• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerosol Direct Radiative Forcing over Shandong Peninsula in East Asia from 2004 to 2011

    2014-03-30 02:26:42XINJinYuanZHANGQingGONGChongShuiWANGYueSiDUWuPengandZHAOYongFang

    XIN Jin-Yuan, ZHANG Qing, GONG Chong-Shui, WANG Yue-Si, DU Wu-Peng, and ZHAO Yong-Fang

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2China Communication Information Center, Beijing 100088, China

    3Beijing Municipal Climate Center, Beijing Meteorological Service, Beijing 100089, China

    4Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    Aerosol Direct Radiative Forcing over Shandong Peninsula in East Asia from 2004 to 2011

    XIN Jin-Yuan1, ZHANG Qing2, GONG Chong-Shui1, WANG Yue-Si1, DU Wu-Peng3, and ZHAO Yong-Fang4

    1State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2China Communication Information Center, Beijing 100088, China

    3Beijing Municipal Climate Center, Beijing Meteorological Service, Beijing 100089, China

    4Jiaozhou Bay Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

    Recent vigorous industrialization and urbanization in Shandong Peninsula, China, have resulted in the emission of heavy anthropogenic aerosols over the region. The annual means of aerosol optical depth (AOD), ?ngstr?m exponent (α), single-scattering albedo (SSA), aerosol direct radiative forcing (ARF), surface radiative forcing (SRF), and top-of-the atmospheric radiative forcing (TOA) recorded during 2004-2011 were respectively 0.67±0.19, 1.25±0.24, 0.93±0.03, 47±9 W m?2, ?61±9 W m?2, and ?14±8 W m?2. The aerosol optical properties and ARF characteristics showed remarkable seasonal variations due to cycle changes in the aerosol components and dominance type. The atmosphere-surface system was cooled by ARF in all years of the study due to anthropogenic sulfate and nitrate emission and sea salt aerosols. The magnitude of TOA cooling was larger in summer (?15±17 W m?2) and autumn (?12±7 W m?2) than that in spring (?8±4 W m?2) and winter (?9±10 W m?2).

    aerosol optical depth, ?ngstr?m exponent, single scattering albedo, aerosol direct radiative forcing, Shandong Peninsula

    1 Introduction

    Atmospheric aerosols play a major role in influencing climate change and can alter the Earth’s radiation budget by absorbing and scattering solar radiative energy, which further affects atmospheric heating, atmospheric stability, cloud development, and precipitation (Charlson et al., 1992; Jones et al., 1994; Hansen et al., 1997; Ramanathan et al., 2001; Dubovik et al., 2002; Menon, 2004; Buseck, 2009; Zhang et al., 2012). China has played a key role in global economic growth and climate change during the most recent several decades. Large-scale farming and dramatic increases in urbanization and industrial activities have caused increased emissions of soot and organic aerosols to be absorbed into Asian and Pacific atmospheres (Lelieveld et al., 2001; Eck et al., 2005; Streets andAunan, 2005; Seinfeld et al., 2004), which has aggravated the uncertainty of aerosol climate and radiation effects in the region (Penner et al., 2001; Forster et al., 2007; Huebert et al., 2003; Li, 2007; Seinfeld et al., 2004). Xin et al. (2007, 2011), Lee et al. (2007), and Wang et al. (2011) reported significant differences in temporal and spatial distributions of aerosol optical prosperities in China. In addition, Li et al. (2010) determined that aerosols cause substantial warming of the atmosphere at the expense of surface cooling in eastern China, which can significantly alter atmospheric heating profiles.

    Shandong Peninsula is situated to the west of Bohai and the Huanghai seas. The land area of Shandong Province is 157126.31 km2. It’s the second-highest populated province in China with 95.7931 million, as reported in the 2010 Census, and one of the top three economic provinces, as evidenced by a Gross Domestic Product (GDP) of 3941.62 billion RMB (http://www.stats.gov.cn/). With full-speed development in regional farming, urbanization, and industrial activities, Shandong Peninsula has become a major source of anthropogenic aerosols in East Asia (Hao et al., 2007; Liu et al., 2011; Zhang et al., 2013; Wang et al., 2005). However, large variations in regional aerosol emissions have resulted in a lack of relative observations and data for studying the effect of these aerosols on regional climate change in the peninsula. Therefore, it is necessary to investigate the aerosol effects on radiance absorbed and scattered over the region, which will reduce uncertainties in the quantitative assessment of aerosol effects on regional climate change.

    2 Data and methodology

    The Jiaozhou Bay observation station, shown in Fig. 1 (35.90°N, 120.18°E; 6 m above sea level), is situated on the west coast of the Huanghai Sea, which is a good regional background site for the Shandong Province in East Asia. A hand-held sun hazemeter (from the U.S. Forest Service) and a sun photometer (Microtops II of Solar Light CO.) were used to obtain measurements between 10 a.m. and 2 p.m. local time, which coincided with satellite overpass times. Measurements were obtained during each observation period when a direct line of sight to the sun was available. To ensure that no clouds were within thefield of sun at a viewing angle of 30° during the observation, observers recorded, and evaluated real-time cloud conditions on cloud-free days or those in which cloud coverage was less than a half, which can efficiently reduce the cloud pollution. Langley plot calibrations are performed at the Lhasa site in August or September of each year. The calibrated values of the sun photometers are then transferred to the other sun photometers (Xin et al., 2007, 2011). The ?ngstr?m exponent (α) was derived from the aerosol optical depths (AODs) at three wavelengths including those measured by the sun hazemeter at 405 nm, 500 nm, and 650 nm and the Microtops II sun photometer at 440 nm, 500 nm, and 675 nm; the α values ranged from 0.0 to 2.0 (Dubovik et al., 2002). The Moderate-resolution Imaging Spectroradiometer (MODIS) Level 2 Collection 5 aerosol products were used in this paper to determine geometry data (MOD03) and the spectral surface reflectance product (MOD09); the MOD04 aerosol product had a 10 km × 10 km resolution (Kaufman et al., 2002). The data used in this paper were all recorded from 2004 to 2011.

