• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Local Implementation of the POD-Based Ensemble 4DVar withR-Localization

    2014-03-30 02:26:27TIANXiangJun

    TIAN Xiang-Jun

    1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    A Local Implementation of the POD-Based Ensemble 4DVar withR-Localization

    TIAN Xiang-Jun1,2

    1International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    The purpose of this paper is to provide a robust and flexible implementation of a proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method (PODEn4DVar) throughR-localization. WithR-localization, the implementation of the local PODEn4DVar analysis can be coded for parallelization with enhanced assimilation precision. The feasibility and effectiveness of the PODEn4DVar local implementation withR-localization are demonstrated in a two-dimensional shallow-water equation model with simulated observations (OSSEs) in comparison with the original version of the PODEn4DVar withB-localization and that without localization. The performance of the PODEn4DVar with localization shows a significant improvement over the scheme with no localization, particularly under the imperfect model scenario. Moreover, theR-localization scheme is capable of outperforming theB-localization case to a certain extent. Further, the assimilation experiments also demonstrate that PODEn4DVar withR-localization is most efficient due to its easy parallel implementation.

    PODEn4DVar,R-localization, local implementation

    1 Introduction

    The ensemble Kalman filter (EnKF, Evensen, 1994, 2004; Houtekamer and Mitchell, 1998, 2001; Hamill et al., 2001) provides an advanced alternative solution to data assimilation in various weather (Snyder and Zhang, 2003; Tong and Xue, 2005; Chen and Snyder, 2007; Meng and Zhang, 2008; Wang et al., 2008; Whitaker et al., 2008; Aksoy et al., 2009; Dowell and Wicker, 2009; Torn and Hakim, 2009; Bonavita et al., 2010; Miyoshi et al., 2010) and climate applications (Whitaker et al., 2004; Compo et al., 2011). Besides its simple conceptual formulation and relative ease of implementation, EnKF has the ability to evolve flow-dependent estimates of forecast error covariance by forecasting the statistical characteristics. However, the EnKF does not include the temporal smoothness constraint assumed in the standard four-dimensional variational assimilation method (4DVar, e.g., Lewis and Derber, 1985; Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1987; Courtier et al., 1994) because its design concept incorporates observational information sequentially. Thus, significant efforts have been devoted to enhance data assimilation by coupling 4DVar with EnKF to combine their strengths (e.g., Lorenc, 2003; Qiu et al., 2007; Tian et al., 2008, 2011; Tian and Xie, 2012; Zhang et al., 2009; Cheng et al., 2010; Wang et al., 2010). The proper orthogonal decomposition (POD)-based ensemble four-dimensional variational assimilation method (referred to as PODEn4DVar; Tian et al., 2008, 2011; Tian and Xie, 2012) is proposed based on POD and ensemble forecasting techniques. In the PODEn4DVar, the original ensemble coordinate system is transformed into an optimal scheme under the usual Euclidean norm (Ly and Tran, 2001) through the POD process, which improves assimilation performance. Its feasibility and effectiveness have been demonstrated through the use of an idealized model with simulated observations (Tian et al., 2011; Tian and Xie, 2012) and the Weather Research and Forecasting (WRF) model with real radar data (Pan et al., 2012). Moreover, PODEn4DVar also provides a promising method for land data assimilation (Tian et al., 2009, 2010).

    In ensemble data assimilation, localization is generally adopted to ameliorate the spurious correlations of observations from distant regions that occur in analyses (e.g., Houtekamer and Mitchell, 2001; Hamill et al., 2001), thus providing better results in many cases (e.g., Greybush et al., 2011; Miyoshi et al., 2010; Szunyogh et al., 2008). Additionally, analysis at each grid point can be implemented independently with only local observations and the values at nearby model grid points needing consideration; thus, more efficient parallelization of the code can be realized (Hunt et al., 2007; Szunyogh et al., 2008; Greybush et al., 2011).

    As discussed by Greybush et al. (2011), two classes of localization techniques in general usage includeB-localization andR-localization. The former operate on background error covariancesB, while the latter are those that modify observation error covariancesR. Although it has been developed mainly in the EnKF community, the localization technique is also indispensable in ensemble-based variational assimilation methods (e.g., Tian et al., 2008, 2011; Tian and Xie, 2012; Wang et al., 2010). The PODEn4DVar uses a variation ofB-localization, in whichthere is no direct modification on the observation error covarianceR(Tian et al., 2011; Tian and Xie, 2012). Unfortunately, previous studies note that both types of localization can disrupt the relationships and thus result in unrealistic imbalances between mass and wind fields in analysis ensembles (e.g., Kepert, 2009; Greybush et al., 2011). Because theB-localization scheme is more prone to imbalance and greater errors in analysis and forecasting, implementation ofR-localization in PODEn4DVar has the potential for improving assimilation performance.

    The main purpose of this paper is to describe a local implementation for PODEn4DVar through theR-localization scheme with emphasis on facilitating its parallel coding with improved assimilation performance. The rest of the paper is organized as follows. In section 2, we describe the local implementation for PODEn4DVar withR-andB-localization schemes after a simple review of PODEn4DVar. In section 3, observing system simulation experiments (OSSEs) are conducted with no localization and withR- andB-localization schemes for evaluation of PODEn4DVar. Finally, a summary is given in Section 4.

