at ECMWF and Their Impact Upon the Mean Climate and Transient Activity of the Model in the Tropics,Research Dept Technical Memorandum No. 206, ECMWF, S.Park (Eds.), Reading, 41pp.

    Pope, V. D., and R. A. Stratton, 2002: The processes governing horizontal resolution sensitivity in a climate model, ClimateDyn., 19, 211–236.

    Putman, W. M., and S. J. Lin, 2007: Finite-volume transport on various cubed-sphere grids, J. Comput. Phys., 227, 55–78.

    Song, X. L., 2005: The Evaluation Analysis of Two Kinds of Mass-Flux Cumulus Parameterization in Climate Simulation (in Chinese), PhD’s thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 158pp.

    Sun, Z. A., and L. Rikus, 1999: Parametrization of effective sizes of cirrus-cloud particles and its verification against observations,Quart. J. Roy. Meteor. Soc., 125, 3037–3055.

    Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Wea. Rev., 117,1779–1800.

    Wang, P. F., and Z. Z. Wang, 2006: A parallelization scheme for atmospheric general circulation model, Chinese J. Atmos. Sci. (in Chinese), 30, 519–525.

    Wang, X. C., Y. M. Liu, G. X. Wu, et al., 2013: The application of flux-form semi-Lagrangian transport scheme in a spectral atmosphere model, Adv. Atmos. Sci., 30, 89–100.

    Wang, Z. Z., J. Y. Mao, and G. X. Wu, 2008: The wavenumberfrequency characteristics of the tropical waves in an aqua-planet GCM, Adv. Atmos. Sci., 25, 541–554.

    Wang, Z. Z., G. X. Wu, T. W. Wu, et al., 2004: Simulation of Asian monsoon seasonal variations with climate model R42L9/LASG,Adv. Atmos. Sci., 21, 879–889.

    Wei, K., and Q. Bao, 2012: Projections of the East Asian Winter Monsoon under the IPCC AR5 scenarios using a coupled model:IAP-FGOALS, Adv. Atmos. Sci., 29, 1200–1214.

    Williamson, D. L., 2008: Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, Version 3, Tellus, 60A, 848–862.

    Williamson, D. L., and J. G. Olson, 2003: Dependence of aquaplanet simulations on time step, Quart. J. Roy. Meteor. Soc., 129,2049–2064.

    Wu, G. X., H. Liu, Y. C. Zhao, et al., 1996: A nine-layer atmospheric general circulation model and its performance, Adv. Atmos. Sci.,13, 1–18.

    Zhou, L. J., Y. M. Liu, Q. Bao, et al., 2012: Computational performance of the high-resolution atmospheric model FAMIL, Atmos. Oceanic Sci. Lett., 5, 355–359.