    The single-scattering albedo (SSA) was retrieved by using the Mie theory (Dubovik et al., 2002) and Santa Barbara DISORT (Discrete Ordinate Radiative Transfer) Atmospheric Radiative Transfer (SBDART) (Ricchiazzi et al., 1998). The Junge power law size distribution was determined for various α values because it is governed by aerosol particle size and surface reflectance readings from the MODIS MOD04 aerosol product (Lee et al., 2007). The aerosol direct radiative forcing (ARF) at the-top-ofthe atmosphere radiative forcing (TOA) or at the surface (SRF) is defined as the difference in the net solar fluxes (down minus up; solar plus long wave; in W m?2) including and excluding aerosols. The difference in the two values yields the ARF for the entire atmosphere. In the present study, the net flux was computed in a wavelength range of 0.25-4.0 μm to cover solar short and long wavebands with and without aerosols at the TOA and SRF separately by using the SBDART model (Ricchiazzi et al., 1998; Levy et al., 2007; Li et al., 2010). The AOD and α data were averaged within 2 h of the MODIS overpass times. The daily MODIS data were averaged within a 25-km radius of the station, including at least five pixels. Cloud-free pixels were selected by using the multispectral MODIS cloud mask (Lee et al., 2007; Kovacs, 2006).

    The aerosol effect on the radiative fl uxes, de fi ned as the radiative forcing, are given by

    where ΔFdenotes the net downward fl ux (downward radiationF↓minus upward radiationF↑); the superscripts TOA and SRF denote the top of the atmosphere (100 km) and the surface (1 km), respectively; and subscripts aero and non-aero denote dusty and clean skies, respectively (Chou et al., 2002).

    3 Results and discussion

    Figure 2 shows monthly and seasonal variations in AOD500nm, α, and SSA500nmover Shandong Peninsula in East Asia from 2004 to 2011; AOD and SSA are at the 500 nm wavelength in this paper unless otherwise stated. These three important parameters of aerosol optical properties govern the extinction, aerosol type, relative scattering, and absorption. Their variations showed remarkable seasonal cycles in the region. Due to its rapid development, Shandong Peninsula was covered by a substantial amount anthropogenic aerosol. As shown in Table 1, the annual mean of AOD reached 0.67±0.19 with a seasonal range of 0.51 to 0.87, which was approximately three times the regional background AOD of North China (Xin et al., 2007). The maximum AOD (0.87±0.21) occurred in summer at which time high concentrations of aerosol and relatively high atmospheric humidity persisted, and the extinction properties were magnified with aerosol hygroscopic growth. This aerosol consisted of mainly hygroscopic sulfates and nitrates produced by the vigorous anthropogenic emission (Wang et al., 2005). The dominant aerosol types were larger in spring and summer than thosein autumn and winter due to dust particle transmission and soil aerosol emission in spring, aerosol hygroscopic growth in summer, and increased smoke and soot aerosols from fossil fuel and biomass burning in autumn and winter in northern China (Xin et al., 2007, 2012; Wang et al., 2011).

    Figure 1 The location of Jiaozhou Bay Station situated on the west coast of Huanghai Sea.

    Figure 2 Monthly and seasonal variations in AOD500nm, ?ngstr?m exponent (α), and SSA over Shandong Peninsula in East Asia from 2004 to 2011.

    Table 1 Seasonal and annual averaged AOD500nm, ?ngstr?m exponent (α), SSA, ARF, SRF, and TOA over Shandong Peninsula in East Asia from 2004 to 2011.

    SSA is the rate of scattering to the sum of scattering and absorption. As shown in Table 1, the annual mean of SSA was 0.93±0.03 with a small seasonal range of 0.90 to 0.96, which implies that aerosols contained a mix of abundant anthropogenic aerosol (Li et al., 2010; Bush and Valero, 2002; Ramanathan et al., 2001). The SSA of black carbon (BC) at visible wavelengths is approximately 0.2, whereas that for sulfate aerosol is approximately 1.0 (Ramanathan et al., 2001; Penner et al., 2001; Haywood and Boucher, 2000). The SSAs of most Northern Hemisphere aerosols are in the 0.85-0.95 range (Ramanathan et al., 2001; Hansen et al., 1997; Jacobson, 2001; Lee et al., 2007). The seasonal variation of SSA was remarkable and showed negative correlation with the monthly mean of the α. The trends of AOD and SSA were indistinctive, whereas the α showed a minor increase in recent years, which implies an increase in small aerosols over the region. Ramanathan et al. (2001) reported that aerosols have a net negative TOA forcing when the SSA exceeds 0.95 and a net positive TOA forcing for SSAs < 0.85. For the intermediate values, the net effect can change from negative to large positive forcing depending on cloud fraction, surface albedo, and distribution of vertical aerosols and clouds. However, regional TOA direct forcing is highly uncertain, particularly in regions containing atmospheric pollution.