    2 Local implementation for PODEn4DVar through R-localization

    2.1 Review of PODEn4DVar

    The incremental format of the 4DVar cost function is formulated as

    whereχ′ =χ-χbis the perturbation of the background fieldχbat the initial timet0,

    and

    Here, the superscript T represents a transpose, b denotes background value, indexkstands for observation time,Sis the total observational time steps in the assimilation window,Hkacts as the observation operator, and matricesBandRkare the background and observational error covariances, respectively. In this study,Rkis assumed to be diagonal. The 4DVar cost Eq. (1) should be minimized to obtain an optimal increment of initial condition (IC),χ′a, att0, where the subscript a denotes an optimal value, obs denotes the observational values.

    In PODEn4DVar (Tian et al., 2011), an ensemble ofNobservation perturbations (OPs)y′:y1′,y′2,… ,y′N, is first generated by using the observation operatorHk, the forecast model, and the initial model perturbations (MPs)χ′:χ1′ ,χ2′,… ,χ′N. Subsequently, the POD transformation to the OP matrixy′ and then to the MP matrixχ′yields

    and

    whereVis an orthogonal matrix,Λis a diagonal matrix,PχandPyare the POD-transformed MP and OP matrixes, respectively.

    The optimal solutionχ′aand its corresponding optimal OPy′ais thus expressed by linear combinations of the POD-transformed MPs and OPs, respectively, as

    and

    whereβis the coefficient vector.

    Through simple calculations reported by Tian et al. (2011), the solution to the increment of analysis is simplified into the following form:

    whereIis the unit matrix.

    Substituting Eq. (10) into Eq. (14a), the expression can be modified as

    The final PODEn4DVar analysis without localization is easily obtained as

    Obviously, Eq. (15a) can be implemented independently for each [ith, 1≤I≤dim(χb)] grid point as

    whereχ′g,χb,g, andχa,grepresent MPs, background, and analysis states for each (ith) grid point, respectively.

    Conversely, the analysis ensemble perturbation matrix is updated through

    2.2 Local implementation for PODEn4DVar

    It is reasonable to assume thatRis diagonal with uncorrelated observation errors. Hunt et al. (2007) proposed a gradualRlocalization by multiplying the diagonal elements ofRby an increasing functionρRof distance from the analysis grid point. Because PODEn4DVar shares similar formulations with the local ensemble transform Kalman filter (LETKF; Hunt et al., 2007), we can easily implement theR-localization scheme into the final PODEn4DVar analysis as

    whereρR,gis the local localization matrix,y′obs,gis the local innovation vector,Rgis the local observational error covariance, andPy,gis the local POD-transformed OP matrix.

    The local vectors and matrices (i.e.,y′obs,g,Rg,ρR,g, andPy,g) can be formed under the following conditions:

    (a) dim(y′obs,g) = 0;

    (b) For any 1≤j≤dim(y′obs,g), computeρR,g,j;

    (c) IfρR,g,j>ε(whereε> 0 is a small preset parameter), dim(y′obs,g) = dim(y′obs,g)+1; storejin a preset integer vector dimLoc;

    (d) All theρR,g,j>εconstitute the local localization matrix,ρR,g;

    (e)s= dimLoc(j) [1≤j≤dim(y′obs,g)]; extract all (sth) elements ofy′obs, the (sth) diagonal elements ofR, and the (sth) rows ofPyto construct the local innovation vectory′obs,g, the local observational error covarianceRg, and the local POD-transformed OP matrixPy,g, correspondingly.

    Therefore, the local implementation of PODEn4DVar requires the following steps:

    1) Run the forecast model repeatedly (Ntimes) to obtain an ensemble ofNobservation perturbations (OPs)y′by using the observation operatorHkand the MPsχ′;

    2) (y′)Ty′ =VΛ2VT;

    3)Py=y′V;

    4) Formy′obs,g,Rg,ρR,g, andPy,gunder the conditions of (a)-(e);

    Apparently, the dimensions of the local observational matrices and vectors are substantially lower than the original values because numerous computational resources are thus released. In addition, the implementation of the local analysis steps 1) - 5) is apt to be coded in parallelization.

    As mentioned in the Introduction, the original version of PODEn4DVar uses a variation ofB-localization (Tian et al., 2011; Tian and Xie, 2012):

    which can be also implemented locally as

    whereρB,gis the local covariance localization matrix.

    3 Evaluations within a shallow-water equation model

    3.1 Design of OSSEs

    To examine the performance of PODEn4DVar withR-localization in comparison with the original version of the method withB-localization and that without localization, it is convenient to design OSSEs by using the same shallow-water equation model with the same parameter settin

    gs as that reported by Tian and Xie (2012). Particularly, the model domain is square with 45×45 grid points and periodic boundary conditions ofχ= 0 andLχandy= 0 andLy. The grid spacing isd= Δχ= Δy= 300 km, and the terrain heighthsis defined as

    with the maximum height set toh0= 250 m for the true model andh0= 0 m for the imperfect model.