    精品无人区乱码1区二区| 婷婷色综合大香蕉| 五月玫瑰六月丁香| 国产精品久久视频播放| 免费看日本二区| 国产欧美日韩精品一区二区| 亚洲专区中文字幕在线| 国产精品av视频在线免费观看| 亚洲,欧美精品.| 一个人免费在线观看电影| 免费观看的影片在线观看| 青草久久国产| 美女cb高潮喷水在线观看| 能在线免费观看的黄片| 日本撒尿小便嘘嘘汇集6| 十八禁人妻一区二区| 国产亚洲精品久久久com| 午夜福利视频1000在线观看| 日本一二三区视频观看| 亚洲五月天丁香| 69av精品久久久久久| 观看美女的网站| 18禁在线播放成人免费| 免费高清视频大片| 国产高清视频在线观看网站| 美女高潮喷水抽搐中文字幕| 我要搜黄色片| 精品午夜福利视频在线观看一区| 免费av不卡在线播放| 在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 欧美日韩亚洲国产一区二区在线观看| 欧美+日韩+精品| av在线观看视频网站免费| a级毛片免费高清观看在线播放| 午夜精品久久久久久毛片777| 国产色婷婷99| 人妻夜夜爽99麻豆av| 亚洲精品色激情综合| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 激情在线观看视频在线高清| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩卡通动漫| 精品久久久久久久久久久久久| 欧美日韩瑟瑟在线播放| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 两人在一起打扑克的视频| 波多野结衣巨乳人妻| 人妻夜夜爽99麻豆av| 久久精品影院6| 午夜精品在线福利| 脱女人内裤的视频| 波多野结衣高清无吗| 深夜精品福利| a在线观看视频网站| 日韩欧美在线二视频| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| 我要看日韩黄色一级片| x7x7x7水蜜桃| 好看av亚洲va欧美ⅴa在| 亚洲精品一区av在线观看| 国产一区二区三区在线臀色熟女| 91麻豆av在线| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| 性色avwww在线观看| 亚洲第一电影网av| av天堂中文字幕网| 久久精品影院6| 精品人妻熟女av久视频| 国产精品99久久久久久久久| 午夜福利欧美成人| 国产精品久久视频播放| 欧美潮喷喷水| 亚洲成人久久性| 男女做爰动态图高潮gif福利片| 变态另类丝袜制服| 成人av在线播放网站| 国产精品野战在线观看| 少妇人妻一区二区三区视频| 中亚洲国语对白在线视频| 精品久久久久久久久久久久久| 亚洲中文字幕日韩| 亚洲av电影在线进入| 老司机午夜十八禁免费视频| 黄色一级大片看看| 草草在线视频免费看| 欧美成人一区二区免费高清观看| 中文字幕久久专区| 婷婷精品国产亚洲av在线| 美女xxoo啪啪120秒动态图 | 亚洲av五月六月丁香网| 亚洲片人在线观看| 午夜免费激情av| 蜜桃久久精品国产亚洲av| 国产av一区在线观看免费| 亚洲av.av天堂| 国产三级黄色录像| 成人特级av手机在线观看| av在线蜜桃| 网址你懂的国产日韩在线| 亚洲自拍偷在线| 色综合站精品国产| 久久九九热精品免费| 又爽又黄无遮挡网站| 亚洲中文日韩欧美视频| 久久精品91蜜桃| 国产一区二区三区在线臀色熟女| 午夜福利在线观看吧| 国产精品伦人一区二区| 美女被艹到高潮喷水动态| 久久久久久久久中文| 12—13女人毛片做爰片一| 深夜精品福利| 男插女下体视频免费在线播放| 观看免费一级毛片| 亚洲成人免费电影在线观看| 免费电影在线观看免费观看| 中亚洲国语对白在线视频| 一级av片app| 免费在线观看日本一区| 伦理电影大哥的女人| 亚洲成人久久性| 哪里可以看免费的av片| 久9热在线精品视频| 午夜精品一区二区三区免费看| 不卡一级毛片| 婷婷六月久久综合丁香| 在线观看美女被高潮喷水网站 | 最近在线观看免费完整版| 亚洲男人的天堂狠狠| 成人国产综合亚洲| 成人毛片a级毛片在线播放| 免费看a级黄色片| 免费av毛片视频| a级毛片免费高清观看在线播放| 制服丝袜大香蕉在线| 国产黄色小视频在线观看| 亚洲精品影视一区二区三区av| 一本一本综合久久| 亚洲av不卡在线观看| 国产在线男女| 在线a可以看的网站| 日韩精品青青久久久久久| 亚洲综合色惰| 午夜亚洲福利在线播放| 男插女下体视频免费在线播放| 