    Figure 3 shows monthly and seasonal variation in ARF, SRF, and TOA over Shandong Peninsula. The annual means of these parameters were 47±9 W m-2, ?61±9 W m-2, and -14±8 W m-2, respectively, with large standard deviation in the wavelength range of 0.25-4.0 μm. Seasonal variations in AOD, ARF, SRF, and TOA exhibited seasonal cycles. As shown in Table 1, ARF was positive and higher in spring (52±7 W m-2) and winter (52±10 W m-2) than that in summer (43±10 W m-2) and autumn (43±5 W m-2), whereas SRF was negative and lower in spring, summer, and winter (approximately ?62 W m-2) than that in autumn (?59 W m-2). TOA was lower in summer (-19±10 W m-2) and autumn (-16±7 W m-2) than that in spring (-10±5 W m-2) and winter (-11±7 W m-2). The global mean clear-sky ARF, both natural and anthropogenic, at the TOA and SRF were -6.0 ±1 W m-2and -11±2 W m-2, respectively. The magnitude of the annual mean TOA (-14±8 W m-2) was higher than the global mean, which implies that abundant anthropogenic sulfate and nitrate aerosols in addition to and sea salt aerosols further cooled the atmospheric-surface system in the region of pollution. However, the huge amount of solar radiation trapped inside the atmosphere by the ARF was a significant source of heating for the atmosphere, particularly within the lower atmosphere, which can substantially alter atmospheric stability and influence the dynamic system (Li et al., 2010). The trends in ARF and TOA showed weak declines in recent years, and that in SRF exhibited aweak increase.

    Figure 3 Monthly and seasonal variation in ARF, SRF, and TOA at a wavelength range of 0.25-4.0 μm occurring over Shandong Peninsula in East Asia from 2004 to 2011.

    Figure 4 shows the relationships between the daily averaged AOD, α, SSA, aerosol ARF, SRF, TOA, and the heating rates of the latter three parameters and relevant conditional factors. The heating rate of ARF is the radiation per unit AOD, which include the rates of ARF to AOD (ARF/AOD), SRF to AOD (SRF/AOD), and TOA to AOD (TOA/AOD). The scatterplot of α as a function of AOD (Fig. 4a), which was classified according to SSA, showed that SSA had no remarkable effect on the relationship between α and AOD; α declined with AOD, and SSA declined with α (Fig. 4b). An abundance of anthropogenic sulfate and nitrate aerosols grow into large aerosols through hygroscopic absorption and showed strong scattering with large AOD, large SSA, and small α values. The small smoke and soot carbon aerosols (large α) showed strong absorption with small SSA and AOD values. The large α value implies that small absorptive smoke and soot aerosols increased as dominant aerosol types. The components and types of aerosol were complicated and variable due to the effects of the strong anthropogenic emissions in the Shandong Peninsula. Consequentially, ARF was also highly complicated and differed with respect to the background region. The strong anthropogenic emission enhanced the uncertainty of the aerosol effect on the regional climate.

    Except of the relationship of ARF and AOD (Fig. 4c), the relationships of SRF and AOD (Fig. 4e), TOA and AOD (Fig. 4g) were significant linear correlations. With AOD increasing, the magnitudes of ARF, SRF, and TOA were increscent as a function of AOD. The ARF warmed the atmosphere and cooled the surface. However, positive and negative differences appeared in the atmospheresurface system that was dependent on the aerosol components. The correlations of the heating rates of ARF and SSA (Fig. 4d), SRF and SSA (Fig. 4f), and TOA and SSA (Fig. 4h), which were classified according to the dominant aerosol type, showed very high correlation coefficients (R2) of 0.58-0.97. The aerosol components and type, expressed as SSA and α, respectively, controlled the heating rate of the ARF on the atmosphere-surface system. The small smoke and soot aerosols had the highest heating rates of ARF and SRF. Their efficiency in warming the atmosphere was higher than that of cooling the surface; thus, the presence of these aerosols resulted in the TOA positive heating rate and warming of the atmosphere-surface system. Anthropogenic sulfate, nitrate, organic carbon, dust, and soil aerosols are completely mixed in the atmosphere under actual conditions and exhibit large differences in optical properties and radiative forcing characteristics. When the SSA increased, the magnitudes of the heating rates of ARF and SRF declined, and the aerosol warming of the atmosphere-surface system shifted to cooling. As previously mentioned, TOA had remarkable seasonal variation with a net negative value in all four seasons. This negative TOA forcing was stronger in summer and autumn than that in spring and winter. In addition, higher amounts of scattered sulfate and nitrate aerosols were noted in summer and autumn over Shandong Peninsula due to the severe regional atmospheric pollution emitted through the region’s flourishing industrialization. However, under both conditions of atmosphere-surface warming and cooling, a substantial amount of solar radiation trapped inside the atmosphere by the ARF is a significant source of heating, particularly within the lower atmosphere (Li et al., 2010). Such trapping can increase atmospheric stability and influence regional climate and atmospheric environments.

    4 Conclusion

    Aerosol optical properties and ARF characteristics showed remarkable seasonal cycles over the Shandong Peninsula in East Asia in recent years. High concentrations of aerosols and strong ARF due to heavy anthropogenic emission were noted. ARF warmed the atmosphere and cooled the surface, which may have increased the atmospheric stability. However, negative forcing values were noted in the atmosphere-surface system, which is dependent on the aerosol components and dominance type such as the abundant anthropogenic sulfate and nitrate aerosols in addition to sea salt aerosol observed in the region. The magnitudes of ARF, SRF, and TOA increased with AOD. The heating rates of ARF and SRF decreased with SSA, whereas the aerosol warming of the atmosphere-surface system shifted to cooling when the SSA was approximately 0.85. Essentially, aerosols cooled the regional atmosphere-surface system by approximately?14 W m?2per year. Such cooling may offset the greenhouse effect or interfere with regional climate changes.