    The initial condition and initial ensemble were generated in the same manner as that described by Tian and Xie (2012). Accordingly, the observation errors were assumed to be uncorrelated between different variables and different points in space and time. Simulated observations were generated every 3 h by adding random errors to the model-produced true fields at sparsely selected grids spaced every 3d= 900 km in theχ- andy-directions. The observation error standard deviations were set to 1.5 m forhand 0.21 m s-1foruandv. In all assimilation experiments, the weighting covariance inflation technique proposed by Zhang et al. (2004) was used to relax or weight the previous and updated ensembles; the relaxation coefficient was set toα=0.9. In addition, the period of the data assimilation window in all OSSEs was set toT=12 hours, and the ensemble sizeNwas 100. The default localization function used for all the schemes in this study was the fifth-order piecewise rational function given in Eq. (4.10) of Gaspari and Cohn (1999).

    3.2 Experimental results

    Figure 1 Spatially averaged (a) height root-mean-square (RMS) errors and (b) wind RMS errors for the proper orthogonal decomposition-based ensemble four-dimensional variational assimilation method (PODEn4DVar) under the imperfect model scenario (h0= 0 m). Schemes without localization and withB- andR-localization are represented by dotted, dashed, and black solid lines, respectively.

    A group of experiments in the presence of model error with a maximum terrain height ofh0= 0 m in the forecast model was conducted to investigate the performance levels of all three PODEn4DVar schemes includingB-localization,R-localization, and no localization. Truth simulations (h0= 250 m) were used for verification and for generating observations. Figures 1a and 1b compare the performances of the three schemes under the imperfect model assumption (h0= 0 m). Remarkably, under the imperfect model scenario, the superior performance of theR-localization over the other two schemes was obvious from the beginning of the second assimilation window through the end of the entire assimilation process. Such a conclusion is also strongly supported by the special error statistics over the last assimilation window such that the spatial mean root-mean-square (RMS) error produced by theR-localization scheme was smallest at 3.31 m and 0.57 m s-1for height and wind fields, respectively. Correspondingly, the spatial RMS errors produced by theB-localization scheme were 4.79 m and 0.78 m s-1for height and wind, respectively. No convergent solution was obtained by the no-localization case.

    It should be noted that an additional group of experiments under the perfect-model scenario was conducted, and results similar to those of imperfect model case in this study were obtained (not shown). Moreover, the sensitivity of PODEn4DVar withR-localization to parameters such as ensemble size, inflation, and others reported by Tian and Xie (2012) has also been tested.

    Table 1 Central processing unit (CPU) time for the PODEn4DVar with various localization schemes.

    5 Summary and concluding remarks

    This study has upgraded the POD-based ensemble 4DVar method through a local implementation withR-localization. TheR-localization scheme is first introduced to the PODEn4DVar analysis formula, which is followed by a step-by-step description of its efficient local implementation. Local implementation of the original version of PODEn4DVar withB-localization is also presented. For comparison, PODEn4DVar without localization, implemented locally in the same manner as that of localization schemes, is also discussed. The robustness and potential merits of the local implementation of PODEn4DVar withR-localization are demonstrated through OSSEs by using a two-dimensional shallow water model. The local implementation of PODEn4DVar with no localization andB-localization are also adopted to fulfill the same OSSE conditions. The assimilation results imply that the local PODEn4DVar withR-localization outperforms the original version withB-localization to a certain extent, particularly under the imperfect model scenario. An analysis of the computational costs demonstrates that PODEn4DVar local implementation withR-localization is significantly more efficient than the other schemes due to its easy parallelization.

    Acknowledgments. This work was supported by the National Natural Science Foundation of China (Grant No. 41075076), the National High Technology Research and Development Program of China (Grant No. 2013AA122002), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-QN207), and the National Basic Research Program of China (Grant Nos. 2010CB428403 and 2009CB421407).

    Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman Filter for assimilation of radar observations. Part I: Storm-scale analyses,Mon. Wea. Rev., 137, 1805-1824.

    Bonavita, M., L. Torrisi, and F. Marcucci, 2010: Ensemble data assimilation with the CNMCA regional forecasting system,Quart. J. Roy. Meteor. Soc., 136, 132-145.

    Chen, Y. S., and C. Snyder, 2007: Assimilating vortex position with an ensemble Kalman filter,Mon. Wea. Rev., 135, 1828-1845.

    Cheng, H., M. Jardak, M. Alexe, et al., 2010: A hybrid approach to estimating error covariances in variational data assimilation,Tellus, 62A, 288-297.

    Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project,Quart. J. Roy. Meteor. Soc., 137, 1-28.

    Courtier, P., and O. Talagrand, 1987: Variational assimilation of meteorological observations with the adjoint vorticity equation II: Numerical results,Quart. J. Roy. Meteor. Soc., 113, 1329-1347.

    Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4DVar using an incremental approach,Quart. J. Roy. Meteor. Soc., 120, 1367-1387.

    Dowell, D. C., and L. J. Wicker, 2009: Additive noise for stormscale ensemble data assimilation,J. Atmos. Ocean Tech., 26, 911-927.

    Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics,J. Geophys. Res., 99(C5), 10143-10162.

    Evensen, G., 2004: Sampling strategies and square root analysis schemes for the EnKF,Ocean Dyn., 54, 539-560, doi:10.1007/ s10236-004-0099-2.

    Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions,Quart. J. Roy. Meteor. Soc., 125, 723-757.

    Greybush, S. J., E. Kalnay, T. Miyoshi, et al., 2011: Balance and ensemble Kalman Filter localization techniques,Mon. Wea. Rev., 139, 511-522.

    Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distancedependent filtering of background error covariance estimates in an ensemble Kalman filter,Mon. Wea. Rev., 129, 2776-2790.

    Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique,Mon. Wea. Rev., 126, 796-811.

    Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation,Mon. Wea. Rev., 129, 123-137.

    Hunt, B. R., E. J. Kostelich, E. Ott, et al., 2007: Efficient data assimilation spatiotemporal chaos: A local ensemble transform Kalman filter,Phys. D, 230, 112-126.

    Kepert, J. D., 2009: Covariance localisation and balance in an ensemble Kalman Filter,Quart. J. Roy. Meteor. Soc., 135, 1157-1176.

    Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects,Tellus, 38A, 97-110.

    Lewis, J. M., and J. C. Derber, 1985: The use of the adjoint equation to solve a variational adjustment problem with advective constraints,Tellus, 37A, 309-322.

    Ly, H. V., and H. T. Tran, 2001: Modeling and control of physical processes using proper orthogonal decomposition,Math. Comput. Model., 33, 223-236.

    Lorenc, A., 2003: The potential of the ensemble Kalman Filter for NWP: A comparison with 4DVar,Quart. J. Roy. Meteor. Soc., 129, 3183-3203.

    Meng, Z. Y., and F. Q. Zhang, 2008: Tests of an ensemble Kalman Filter for mesoscale and regional-scale data assimilation. Part IV: Comparison with 3DVAR in a month-long experiment,Mon. Wea. Rev., 136, 3671-3682.

    Miyoshi, T, Y. Sato, and T. Kadowaki, 2010: Ensemble Kalman Filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system,Mon. Wea. Rev., 138, 2846-2866.

    Pan, X., X. Tian, X. Li, et al., 2012: Assimilating doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method,J. Geophys. Res., 117, D17113, doi:10.1029/ 2012JD017684.

    Qiu, C., A. Shao, Q. Xu, et al., 2007: Fitting model fields to observations by using singular value decomposition: An ensemblebased 4DVar approach,J. Geophys. Res., 112, D11105, doi:10. 1029/2006JD007994.

    Szunyogh, I., E. J. Kostelich, G. Gyarmati, et al., 2008: A local ensemble transform Kalman filter data assimilation system for the NCEP global model,Tellus, 60A, 113-130.

    Snyder, C., and F. Q. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter,Mon. Wea. Rev., 131, 1663-1677.

    Tian, X., and Z. Xie, 2012: Implementations of a square-root ensemble analysis and a hybrid, localization into the POD-based ensemble 4DVar,Tellus, 64A, available at http://dx.doi.org/ 10.3402/tellusa.v64i0.18375.

    Tian, X., Z. Xie, and A. Dai, 2008: An ensemble-based explicit four-dimensional variational assimilation method,J. Geophys. Res., 113, D21124, doi:10.1029/2008JD010358.

    Tian, X., Z. Xie, A. Dai, et al., 2009: A dual-pass variational dataassimilation framework for estimating soil moisture profiles from AMSR-E microwave brightness temperature,J. Geophys. Res., 114, D16102, doi:10.1029/2008JD011600.

    Tian, X., Z. Xie, A. Dai, et al., 2010: A microwave land data assimilation system: Scheme and preliminary evaluation over China,J. Geophys. Res., 115, D21113, doi:10.1029/2010JD014370.

    Tian, X., Z. Xie, and Q. Sun, 2011: A POD-based ensemble fourdimensional variational assimilation method,Tellus, 63A, 805-816.

    Tong, M. J., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments,Mon. Wea. Rev., 133, 1789-1807.

    Torn, R. D., and G. J. Hakim, 2009: Ensemble data assimilation applied to RAINEX observations of hurricane Katrina (2005),Mon. Wea. Rev., 137, 2817-2829.

    Wang, B., J. Liu, S. Wang, et al., 2010: An economical approach to four-dimensional variational data assimilation,Adv. Atmos. Sci., 27(4), 715-727, doi:10.1007/s00376-009-9122-3.

    Wang, X. G., D. M. Barker, C. Snyder, et al., 2008: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment,Mon. Wea. Rev., 136, 5116-5131.

    Whitaker, J. S., G. P. Compo, X. Wei, et al., 2004: Reanalysis without radiosondes using ensemble data assimilation,Mon. Wea. Rev., 132, 1190-1200.

    Whitaker, J. S., T. M. Hamill, X. Wei, et al., 2008: Ensemble data assimilation with the NCEP global forecast system,Mon. Wea. Rev., 136, 463-482.