成熟少妇高潮喷水视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费在线观看影片大全网站| 在线观看一区二区三区| 欧美激情在线99| xxxwww97欧美| 一区二区三区激情视频| 免费观看人在逋| 国产久久久一区二区三区| 国产午夜福利久久久久久| 九九热线精品视视频播放| 老司机福利观看| 全区人妻精品视频| 国产av不卡久久| 俺也久久电影网| 欧美国产日韩亚洲一区| 国产毛片a区久久久久| 国产真实伦视频高清在线观看 | 99国产综合亚洲精品| 美女cb高潮喷水在线观看| 99热这里只有是精品在线观看 | 亚洲av美国av| 欧美黑人巨大hd| 97超级碰碰碰精品色视频在线观看| 99热这里只有是精品50| 白带黄色成豆腐渣| 99久久久亚洲精品蜜臀av| 午夜福利欧美成人| 99国产综合亚洲精品| 麻豆成人午夜福利视频| 国产在视频线在精品| 国语自产精品视频在线第100页| 亚洲精品日韩av片在线观看| 狠狠狠狠99中文字幕| 很黄的视频免费| 日韩欧美国产在线观看| 黄色配什么色好看| 欧美日本亚洲视频在线播放| 亚洲精品色激情综合| 欧美乱妇无乱码| 国产精品永久免费网站| 免费无遮挡裸体视频| 人人妻,人人澡人人爽秒播| 精品乱码久久久久久99久播| 欧美激情在线99| 麻豆av噜噜一区二区三区| 中文字幕久久专区| 在线天堂最新版资源| 国产免费av片在线观看野外av| 51午夜福利影视在线观看| 美女高潮的动态| 国产精品99久久久久久久久| 国产精品久久久久久亚洲av鲁大| 天堂√8在线中文| 日本一二三区视频观看| 亚洲人成网站高清观看| 身体一侧抽搐| 国产欧美日韩精品亚洲av| 国产精品嫩草影院av在线观看 | 精品福利观看| 俄罗斯特黄特色一大片| 日韩大尺度精品在线看网址| 色噜噜av男人的天堂激情| 99精品久久久久人妻精品| 黄色配什么色好看| 极品教师在线免费播放| 精品久久久久久久久久久久久| 亚洲精品在线观看二区| 麻豆成人午夜福利视频| 亚洲人成网站在线播放欧美日韩| 亚洲av第一区精品v没综合| 亚洲在线观看片| 亚洲国产精品sss在线观看| 午夜免费激情av| 熟妇人妻久久中文字幕3abv| 淫秽高清视频在线观看| 亚洲三级黄色毛片| 国产精品一及| 成人亚洲精品av一区二区| 午夜福利高清视频| 亚洲成av人片免费观看| av天堂中文字幕网| 深爱激情五月婷婷| av专区在线播放| 国产伦精品一区二区三区视频9| 国产精品国产高清国产av| 精品乱码久久久久久99久播| 精品久久久久久成人av| 久久国产乱子伦精品免费另类| 嫁个100分男人电影在线观看| 国产伦在线观看视频一区| 我的女老师完整版在线观看| 亚洲av电影不卡..在线观看| 亚洲自拍偷在线| 麻豆国产av国片精品| 日韩精品中文字幕看吧| 欧美性感艳星| 精品一区二区三区av网在线观看| 国产精品久久久久久精品电影| 非洲黑人性xxxx精品又粗又长| 熟女电影av网| 日本免费a在线| 午夜精品一区二区三区免费看| 一a级毛片在线观看| 无人区码免费观看不卡| 国产精品久久久久久久电影| 国产精品久久视频播放| 国内精品一区二区在线观看| 久久精品综合一区二区三区| 日韩大尺度精品在线看网址| 九九久久精品国产亚洲av麻豆| 亚洲人成伊人成综合网2020| 日韩欧美 国产精品| 69av精品久久久久久| 国产精品人妻久久久久久| 色吧在线观看| 午夜福利成人在线免费观看| 午夜福利18| 精品一区二区三区视频在线| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 搞女人的毛片| 欧美一区二区亚洲| 天堂av国产一区二区熟女人妻| 免费电影在线观看免费观看| 99久久成人亚洲精品观看| 村上凉子中文字幕在线| 午夜激情欧美在线| 国内少妇人妻偷人精品xxx网站| 日韩高清综合在线| 黄色日韩在线| 亚洲国产精品成人综合色| 在线国产一区二区在线| 丰满乱子伦码专区| av专区在线播放| 亚洲av美国av| 国产高清三级在线| 亚洲,欧美精品.