    Acknowledgements. This work was partially supported by the National Natural Science Foundation of China (41222033, 41375036, and 41105103) and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA05100102 and XDB05020103).

    Buseck, P., 2009: Nature and climate effects of individual tropospheric aerosol particles,Annu. Rev. Earth Planet. Sci., 37, 17-43, doi:10.1146/annurev.earth.031208.100032.

    Bush, B. C., and F. P. J. Valero, 2002: Spectral aerosol radiative forcing at the surface during the Indian Ocean Experiment (INDOEX),J. Geophys. Res., 107(D19), doi:10.1029/2000JD 000020.

    Charlson, R. J., S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols,Science, 255(5043), 423-430.

    Chou, M. D., P. K. Chan, and M. H. Wang, 2002: Aerosol radiativeforcing derived from SeaWiFS-retrieved aerosol optical properties,J. Atmos. Sci., 59(3), 748-757.

    Dubovik, O., B. N. Holben, T. F. Eck, et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations,J. Atmos. Sci., 59(3), 590-608.

    Eck, T. F., B. N. Holben, O. Dubovik, et al., 2005: Columnar aerosol optical properties at AERONET sites in central eastern Asia and aerosol transport to the tropical mid-Pacific,J. Geophys. Res., 110, D06202, doi:10.1029/2004JD005274.

    Forster, P., V. Ramaswamy, P. Artaxo, et al., 2007: Changes in atmospheric constituents and in radiative forcing, in:Climate Change 2007: The Physical Science Basis, R. Alley et al. (Eds.), Cambridge University Press, New York, 131-216.

    Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response,J. Geophys. Res., 102(D6), 6831-6864.

    Hao, Y., Z. Guo, Z. Yang, et al., 2007: Seasonal variations and sources of various elements in the atmospheric aerosols in Qingdao, China,Atmos. Res., 85, 27-37.

    Haywood, J., and O. Boucher, 2000: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review,Rev. Geophys., 38(4), 513-543.

    Huebert, B. J., T. Bates, P. B. Russell, et al., 2003: An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts,J. Geophys. Res., 108(D23), 8633, doi:10.1029/2003JD003550.

    Jacobson, M. Z., 2001: Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols,J. Geophys. Res., 106(D2), 1551-1568.

    Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols,Nature, 370, 450-453.

    Kaufman, Y. J., J. V. Martins, L. A. Remer, et al., 2002: Satellite retrieval of aerosol absorption over the oceans using sunglint,Geophys. Res. Lett., 29(19), 1928, doi:10.1029/2002GL015403.

    Kovacs, T., 2006: Comparing MODIS and AERONET aerosol optical depth at varying separation distances to assess ground-based validation strategies for spaceborne lidar,J. Geophys. Res., 111, D24203, doi:10.1029/2006JD007349.

    Lee, K. H., Z. Li, M. S. Wong, et al., 2007: Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements,J. Geophys. Res., 112, D22S15, doi: 10.1029/2007JD009077.

    Lelieveld, J., P. J. Crutzen, V. Ramanathan, et al., 2001: The Indian Ocean experiment: Widespread air pollution from south and south-east Asia,Science, 291(5506), 1031-1036.

    Levy, R. C., L. A. Remer, and O. Dubovik, 2007: Global aerosol optical properties and application to moderate resolution imaging spectroradiometer aerosol retrieval over land,J. Geophys. Res., 112, D13210, doi:10.1029/2006JD007815.

    Li, Z., H. Chen, M. Cribb, et al., 2007: Preface to special section on East Asian studies of tropospheric aerosols: An international regional experiment (EAST-AIRE),J. Geophys. Res., 112, D22S00, doi:10.1029/2007JD008853.

    Li, Z., K.-H. Lee, Y. Wang, et al., 2010: First observation-based estimates of cloud-free aerosol radiative forcing across China,J. Geophys. Res., 115, D00K18, doi:10.1029/2009JD013306.

    Liu, Q., W.-D. Ding, and Y.-F. Fu, 2011: The seasonal variations of aerosols over East Asia as jointly inferred from MODIS and OMI,Atmos. Oceanic Sci. Lett., 4(6), 330-337.

    Menon, S., 2004: Current uncertainties in assessing aerosol effects on climate,Annu. Rev. Environ. Res., 29, 1-30.

    Penner, J. E., Y. Ding, D. J. Griggs, et al., 2001: Aerosols, their direct and indirect effects, in:Climate Change 2001: The Scientific Basis, J. T. Houghton et al. (Eds.), Cambridge University Press, New York, 291-335.

    Ramanathan, V., P. J. Crutzen, J. T. Kiehl, et al., 2001: Aerosol, climate and the hydrological cycle,Science, 294, 2119-2124.

    Ricchiazzi, P., S. Yang, C. Gautier, et al., 1998: SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere,Bull. Amer. Meteor. Soc., 79(10), 2101-2114.

    Seinfeld, J. H., G. R. Carmichael, R. Arimoto, et al., 2004: ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution,Bull. Amer. Meteor. Soc., 85(3), 367-380.

    Streets, D. G., and K. Aunan, 2005: The importance of China’s household sector for black carbon emissions,Geophys. Res. Lett., 32, L12708, doi:10.1029/2005GL022960.