    Zhang, F., C. Snyder, and J. Sun, 2004: Tests of an ensemble Kalman filter for convective-scale data assimilation: Impact of initial estimate and observations,Mon. Wea. Rev., 132, 1238-1253.

    Zhang, F. Q., M. Zhang, and J. A. Hansen, 2009: Coupling ensemble Kalman filter with four dimensional variational data assimilation,Adv. Atmos. Sci., 26, 1-8, doi:10.1007/s00376-009-0001-8.

    :Tian, X.-J., 2014: A local implementation of the POD-based ensemble 4DVar withR-localization,Atmos. Oceanic Sci. Lett., 7, 11-16,

    10.3878/j.issn. 1674-2834.13.0046.

    Received 6 May 2013; revised 20 May 2013; accepted 3 June 2013; published 16 January 2014

    TIAN Xiang-Jun, tianxj@mail.iap.ac.cn

    欧美国产日韩亚洲一区| 亚洲精品成人久久久久久| 黑人高潮一二区| 69人妻影院| 精品人妻熟女av久视频| 人妻丰满熟妇av一区二区三区| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久亚洲av鲁大| 色综合站精品国产| 少妇熟女欧美另类| 看黄色毛片网站| 小说图片视频综合网站| 黄片wwwwww| 免费看美女性在线毛片视频| aaaaa片日本免费| 欧美最黄视频在线播放免费| 午夜福利高清视频| 久久久精品94久久精品| 久久人人爽人人片av| 免费观看精品视频网站| 1000部很黄的大片| 亚洲综合色惰| 给我免费播放毛片高清在线观看| 国产在视频线在精品| 国产精品国产高清国产av| 免费无遮挡裸体视频| 国产久久久一区二区三区| 十八禁国产超污无遮挡网站| 亚洲在线自拍视频| 亚洲av中文字字幕乱码综合| 日韩欧美国产在线观看| 别揉我奶头~嗯~啊~动态视频| 18禁裸乳无遮挡免费网站照片| 午夜精品在线福利| 亚洲国产精品成人久久小说 | 97在线视频观看| 69人妻影院| 精品欧美国产一区二区三| 免费看av在线观看网站| 国产高清三级在线| .国产精品久久| 美女免费视频网站| 久久久精品94久久精品| 综合色丁香网| 免费人成视频x8x8入口观看| 亚洲欧美精品综合久久99| 久久久久免费精品人妻一区二区| 精品人妻视频免费看| 99九九线精品视频在线观看视频| 老司机午夜福利在线观看视频| 国产午夜精品论理片| av天堂在线播放| 成年女人永久免费观看视频| 成年免费大片在线观看| 大香蕉久久网| 看非洲黑人一级黄片| 69人妻影院| 女的被弄到高潮叫床怎么办| 国产精品一区二区三区四区免费观看 | 日本a在线网址| 免费看av在线观看网站| av福利片在线观看| 高清日韩中文字幕在线| 国产淫片久久久久久久久| 国产探花在线观看一区二区| 人人妻人人澡欧美一区二区| 男女之事视频高清在线观看| av黄色大香蕉| 欧美三级亚洲精品| 欧美精品国产亚洲| 精品无人区乱码1区二区| 亚洲av中文字字幕乱码综合| 91av网一区二区| 日本爱情动作片www.在线观看 | 亚洲综合色惰| 给我免费播放毛片高清在线观看| 青春草视频在线免费观看| 我的老师免费观看完整版| 亚洲精品色激情综合| 国产亚洲av嫩草精品影院| 国产 一区 欧美 日韩| 在线天堂最新版资源| 丰满的人妻完整版| 1024手机看黄色片| 欧美日本视频| 最新中文字幕久久久久| 午夜免费激情av| 国产综合懂色| 日韩一本色道免费dvd| 色综合站精品国产| 久久99热6这里只有精品| av在线亚洲专区| 一级a爱片免费观看的视频| 日本爱情动作片www.在线观看 | 国产高清视频在线观看网站| 国产黄色视频一区二区在线观看 | 久久人妻av系列| 插逼视频在线观看| 国产精品三级大全| 国产v大片淫在线免费观看| 国产精品乱码一区二三区的特点| 欧美日韩精品成人综合77777| 久久韩国三级中文字幕| 精品久久久噜噜| 成人av一区二区三区在线看| 免费观看人在逋| 国产v大片淫在线免费观看| 精品福利观看| 国产国拍精品亚洲av在线观看| 国产人妻一区二区三区在| 人人妻人人看人人澡| 蜜臀久久99精品久久宅男| 欧美性感艳星| 99久久成人亚洲精品观看| 插逼视频在线观看| 黄色视频,在线免费观看| 成人鲁丝片一二三区免费| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 高清毛片免费观看视频网站| 