| 国产成人啪精品午夜网站| 国产男靠女视频免费网站| 好男人在线观看高清免费视频| av福利片在线观看| 色精品久久人妻99蜜桃| 757午夜福利合集在线观看| 亚洲最大成人av| 国产探花在线观看一区二区| 国产高清视频在线观看网站| 99热这里只有是精品50| 亚洲精品色激情综合| 直男gayav资源| 欧美在线黄色| 亚洲精品456在线播放app | 国产精品爽爽va在线观看网站| 亚洲在线观看片| 欧美午夜高清在线| 国产av一区在线观看免费| 久久精品国产自在天天线| 99久久精品国产亚洲精品| 日本免费一区二区三区高清不卡| 国产亚洲精品久久久com| 欧美最新免费一区二区三区 | 9191精品国产免费久久| 舔av片在线| av专区在线播放| 亚洲18禁久久av| 精品99又大又爽又粗少妇毛片 | 亚洲欧美精品综合久久99| 两性午夜刺激爽爽歪歪视频在线观看| 国产欧美日韩精品亚洲av| 极品教师在线视频| 91久久精品电影网| 毛片一级片免费看久久久久 | 国产真实乱freesex| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 极品教师在线视频| 亚洲成人久久性| 久久久久国内视频| 18+在线观看网站| 久久精品国产清高在天天线| 欧美色欧美亚洲另类二区| 国产午夜福利久久久久久| 亚洲av熟女| 免费一级毛片在线播放高清视频| 久久亚洲精品不卡| 51国产日韩欧美| 亚洲色图av天堂| 一二三四社区在线视频社区8| 欧美极品一区二区三区四区| 18禁黄网站禁片免费观看直播| x7x7x7水蜜桃| 亚洲美女黄片视频| 97超级碰碰碰精品色视频在线观看| 亚洲精品亚洲一区二区| aaaaa片日本免费| 国产三级中文精品| 桃色一区二区三区在线观看| 深夜a级毛片| 久久99热6这里只有精品| 久久久久亚洲av毛片大全| 日韩有码中文字幕| 神马国产精品三级电影在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利在线在线| 国产中年淑女户外野战色| ponron亚洲| 简卡轻食公司| 日韩欧美国产一区二区入口| 亚洲成a人片在线一区二区| 国产三级中文精品| 最新在线观看一区二区三区| 亚洲av成人不卡在线观看播放网| 国产人妻一区二区三区在| 每晚都被弄得嗷嗷叫到高潮| 亚洲人与动物交配视频| 人人妻,人人澡人人爽秒播| 99热6这里只有精品| 亚洲专区中文字幕在线| aaaaa片日本免费| av在线观看视频网站免费| 99热这里只有是精品在线观看 | 亚洲不卡免费看| 国产不卡一卡二| 午夜福利成人在线免费观看| 国产免费av片在线观看野外av| 亚洲第一电影网av| 久久久久久久久久黄片| 成人一区二区视频在线观看| 亚洲无线在线观看| 亚洲无线观看免费| 成人午夜高清在线视频| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久末码| 午夜两性在线视频| 99riav亚洲国产免费| 成人特级黄色片久久久久久久| 国产成人影院久久av| 亚洲 欧美 日韩 在线 免费| 成人av在线播放网站| 日本免费一区二区三区高清不卡| 欧美色欧美亚洲另类二区| 久久人人精品亚洲av| 成年免费大片在线观看| 午夜福利欧美成人| 中文字幕人妻熟人妻熟丝袜美| 2021天堂中文幕一二区在线观| 欧美乱妇无乱码| 99精品久久久久人妻精品| 在线观看舔阴道视频| 亚洲18禁久久av| 成熟少妇高潮喷水视频| 在线观看av片永久免费下载| 日韩欧美精品免费久久 | 久久婷婷人人爽人人干人人爱| 亚洲第一电影网av| 亚洲国产欧洲综合997久久,| 亚洲中文日韩欧美视频| 日本免费a在线| 日韩精品中文字幕看吧| www.www免费av| 亚洲第一区二区三区不卡| 99在线视频只有这里精品首页| 日日夜夜操网爽| 成人特级av手机在线观看| 在线观看舔阴道视频| 国产黄色小视频在线观看| 伦理电影大哥的女人| 在线观看午夜福利视频| 国产免费一级a男人的天堂| 能在线免费观看的黄片| 亚洲美女黄片视频| 亚洲不卡免费看| 日韩欧美三级三区| a级一级毛片免费在线观看| 乱人视频在线观看| 亚洲av五月六月丁香网| 国产亚洲av嫩草精品影院| 91久久精品电影网| 亚洲一区高清亚洲精品| 男女做爰动态图高潮gif福利片| 最近最新中文字幕大全电影3| 国产成年人精品一区二区| 窝窝影院91人妻| 亚洲最大成人av| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 亚洲第一区二区三区不卡| 熟女人妻精品中文字幕| 久久国产乱子免费精品| 天堂影院成人在线观看| 成年女人永久免费观看视频| 一个人看视频在线观看www免费| 性色av乱码一区二区三区2| 国语自产精品视频在线第100页| 桃红色精品国产亚洲av| 国产三级中文精品| 色av中文字幕| 久久中文看片网| 啦啦啦观看免费观看视频高清| 亚洲av电影在线进入| 国产免费男女视频| 亚洲精华国产精华精| 亚洲中文字幕一区二区三区有码在线看| 级片在线观看| av在线观看视频网站免费| 人妻久久中文字幕网| 