    Wang, X., D. L. Mauzerall, Y. Hu, et al., 2005: A high-resolution emission inventory for eastern China in 2000 and three scenarios for 2020,Atmos. Environ., 39, 5917-5933.

    Wang, Y., J. Xin, Z. Li, et al., 2011: Seasonal variations in aerosol optical properties over China,J. Geophys. Res., 116, D18209, doi:10.1029/2010JD015376.

    Xin, J.-Y., L.-L. Wang, Y.-S. Wang, et al., 2011: Trends in aerosol optical properties over the Bohai Rim in Northeast China from 2004 to 2010,Atmos. Environ., 45, 6317-6325.

    Xin, J.-Y., Y.-S. Wang, Z. Li, et al., 2007: Aerosol optical depth (AOD) and Angstrom exponent of aerosols observed by the Chinese sun hazemeter network from August 2004 to September 2005,J. Geophys. Res., 112, D05203, doi:10.1029/2006JD 007075.

    Zhang, N., Y. Qin, and S.-D. Xie, 2013: Spatial distribution of black carbon emissions in China,Chinese Sci. Bull., 58(31), 3830-3839, doi:10.1007/s11434-013-5820-4.

    Zhang, R.-J., K.-F. Ho, and Z.-X. Shen, 2012: The role of aerosol in climate change, the environment, and human health,Atmos. Oceanic Sci. Lett., 5(2), 156-161.

    :Xin, J.-Y., Q. Zhang, C.-S. Gong, et al., 2014: Aerosol direct radiative forcing over Shandong Peninsula in East Asia from 2004 to 2011,Atmos. Oceanic Sci. Lett., 7, 74-79,

    10.3878/j.issn.1674-2834.13.0072.

    Received 30 July 2013; revised 16 September 2013; accepted 22 September 2013; published 16 January 2014