成人欧美大片| 国产av在哪里看| 午夜亚洲福利在线播放| 国产aⅴ精品一区二区三区波| 在线观看免费视频日本深夜| 久久久久久大精品| 内地一区二区视频在线| 色哟哟哟哟哟哟| 久久精品综合一区二区三区| 极品教师在线视频| 亚洲专区国产一区二区| 男女边吃奶边做爰视频| 日本撒尿小便嘘嘘汇集6| 精品少妇黑人巨大在线播放 | av在线观看视频网站免费| av在线播放精品| 日本在线视频免费播放| 日韩一本色道免费dvd| 在线观看美女被高潮喷水网站| 国产单亲对白刺激| 在线天堂最新版资源| 有码 亚洲区| 欧美色欧美亚洲另类二区| 精品少妇黑人巨大在线播放 | 日本色播在线视频| 久久久久国内视频| a级一级毛片免费在线观看| 99国产极品粉嫩在线观看| 女人十人毛片免费观看3o分钟| 亚洲国产精品国产精品| 1000部很黄的大片| av视频在线观看入口| 国产综合懂色| 无遮挡黄片免费观看| 免费人成视频x8x8入口观看| 亚洲欧美日韩高清在线视频| 深夜a级毛片| 性插视频无遮挡在线免费观看| 日本一本二区三区精品| 村上凉子中文字幕在线| 久久久久九九精品影院| 国产成人一区二区在线| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 中文亚洲av片在线观看爽| 一级毛片电影观看 | 中文字幕免费在线视频6| 久久亚洲国产成人精品v| 97碰自拍视频| 床上黄色一级片| 精品午夜福利在线看| 搡老妇女老女人老熟妇| 久久午夜亚洲精品久久| 女人被狂操c到高潮| 99精品在免费线老司机午夜| 国产毛片a区久久久久| 国内精品美女久久久久久| 日韩制服骚丝袜av| 欧美激情在线99| 麻豆av噜噜一区二区三区| 亚洲人成网站在线观看播放| 国产精品福利在线免费观看| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 欧美高清成人免费视频www| 欧美一区二区精品小视频在线| 在线免费观看的www视频| 18禁在线无遮挡免费观看视频 | 最好的美女福利视频网| 床上黄色一级片| 亚洲成人久久爱视频| 久久久精品大字幕| 看非洲黑人一级黄片| 精品一区二区三区视频在线| 亚洲专区国产一区二区| 亚洲精品国产成人久久av| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 69人妻影院| 人妻丰满熟妇av一区二区三区| 少妇人妻一区二区三区视频| 精品人妻熟女av久视频| 精品不卡国产一区二区三区| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 午夜亚洲福利在线播放| 国产探花在线观看一区二区| 99热网站在线观看| 男人狂女人下面高潮的视频| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人综合色| 中文字幕久久专区| 精品国产三级普通话版| 久久99热6这里只有精品| 你懂的网址亚洲精品在线观看 | 久久精品国产亚洲av香蕉五月| 国产真实乱freesex| 人妻制服诱惑在线中文字幕| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 村上凉子中文字幕在线| 午夜爱爱视频在线播放| 免费无遮挡裸体视频| 欧美一区二区国产精品久久精品| 国产精品一区二区免费欧美| 成人国产麻豆网| 亚洲成人久久爱视频| .国产精品久久| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频| 久久欧美精品欧美久久欧美| 午夜免费激情av| 内射极品少妇av片p| 国产一区亚洲一区在线观看| 欧美高清性xxxxhd video| 22中文网久久字幕| 禁无遮挡网站| 国产黄片美女视频| 国产黄色小视频在线观看| 青春草视频在线免费观看| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 网址你懂的国产日韩在线| АⅤ资源中文在线天堂| 99久久成人亚洲精品观看| 国产男靠女视频免费网站| 午夜免费激情av| 日韩,欧美,国产一区二区三区 | 国产精品久久久久久精品电影| 一级黄片播放器| 国产老妇女一区| 午夜亚洲福利在线播放| 国产亚洲精品综合一区在线观看| 免费高清视频大片| 午夜久久久久精精品| 久久国产乱子免费精品| 国产亚洲欧美98| 人妻夜夜爽99麻豆av| 亚洲精品影视一区二区三区av| 午夜日韩欧美国产| 深夜精品福利| 老女人水多毛片| 欧美日韩在线观看h| 好男人在线观看高清免费视频| 黄色一级大片看看| 我要搜黄色片| 午夜免费男女啪啪视频观看 | 亚洲精华国产精华液的使用体验 | 美女cb高潮喷水在线观看| 成人高潮视频无遮挡免费网站| 97在线视频观看| 国产又黄又爽又无遮挡在线| 亚洲欧美日韩无卡精品| 久久99热6这里只有精品| 1000部很黄的大片| 在现免费观看毛片| 欧美三级亚洲精品| 亚洲精品久久国产高清桃花| 99久久九九国产精品国产免费| 久久久精品94久久精品| 日韩一区二区视频免费看| 久久久成人免费电影| 夜夜夜夜夜久久久久| 