• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerosol Type Identification Using PARASOL Multichannel Polarized Data

    2014-03-30 07:54:02FANXueHuaandCHENHongBin

    FAN Xue-Hua and CHEN Hong-Bin

    Key Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Aerosol Type Identification Using PARASOL Multichannel Polarized Data

    FAN Xue-Hua and CHEN Hong-Bin

    Key Laboratory for Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    PARASOL (Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) multi-channel and multi-directional polarized data for different aerosol types were compared. The PARASOL polarized radiance data at 490 nm, 670 nm, and 865 nm increased with aerosol optical thickness (AOT) for fine-mode aerosols; however, the polarized radiances at 490 nm and 670 nm decreased as AOT increased for coarse dust aerosols. Thus, the variation of the polarized radiance with AOT can be used to identify fine or coarse particle-dominated aerosols. Polarized radiances at three wavelengths for fine- and coarse-mode aerosols were analyzed and fitted by linear regression. The slope of the line for 670 nm and 490 nm wavelength pairs is less than 0.35 for dust aerosols. However, the value for fine-mode aerosols is greater than 0.60. The Support Vector Machine method (SVM) based on 12 vector features was used to discriminate clear sky, coarse dust aerosols, fine-mode aerosols, and cloud. Two cases were given and validated by AErosol RObotic NETwork (AERONET) measurements, MODIS (Moderate Resolution Imaging Spectroradiometer) FMF (Fine Mode Fraction at 550 nm) images, PARASOL RGB (Red Green Blue) images, and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) VFM (Vertical Feature Mask) data.

    aerosol type, PARASOL, polarized data, support vector machine

    1 Introduction

    Aerosols affect the earth's climate by scattering and absorbing radiation and by altering cloud microphysics. Aerosols have different scattering and absorption properties depending on their origin, and it is important to identify them in order to better quantify their radiative impact (Niang et al., 2006). Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of data retrieved from satellites and assessments of aerosols' radiative impact on climate (Giles et al., 2012). Since the type of aerosol can affect measurements of reflectance at the top of the atmos-phere (TOA), aerosol type classification from satellite remote sensing is challenging. There have been a limited number of studies of classification of aerosols from satellite data compared with studies of aerosol amounts and optical properties. Higurashi and Nakajima (2002) developed a four-channel algorithm to classify aerosols into four major aerosol types-soil dust, carbonaceous, sulfate, and sea salt aerosols-using the data of spaceborne multi-spectral ocean-color sensors (SeaWiFS) over the ocean. Jeong and Li (2005) developed an aerosol-classifying algorithm by utilizing two instruments: the Total Ozone Mapping Spectrometer (TOMS) and the Advanced Very High Resolution Radiometer (AVHRR). Aerosol size (the Angstrom exponent) from AVHRR and aerosol absorption (aerosol index) from TOMS were combined to classify aerosol types as either biomass burning particles, pollution, dust, sea salt, or mixtures of these types. Hsu et al. (2004) developed the Deep Blue algorithm, in which three channels were used to distinguish smoke and dust over bright-reflecting source regions. Niang et al. (2006) developed a method to determine aerosol type and thereby retrieve optical thickness from TOA reflectance measurements by SeaWiFs based on a neural network classification methodology. There have been other attempts to infer aerosol types, for example, from data from the Multi-angle Imaging Spectro-Radiometer (MISR) (Martonchik et al., 1998), and POLarization and Directionality of the Earth's Reflectance (POLDER) (Bellouin et al., 2003).

    In this study, we investigated the possibility of inferring fine- and coarse-mode aerosol types from anthropogenic and natural sources, respectively, using TOA radiance and polarized radiance spectra from the Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) satellite.

    2 Data and methods

    2.1 POLDER/PARASOL level 1 polarization data

    The PARASOL satellite is a part of the so-called“A-train”series and carries the POLDER-3 instrument consisting of wide-field-of-view telecentric optics, a rotating wheel with spectral and polarizing filters, and a 274×242 two-dimensional Charge Coupled Device (CCD) detector array (Deschamps et al., 1994). The polarizationmeasurements were performed at three wavelengths (490, 670, and 865 nm). Three elements of the Stokes parameter (I,Q, andU) were obtained. The directional measurements spanned up to 51° in the along-track direction and up to 43° in the cross-track direction. The ground pixel size is about 5×6 km2at the nadir. Multiple angle viewings were obtained by overlapping successive images of the same spectral band. Thus, in a single satellite pass, any target within the instrument's purview could be observed quasi-simultaneously from up to 16 viewing angles.