    WANG Yue-Si, wys@mail.iap.ac.cn

    亚洲婷婷狠狠爱综合网| 亚洲第一区二区三区不卡| 免费观看a级毛片全部| 国产日韩欧美视频二区| 女的被弄到高潮叫床怎么办| av又黄又爽大尺度在线免费看| 人妻制服诱惑在线中文字幕| 中文字幕人妻熟人妻熟丝袜美| 国产精品一区二区在线不卡| 欧美区成人在线视频| 天堂8中文在线网| av在线观看视频网站免费| 午夜免费观看性视频| 麻豆成人午夜福利视频| 久久99热这里只频精品6学生| 又粗又硬又长又爽又黄的视频| 伊人久久精品亚洲午夜| 性色avwww在线观看| 国产精品三级大全| 91aial.com中文字幕在线观看| 久久人人爽人人片av| 国产男女内射视频| 亚洲精品aⅴ在线观看| a 毛片基地| 久久国产精品大桥未久av | 日韩av免费高清视频| 国产又色又爽无遮挡免| 插阴视频在线观看视频| 成年美女黄网站色视频大全免费 | 一区二区三区免费毛片| 久久久久久久久久久久大奶| 成年女人在线观看亚洲视频| 日韩亚洲欧美综合| 一级毛片久久久久久久久女| 人人妻人人澡人人看| 日韩av不卡免费在线播放| 人体艺术视频欧美日本| 成人午夜精彩视频在线观看| 少妇猛男粗大的猛烈进出视频| 啦啦啦视频在线资源免费观看| 大码成人一级视频| 2022亚洲国产成人精品| 熟女av电影| 欧美精品亚洲一区二区| 国产精品一区二区在线不卡| 精品人妻熟女毛片av久久网站| 老司机亚洲免费影院| 色吧在线观看| 热99国产精品久久久久久7| 亚洲欧美精品自产自拍| 免费黄网站久久成人精品| 精品少妇久久久久久888优播| 在线观看免费日韩欧美大片 | 天天躁夜夜躁狠狠久久av| 亚洲成色77777| 国产色婷婷99| 91久久精品国产一区二区成人| 亚洲综合色惰| 这个男人来自地球电影免费观看 | 国产男女内射视频| a级毛片在线看网站| 国产探花极品一区二区| 国产精品蜜桃在线观看| 国产黄片视频在线免费观看| 街头女战士在线观看网站| 国产精品一区二区在线观看99| 丝瓜视频免费看黄片| av卡一久久| 91成人精品电影| 国产淫片久久久久久久久| 一级片'在线观看视频| 日产精品乱码卡一卡2卡三| 国产成人精品久久久久久| 欧美激情国产日韩精品一区| 精品99又大又爽又粗少妇毛片| 一级二级三级毛片免费看| 草草在线视频免费看| 成人毛片a级毛片在线播放| a级片在线免费高清观看视频| 国产老妇伦熟女老妇高清| 男男h啪啪无遮挡| 丰满人妻一区二区三区视频av| 亚洲欧美成人精品一区二区| 亚洲国产成人一精品久久久| 国产精品99久久99久久久不卡 | 亚洲第一av免费看| 多毛熟女@视频| 国产精品偷伦视频观看了| 国产一区二区三区综合在线观看 | 久久久久国产精品人妻一区二区| 国国产精品蜜臀av免费| 国产成人精品无人区| 成年人免费黄色播放视频 | 乱人伦中国视频| 久久久久久久久久人人人人人人| 精品酒店卫生间| 国产av精品麻豆| 亚洲欧美一区二区三区黑人 | 国产乱人偷精品视频| 亚洲国产欧美日韩在线播放 | 伊人亚洲综合成人网| 蜜臀久久99精品久久宅男| 91aial.com中文字幕在线观看| 又大又黄又爽视频免费| 亚洲av男天堂| 少妇人妻 视频| 日韩大片免费观看网站| 亚洲精品乱码久久久久久按摩| 久热这里只有精品99| 午夜免费观看性视频| 日韩电影二区| 亚洲欧美清纯卡通| 十分钟在线观看高清视频www | 久久精品国产a三级三级三级| 韩国高清视频一区二区三区| 性色av一级| 97精品久久久久久久久久精品| 国产 精品1| 欧美xxxx性猛交bbbb| 男人爽女人下面视频在线观看| av不卡在线播放| 大香蕉97超碰在线| 99久久精品国产国产毛片| 国产在视频线精品| 婷婷色综合www| 国产在视频线精品| 一级毛片我不卡| 精品国产国语对白av| 国产日韩一区二区三区精品不卡 | 一本久久精品| 2021少妇久久久久久久久久久| 国内精品宾馆在线| 一本久久精品| 欧美日韩av久久| 人妻少妇偷人精品九色| 国产乱来视频区| 99热全是精品| 国产精品一二三区在线看| 亚洲av电影在线观看一区二区三区| 狂野欧美激情性xxxx在线观看| √禁漫天堂资源中文www| 大码成人一级视频| 亚洲内射少妇av| 欧美少妇被猛烈插入视频| 午夜久久久在线观看| 日韩一区二区视频免费看| 国产无遮挡羞羞视频在线观看| 秋霞在线观看毛片| 中文字幕精品免费在线观看视频 | 三级经典国产精品| 一级爰片在线观看| 国产日韩欧美在线精品| av专区在线播放| 久久久欧美国产精品| 高清毛片免费看| 麻豆乱淫一区二区| 免费看av在线观看网站| 熟女人妻精品中文字幕| 99热全是精品| 韩国高清视频一区二区三区| 水蜜桃什么品种好| 性色av一级| 九九爱精品视频在线观看| 熟妇人妻不卡中文字幕| 97在线人人人人妻| 日本黄色片子视频| 亚洲国产欧美日韩在线播放 | h日本视频在线播放| 在线观看三级黄色| 日产精品乱码卡一卡2卡三| 亚洲av二区三区四区| 人体艺术视频欧美日本| 中文字幕人妻丝袜制服| 欧美精品人与动牲交sv欧美| 日韩熟女老妇一区二区性免费视频| 国产精品不卡视频一区二区| 成人综合一区亚洲| 在线观看人妻少妇| 人妻 亚洲 视频| 婷婷色综合www| 一区二区三区免费毛片| 国产成人免费无遮挡视频| 一区二区三区四区激情视频| 一区二区三区四区激情视频| 国产一区亚洲一区在线观看| 国产黄色免费在线视频| 亚洲国产精品999| 欧美成人午夜免费资源| 晚上一个人看的免费电影| 欧美3d第一页| 国产中年淑女户外野战色| 性色av一级| 极品教师在线视频| 老司机亚洲免费影院| 精品一区二区三区视频在线| 国产成人免费无遮挡视频| 69精品国产乱码久久久| 亚洲精品日韩在线中文字幕| 亚洲精品久久久久久婷婷小说| 如日韩欧美国产精品一区二区三区 | 欧美日韩视频高清一区二区三区二| 多毛熟女@视频| 国产精品三级大全| 国产精品人妻久久久影院| 国产熟女午夜一区二区三区 | 美女中出高潮动态图| 大又大粗又爽又黄少妇毛片口| kizo精华| 