国产成人精品久久久久久| 六月丁香七月| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 免费观看精品视频网站| 精品午夜福利在线看| 亚洲图色成人| 日韩精品有码人妻一区| 精品久久久久久成人av| 3wmmmm亚洲av在线观看| 女人被狂操c到高潮| 亚洲激情五月婷婷啪啪| 狂野欧美白嫩少妇大欣赏| 午夜福利在线观看免费完整高清在 | 日韩欧美精品免费久久| 一级黄色大片毛片| 一区二区三区免费毛片| 变态另类成人亚洲欧美熟女| 69av精品久久久久久| 午夜日韩欧美国产| 日韩强制内射视频| 真人做人爱边吃奶动态| 一进一出好大好爽视频| 狠狠狠狠99中文字幕| 日韩精品青青久久久久久| 亚洲激情五月婷婷啪啪| 嫩草影院精品99| 亚洲人成网站在线播| 国产高清激情床上av| 国产黄a三级三级三级人| av卡一久久| 久久久国产成人精品二区| 99精品在免费线老司机午夜| 亚洲成人av在线免费| 久久久久久久久久黄片| 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 国产成人a∨麻豆精品| 国产精品人妻久久久久久| 国产一区亚洲一区在线观看| 精品99又大又爽又粗少妇毛片| 中文字幕av成人在线电影| 午夜福利在线观看吧| 国产伦在线观看视频一区| 国产成人福利小说| 国产91av在线免费观看| 91午夜精品亚洲一区二区三区| 午夜福利视频1000在线观看| av专区在线播放| 成人亚洲欧美一区二区av| 一进一出好大好爽视频| 国产单亲对白刺激| 大型黄色视频在线免费观看| 嫩草影院入口| 内射极品少妇av片p| 成人特级av手机在线观看| 老师上课跳d突然被开到最大视频| 五月伊人婷婷丁香| 少妇人妻精品综合一区二区 | 99热精品在线国产| 日韩制服骚丝袜av| 国产v大片淫在线免费观看| 亚洲av中文av极速乱| 午夜福利视频1000在线观看| 精品福利观看| 男女之事视频高清在线观看| 看片在线看免费视频| 99久久中文字幕三级久久日本| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 俺也久久电影网| 午夜日韩欧美国产| 男人舔女人下体高潮全视频| 最近2019中文字幕mv第一页| 免费av不卡在线播放| 久久久精品欧美日韩精品| 日本一本二区三区精品| 亚洲成人中文字幕在线播放| 别揉我奶头~嗯~啊~动态视频| 黄色日韩在线| 噜噜噜噜噜久久久久久91| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 男人舔奶头视频| 久久久久久大精品| 亚洲美女搞黄在线观看 | 国产成人aa在线观看| 国语自产精品视频在线第100页| 久久久久久大精品| 老女人水多毛片| 国产精品久久久久久亚洲av鲁大| 欧美性感艳星| 麻豆av噜噜一区二区三区| 日韩av不卡免费在线播放| 久久午夜亚洲精品久久| 老熟妇乱子伦视频在线观看| 俄罗斯特黄特色一大片| 国产乱人偷精品视频| 天堂av国产一区二区熟女人妻| 久久这里只有精品中国| 午夜激情欧美在线| 女同久久另类99精品国产91| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3| 日韩欧美精品v在线| 成人av在线播放网站| 一个人看的www免费观看视频| 亚洲精品国产成人久久av| 一本精品99久久精品77| 国产三级在线视频| 国产亚洲精品久久久com| 久久久久国产网址| 久久久久久久午夜电影| 国产av一区在线观看免费| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 欧美绝顶高潮抽搐喷水| 国产黄a三级三级三级人| 又爽又黄a免费视频| 国产 一区精品| 日本撒尿小便嘘嘘汇集6| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 女同久久另类99精品国产91| 欧美日韩乱码在线| 免费观看精品视频网站| 看非洲黑人一级黄片| 麻豆乱淫一区二区| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 中文字幕人妻熟人妻熟丝袜美| 日韩人妻高清精品专区| 色播亚洲综合网| 精品久久久久久久久久免费视频| 国产精品福利在线免费观看| 亚洲欧美清纯卡通| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品色激情综合| 欧美国产日韩亚洲一区| 日韩欧美精品v在线| 熟女人妻精品中文字幕| 三级男女做爰猛烈吃奶摸视频| 综合色丁香网| 久久久久久久久中文| 五月玫瑰六月丁香| 亚洲美女搞黄在线观看 | 熟女人妻精品中文字幕| 在线天堂最新版资源| 性插视频无遮挡在线免费观看| 欧美激情国产日韩精品一区| 露出奶头的视频| 99热这里只有是精品50| 深夜精品福利| 亚洲精华国产精华液的使用体验 | 99久国产av精品| avwww免费| 老女人水多毛片| 国产成人福利小说| 久久久久久久久久成人| 在线观看午夜福利视频| 免费在线观看影片大全网站| 