国产私拍福利视频在线观看| 麻豆一二三区av精品| 国产黄色小视频在线观看| av福利片在线观看| 亚洲成人久久爱视频| 亚洲国产精品999在线| 亚洲国产精品久久男人天堂| 国产国拍精品亚洲av在线观看| netflix在线观看网站| 69人妻影院| 国产老妇女一区| 精品人妻熟女av久视频| 中文字幕人成人乱码亚洲影| 亚洲在线观看片| 乱人视频在线观看| 欧美最新免费一区二区三区 | 在线观看66精品国产| 日韩亚洲欧美综合| 无遮挡黄片免费观看| 亚洲精品乱码久久久v下载方式| 亚洲国产欧洲综合997久久,| 国产伦在线观看视频一区| 中亚洲国语对白在线视频| 成人av一区二区三区在线看| 欧美中文日本在线观看视频| 美女黄网站色视频| 中文资源天堂在线| 最后的刺客免费高清国语| 91字幕亚洲| 婷婷丁香在线五月| 十八禁网站免费在线| 少妇的逼水好多| 美女xxoo啪啪120秒动态图 | 日本a在线网址| 亚洲中文日韩欧美视频| 亚洲熟妇熟女久久| 国产淫片久久久久久久久 | 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 九九热线精品视视频播放| 亚洲中文日韩欧美视频| 国产精品三级大全| 亚洲在线自拍视频| 宅男免费午夜| 国产色爽女视频免费观看| 日本精品一区二区三区蜜桃| 亚洲在线自拍视频| 国产精品三级大全| 亚洲午夜理论影院| 国产黄色小视频在线观看| 757午夜福利合集在线观看| 丝袜美腿在线中文| 免费无遮挡裸体视频| 一边摸一边抽搐一进一小说| 亚洲中文字幕日韩| 久久性视频一级片| 波多野结衣巨乳人妻| 在线观看av片永久免费下载| 欧美日韩福利视频一区二区| 男人舔奶头视频| 欧美成人性av电影在线观看| 波野结衣二区三区在线| 高清毛片免费观看视频网站| 少妇的逼水好多| 99热只有精品国产| 国产高清激情床上av| 最近最新中文字幕大全电影3| 免费高清视频大片| 欧美高清成人免费视频www| 国产黄色小视频在线观看| 成人高潮视频无遮挡免费网站| 亚洲内射少妇av| 午夜免费男女啪啪视频观看 | 国产精品人妻久久久久久| 淫秽高清视频在线观看| 特级一级黄色大片| 免费人成视频x8x8入口观看| 国产视频一区二区在线看| 最近在线观看免费完整版| 亚洲 国产 在线| 久久精品国产99精品国产亚洲性色| 欧美bdsm另类| 丰满人妻熟妇乱又伦精品不卡| 久久人人爽人人爽人人片va | 在线观看66精品国产| 一级作爱视频免费观看| 国产爱豆传媒在线观看| 中文字幕精品亚洲无线码一区| 免费看a级黄色片| x7x7x7水蜜桃| 18禁黄网站禁片免费观看直播| 色尼玛亚洲综合影院| 久久中文看片网| 成人一区二区视频在线观看| 噜噜噜噜噜久久久久久91| 一本综合久久免费| 91久久精品国产一区二区成人| h日本视频在线播放| 久久久久国内视频| 日本黄大片高清| 国产精品美女特级片免费视频播放器| 午夜a级毛片| 亚洲中文日韩欧美视频| 久久久久国内视频| 色在线成人网| 看免费av毛片| 日本 欧美在线| 亚洲精品在线观看二区| 国产高清三级在线| 两个人视频免费观看高清| 国内少妇人妻偷人精品xxx网站| 日本三级黄在线观看| 综合色av麻豆| 亚洲成人免费电影在线观看| 久久精品国产99精品国产亚洲性色| 久久精品影院6| 国语自产精品视频在线第100页| 很黄的视频免费| 97超视频在线观看视频| 国内精品一区二区在线观看| 狂野欧美白嫩少妇大欣赏| 国产91精品成人一区二区三区| 国产熟女xx| 真人一进一出gif抽搐免费| 色噜噜av男人的天堂激情| 午夜免费男女啪啪视频观看 | 夜夜爽天天搞| 亚洲专区中文字幕在线| 乱码一卡2卡4卡精品| 男女之事视频高清在线观看| 一进一出抽搐gif免费好疼| 欧美高清性xxxxhd video| 露出奶头的视频| 亚洲国产高清在线一区二区三| 精品日产1卡2卡| 亚洲av电影在线进入| 亚洲精品在线美女| 中文字幕免费在线视频6| 欧美日韩中文字幕国产精品一区二区三区| 国产老妇女一区| 国产v大片淫在线免费观看| 欧美一区二区国产精品久久精品| 欧美黄色淫秽网站| 精品久久国产蜜桃| 熟女电影av网| 一卡2卡三卡四卡精品乱码亚洲| 琪琪午夜伦伦电影理论片6080| 亚洲中文字幕日韩| 亚洲av电影不卡..在线观看| 嫩草影院精品99| av在线蜜桃| 99久久成人亚洲精品观看| 搡老妇女老女人老熟妇| 亚洲专区中文字幕在线| av在线老鸭窝| 一个人观看的视频www高清免费观看| 自拍偷自拍亚洲精品老妇| 免费人成在线观看视频色| 欧美成人一区二区免费高清观看|