亚洲,欧美,日韩| 性高湖久久久久久久久免费观看| 久久久久久久久久久免费av| 九九在线视频观看精品| 国产免费福利视频在线观看| 黑丝袜美女国产一区| 日韩一本色道免费dvd| 欧美日韩在线观看h| 少妇人妻 视频| 国产免费福利视频在线观看| 日韩欧美 国产精品| 国产精品福利在线免费观看| 国内少妇人妻偷人精品xxx网站| 五月伊人婷婷丁香| 日本av免费视频播放| 丰满迷人的少妇在线观看| 亚洲国产精品成人久久小说| 精品亚洲成a人片在线观看| 少妇高潮的动态图| 日韩伦理黄色片| 午夜福利视频精品| 99久久人妻综合| 精品国产露脸久久av麻豆| 我的女老师完整版在线观看| 男女国产视频网站| 美女cb高潮喷水在线观看| 一本久久精品| 性色av一级| 又爽又黄a免费视频| 久久久精品免费免费高清| 久久久国产精品麻豆| 亚洲精品亚洲一区二区| 亚洲欧洲国产日韩| 日韩中字成人| 亚洲自偷自拍三级| av一本久久久久| 99久久综合免费| 三级国产精品片| 午夜影院在线不卡| 尾随美女入室| 欧美日韩综合久久久久久| av在线观看视频网站免费| 爱豆传媒免费全集在线观看| 国产高清有码在线观看视频| 亚洲国产最新在线播放| 熟女人妻精品中文字幕| 高清毛片免费看| 在线观看一区二区三区激情| 18+在线观看网站| 国产精品久久久久久久电影| 精品人妻偷拍中文字幕| 高清黄色对白视频在线免费看 | 精品久久久久久电影网| 亚洲综合色惰| 精品少妇黑人巨大在线播放| 免费人成在线观看视频色| 三级经典国产精品| 一级毛片黄色毛片免费观看视频| 国产精品国产三级专区第一集| 日韩不卡一区二区三区视频在线| 午夜久久久在线观看| 久久97久久精品| 老司机影院成人| 亚洲国产成人一精品久久久| 国产色婷婷99| 18+在线观看网站| 全区人妻精品视频| 免费人妻精品一区二区三区视频| 少妇人妻久久综合中文| 有码 亚洲区| 嫩草影院新地址| 国产精品熟女久久久久浪| 国产高清有码在线观看视频| 国产精品女同一区二区软件| 亚洲欧美日韩卡通动漫| 色婷婷久久久亚洲欧美| 国产精品久久久久成人av| 国产视频内射| 日韩一区二区视频免费看| 夫妻性生交免费视频一级片| 日本与韩国留学比较| 国产极品天堂在线| 高清黄色对白视频在线免费看 | 天堂中文最新版在线下载| 高清黄色对白视频在线免费看 | 国产高清有码在线观看视频| 日韩欧美精品免费久久| 在现免费观看毛片| 中文字幕制服av| 日韩在线高清观看一区二区三区| 高清午夜精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 女人精品久久久久毛片| 黄色怎么调成土黄色| 日韩三级伦理在线观看| av一本久久久久| 2021少妇久久久久久久久久久| 欧美成人午夜免费资源| 蜜桃在线观看..| 欧美区成人在线视频| 欧美日韩精品成人综合77777| a级毛片免费高清观看在线播放| 欧美 亚洲 国产 日韩一| 成年av动漫网址| 久久精品国产鲁丝片午夜精品| 成人午夜精彩视频在线观看| 最近中文字幕2019免费版| av免费观看日本| 久久久久人妻精品一区果冻| 王馨瑶露胸无遮挡在线观看| 午夜激情福利司机影院| 国产成人精品一,二区| 人人妻人人爽人人添夜夜欢视频 | 大香蕉97超碰在线| 午夜精品国产一区二区电影| 欧美精品高潮呻吟av久久| 欧美最新免费一区二区三区| 国产黄频视频在线观看| 国产成人a∨麻豆精品| 日本91视频免费播放| 久久99精品国语久久久| 欧美日韩视频高清一区二区三区二| 久久精品国产a三级三级三级| 亚洲国产精品一区二区三区在线| 中国国产av一级| 国产91av在线免费观看| 国产av精品麻豆| 精品久久久久久久久av| 免费看av在线观看网站| 女人久久www免费人成看片| 各种免费的搞黄视频| 国产精品国产三级国产专区5o| 久久精品国产鲁丝片午夜精品| 久久久久久久久久成人| 久久热精品热| 美女国产视频在线观看| 日本爱情动作片www.在线观看| 久久精品国产亚洲网站| 国产又色又爽无遮挡免| 久久热精品热| 自拍欧美九色日韩亚洲蝌蚪91 | 卡戴珊不雅视频在线播放| 麻豆精品久久久久久蜜桃| 中文在线观看免费www的网站| 日韩熟女老妇一区二区性免费视频| av在线观看视频网站免费| 国产精品一区二区在线不卡| 男人爽女人下面视频在线观看| 99久久人妻综合| 免费大片黄手机在线观看| 日韩中字成人| 丰满乱子伦码专区| 亚洲国产色片| 日本欧美视频一区| 免费观看av网站的网址| 亚洲一级一片aⅴ在线观看| 美女cb高潮喷水在线观看| 97在线人人人人妻| 国产欧美亚洲国产| 中文欧美无线码| 久久综合国产亚洲精品| 乱系列少妇在线播放| 成年女人在线观看亚洲视频| 在线看a的网站| 97超视频在线观看视频| 韩国av在线不卡| 免费黄网站久久成人精品| 免费观看无遮挡的男女| 麻豆成人av视频| av免费在线看不卡| 男人和女人高潮做爰伦理| 人体艺术视频欧美日本| av专区在线播放| 国产成人freesex在线| 少妇人妻一区二区三区视频| 9色porny在线观看| 丰满饥渴人妻一区二区三| 久久毛片免费看一区二区三区| 熟女电影av网| 亚洲怡红院男人天堂| 毛片一级片免费看久久久久| 夜夜爽夜夜爽视频| 高清黄色对白视频在线免费看 | 午夜福利网站1000一区二区三区| 最新的欧美精品一区二区| 国产日韩一区二区三区精品不卡 | 欧美一级a爱片免费观看看| 最近中文字幕2019免费版| 日韩一本色道免费dvd| 69精品国产乱码久久久| av天堂久久9| 热re99久久精品国产66热6| 久久久久久久久久成人| 深夜a级毛片| 久久97久久精品| av黄色大香蕉| 色网站视频免费| 国产熟女午夜一区二区三区 | 蜜臀久久99精品久久宅男| 多毛熟女@视频| 精品人妻熟女av久视频| 国产免费又黄又爽又色| 色网站视频免费| 亚洲精品色激情综合| 亚洲综合精品二区| av线在线观看网站| 免费av不卡在线播放| 极品人妻少妇av视频| 91在线精品国自产拍蜜月| 