久久久久性生活片| 精品国产三级普通话版| 啦啦啦观看免费观看视频高清| 狂野欧美激情性xxxx在线观看| 亚洲最大成人中文| 成人无遮挡网站| 99久久久亚洲精品蜜臀av| 麻豆精品久久久久久蜜桃| 美女免费视频网站| 国产又黄又爽又无遮挡在线| 九九热线精品视视频播放| 熟妇人妻久久中文字幕3abv| 亚洲av成人精品一区久久| 丰满人妻一区二区三区视频av| 啦啦啦观看免费观看视频高清| 国产精品爽爽va在线观看网站| 日本熟妇午夜| 性色avwww在线观看| 人妻夜夜爽99麻豆av| 欧美色欧美亚洲另类二区| 国产不卡一卡二| 国产高清三级在线| 嫩草影院精品99| 99久久九九国产精品国产免费| 午夜福利视频1000在线观看| 简卡轻食公司| 日韩欧美精品v在线| 国内久久婷婷六月综合欲色啪| 国产亚洲91精品色在线| 欧美一级a爱片免费观看看| 亚州av有码| 国产色爽女视频免费观看| 五月伊人婷婷丁香| 久久人人爽人人片av| 插逼视频在线观看| 六月丁香七月| 亚洲无线观看免费| АⅤ资源中文在线天堂| 尤物成人国产欧美一区二区三区| 成人毛片a级毛片在线播放| 亚洲七黄色美女视频| 免费观看精品视频网站| 色综合亚洲欧美另类图片| 女人被狂操c到高潮| 国产女主播在线喷水免费视频网站 | 一a级毛片在线观看| 国产美女午夜福利| 高清午夜精品一区二区三区 | 免费高清视频大片| 久久久a久久爽久久v久久| 美女黄网站色视频| 国产高清三级在线| 日韩三级伦理在线观看| 十八禁国产超污无遮挡网站| 日韩三级伦理在线观看| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 狂野欧美白嫩少妇大欣赏| 成年女人看的毛片在线观看| 日韩高清综合在线| 老熟妇乱子伦视频在线观看| 中国国产av一级| 免费观看精品视频网站| 日韩欧美三级三区| 99热这里只有精品一区| 午夜福利18| 夜夜夜夜夜久久久久| 日本与韩国留学比较| 非洲黑人性xxxx精品又粗又长| 久久精品人妻少妇| 国产精华一区二区三区| 国产精品1区2区在线观看.| 最后的刺客免费高清国语| 久久精品91蜜桃| 亚洲国产色片| 国产精品久久久久久亚洲av鲁大| 国产精品久久久久久久久免| 亚洲精品成人久久久久久| 尤物成人国产欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 精品一区二区三区av网在线观看| 亚洲av成人av| 精品人妻一区二区三区麻豆 | 国产精华一区二区三区| 欧美一区二区精品小视频在线| 日本撒尿小便嘘嘘汇集6| 3wmmmm亚洲av在线观看| 99久久成人亚洲精品观看| 亚洲综合色惰| 乱码一卡2卡4卡精品| 国产一区亚洲一区在线观看| 丝袜喷水一区| 深夜a级毛片| 久久精品国产鲁丝片午夜精品| 亚洲国产欧洲综合997久久,| 波多野结衣巨乳人妻| 日韩欧美免费精品| 国产成人freesex在线 | 亚洲av五月六月丁香网| 女生性感内裤真人,穿戴方法视频| 欧美最黄视频在线播放免费| 变态另类丝袜制服| 精品久久久噜噜| 露出奶头的视频| 伊人久久精品亚洲午夜| 午夜福利在线观看吧| 国产女主播在线喷水免费视频网站 | 日本撒尿小便嘘嘘汇集6| 美女大奶头视频| 午夜久久久久精精品| 97在线视频观看| 日韩,欧美,国产一区二区三区 | 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| a级毛片免费高清观看在线播放| 亚洲欧美日韩东京热| 少妇猛男粗大的猛烈进出视频 | 搡老熟女国产l中国老女人| 日本a在线网址| 亚洲欧美日韩东京热| 99riav亚洲国产免费| 精品一区二区三区人妻视频| 最近2019中文字幕mv第一页| 久久人人精品亚洲av| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| 久久久a久久爽久久v久久| 国产精品三级大全| 午夜视频国产福利| 亚洲av熟女| 午夜视频国产福利| 国产一区二区亚洲精品在线观看| 欧美高清成人免费视频www| 久久久久久国产a免费观看| 人人妻人人看人人澡| 国产高清有码在线观看视频| 日本熟妇午夜| 性插视频无遮挡在线免费观看| 黄色一级大片看看| 久久韩国三级中文字幕| 一个人看的www免费观看视频| av卡一久久| 亚洲精品一卡2卡三卡4卡5卡| 一区二区三区免费毛片| 欧美最新免费一区二区三区| 亚洲va在线va天堂va国产| 亚洲欧美精品自产自拍| 国产精品美女特级片免费视频播放器| 1000部很黄的大片| 人妻少妇偷人精品九色| 少妇人妻一区二区三区视频| 人妻久久中文字幕网| 美女大奶头视频| 成熟少妇高潮喷水视频| 久久久成人免费电影| 人妻丰满熟妇av一区二区三区| 女生性感内裤真人,穿戴方法视频| 小蜜桃在线观看免费完整版高清| 淫秽高清视频在线观看| 国产免费男女视频| 欧美成人一区二区免费高清观看| 亚洲欧美精品自产自拍| 韩国av在线不卡| 亚洲欧美成人综合另类久久久 | 一个人免费在线观看电影| 少妇熟女aⅴ在线视频| av在线播放精品| 老熟妇乱子伦视频在线观看| 国产精品久久视频播放|