免费在线观看成人毛片| 国产一区二区三区综合在线观看 | 亚洲精华国产精华液的使用体验| 日韩人妻高清精品专区| 国产精品欧美亚洲77777| 韩国av在线不卡| 伦精品一区二区三区| 国产真实伦视频高清在线观看| 黄色怎么调成土黄色| 久久久久久久国产电影| 免费看不卡的av| 69精品国产乱码久久久| 91久久精品国产一区二区成人| 亚洲精品乱码久久久v下载方式| 日日摸夜夜添夜夜添av毛片| 欧美三级亚洲精品| 有码 亚洲区| 丝袜在线中文字幕| 免费大片黄手机在线观看| av福利片在线| 黄色毛片三级朝国网站 | 久久精品国产亚洲av天美| 大香蕉久久网| 色婷婷av一区二区三区视频| 国语对白做爰xxxⅹ性视频网站| av黄色大香蕉| 日本黄大片高清| 亚洲欧洲日产国产| 色视频www国产| 岛国毛片在线播放| 日韩中字成人| 男男h啪啪无遮挡| 亚洲国产欧美日韩在线播放 | 97超碰精品成人国产| 2022亚洲国产成人精品| 最近中文字幕高清免费大全6| 亚洲av综合色区一区| 亚洲国产日韩一区二区| 国产伦精品一区二区三区视频9| 久久国内精品自在自线图片| 久久精品国产亚洲av天美| 日韩欧美一区视频在线观看 | 亚洲电影在线观看av| 亚洲精品色激情综合| 曰老女人黄片| 国产午夜精品一二区理论片| 日本av免费视频播放| 国产精品欧美亚洲77777| 亚洲精品中文字幕在线视频 | 精品久久久久久久久亚洲| 久久精品夜色国产| 国产日韩一区二区三区精品不卡 | 菩萨蛮人人尽说江南好唐韦庄| 欧美3d第一页| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 国产有黄有色有爽视频| 国产精品久久久久久av不卡| 日韩在线高清观看一区二区三区| 一级片'在线观看视频| 观看免费一级毛片| 精品国产乱码久久久久久小说| 免费看日本二区| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 大话2 男鬼变身卡| 人妻人人澡人人爽人人| 看免费成人av毛片| 综合色丁香网| 在线播放无遮挡| 久久ye,这里只有精品| 黄色欧美视频在线观看| 我的女老师完整版在线观看| 亚洲av在线观看美女高潮| 看非洲黑人一级黄片| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 大香蕉97超碰在线| 免费观看av网站的网址| 一本久久精品| 最近中文字幕2019免费版| 国精品久久久久久国模美| 久久亚洲国产成人精品v| 色婷婷av一区二区三区视频| 99热这里只有精品一区| 美女主播在线视频| 欧美成人精品欧美一级黄| 久久国产乱子免费精品| 国产视频内射| 久久99蜜桃精品久久| 天堂俺去俺来也www色官网| 久久热精品热| 乱系列少妇在线播放| 男的添女的下面高潮视频| 下体分泌物呈黄色| 91久久精品电影网| 男人和女人高潮做爰伦理| 久久99一区二区三区| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 一本一本综合久久| 成年美女黄网站色视频大全免费 | 夜夜骑夜夜射夜夜干| av天堂中文字幕网| 91久久精品国产一区二区成人| 亚洲中文av在线| 精品少妇内射三级| 免费av不卡在线播放| 18禁在线无遮挡免费观看视频| 国产欧美亚洲国产| 中文字幕av电影在线播放| 亚洲中文av在线| 大片免费播放器 马上看| 久久女婷五月综合色啪小说| av卡一久久| 国产黄片美女视频| av卡一久久| 99精国产麻豆久久婷婷| 亚洲va在线va天堂va国产| 亚洲电影在线观看av| 欧美 亚洲 国产 日韩一| 制服丝袜香蕉在线| 成年人午夜在线观看视频| 欧美精品一区二区大全| 乱系列少妇在线播放| 91午夜精品亚洲一区二区三区| 国产精品久久久久久精品电影小说| 国产成人精品无人区| 国产精品久久久久久精品电影小说| 中文天堂在线官网| 最近的中文字幕免费完整| av在线观看视频网站免费| 性色av一级| 免费观看a级毛片全部| 另类精品久久| 看非洲黑人一级黄片| 蜜桃久久精品国产亚洲av| 亚洲av男天堂| 一个人免费看片子| 少妇的逼好多水| 秋霞伦理黄片| 成人影院久久| 国产伦理片在线播放av一区| 午夜免费鲁丝| 国产黄片美女视频| 亚洲综合精品二区| 国产免费一级a男人的天堂| 久久久久精品性色| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 国产精品国产三级专区第一集| 日本黄色片子视频| 99热国产这里只有精品6| 亚洲精品乱码久久久v下载方式| 亚洲av.av天堂| 成人美女网站在线观看视频| 免费久久久久久久精品成人欧美视频 | a级片在线免费高清观看视频| 一级二级三级毛片免费看| 日本黄色日本黄色录像| 久久久久久久精品精品| 欧美+日韩+精品| 嫩草影院新地址| 国产成人精品福利久久| 久久 成人 亚洲| 国产成人freesex在线| 亚洲色图综合在线观看| 大香蕉久久网| 国产成人免费无遮挡视频| 久久久久久久久久久免费av| 99久久综合免费| 国产高清不卡午夜福利| 亚洲va在线va天堂va国产| 天堂中文最新版在线下载| 在线 av 中文字幕| 成人毛片a级毛片在线播放| 曰老女人黄片| 这个男人来自地球电影免费观看 | 欧美激情极品国产一区二区三区 | 中国美白少妇内射xxxbb| 丰满迷人的少妇在线观看| 午夜福利,免费看| 最近中文字幕高清免费大全6| 在线精品无人区一区二区三| 国产av国产精品国产| 色94色欧美一区二区| 亚洲高清免费不卡视频| 插逼视频在线观看| 亚洲国产最新在线播放| 精品熟女少妇av免费看| 在线 av 中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲精品成人av观看孕妇| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 日韩伦理黄色片| 新久久久久国产一级毛片| 国产精品人妻久久久影院|