    The POLDER/PARASOL level 1 data used in this study were radiometrically calibrated and geometrically corrected. The normalized polarized radiance,Lp, is defined by the second and third Stokes parameters (QandU) as follows:

    whereEis the spectral solar intensity at the TOA. The first Stokes parameter,I, can determine total radiance,L:

    The satellite viewing geometry and some auxiliary data were also included in the level 1 data. The scattering angle,Θ, is computed for the viewing and solar geometry by

    2.2 Aerosol Robotic Network (AERONET) data

    Direct and diffuse spectral radiances were measured by the ground-based CIMEL CE318 sunphotometer in Beijing (39.98°N, 116.38°E), an AERONET radiometer, and the PHOtométrie pour le Traitement Opérationnel de Normalisation Satellitaire (PHOTONS) station. The measurements were used to derive aerosol physical and optical properties, such as Aerosol Optical Thickness (AOT), size distribution, single scattering albedo, etc., based on the algorithm of Dubovik and King (2000). According to the AERONET AOT and Angstrom Exponent (AE) data in Beijing, two aerosol types were selected. One type was fine-mode aerosol with AE (440-870 nm) > 1.10; the other was dust aerosol with AE < 0.80. The AOT at 490, 670, and 870 nm and AE (440-870 nm) associated with the two aerosol types are shown in Table 1.

    The volume size distribution of AERONET/PHOTONS data for coarse-mode dust cases and fine-mode pollution cases are shown in Figs. 1a and 1b, respectively. It can be seen in Fig. 1a that coarse particles (particle radius > 1 μm) are dominant for the dust cases, and fine particles (particle radius < 0.6 μm) are dominant for the fine mode pollution (Fig. 1b).

    Table 1 The Aerosol Robotic NETwork (AERONET) Aerosol Optical Thickness (AOT) at 490, 670, and 870 nm and Angstrom Exponent (AE) (440-870 nm) for coarse-mode dust cases (AE < 0.80) and fine-mode pollution cases (AE > 1.10).

    Figure 1 AERONET aerosol volume size distribution for Beijing (a) coarse dust days and (b) fine-mode pollution days;τis AOT at 490 nm andαis AE at 440 and 870 nm.

    2.3 The support vector machines

    Support vector machines (SVMs) are a group of supervised learning models that can be applied to classification or regression and have exhibited excellent performance in many classification applications (Vapnik, 1999; Suykens, 2001). The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes forms the output, making it a non-probabilistic binary linear classifier. Given a set of training samples, each marked as belonging to one of two categories, an SVM training algorithm builds a model that assigns new samples into one category or the other. Multiclass SVM aims to assign labels to instances by using support vector machines, where the labels are drawn from a finite set of several elements.

    The typical approach is to reduce the single multiclass problem into multiple binary classification problems (Duan and Keerthi, 2005). The multiclass SVM software written by Alain Rakotomamonjy (http://asi.insa-rouen.fr/ enseignants/~arakoto/toolbox/index.html) was used in the following analysis. The SVM model is a Lagrange SVM, and the Gaussian kernel function was selected.

    3 Aerosol type and cloud detection by using PARASOL multi-channel polarized data

    3.1 AOT and PARASOL polarized radiance

    Figure 2 shows the polarized radiances of three PARASOL polarized channels (490, 670, and 865 nm) as a function of AOT. The polarized radiances increased as the AOT increased for fine-mode aerosols. This meets our expectation, i.e., the higher the fine mode AOT, the higher the polarized radiance due to fine mode particles. On the contrary, the polarized radiances at 490 nm and 670 nm decrease as the AOT increases for dust aerosols. This is because of the depolarization effect of irregular coarse dust particles. Thus, spectral variation of polarized radiances with AOT observed by PARASOL can be used to distinguish aerosol types.

    Figure 2 The polarized radiances at 490, 670, and 870 nm as a function of AOT for coarse-mode dust and fine-mode pollution in Beijing.

    3.2 PARASOL polarized radiance at different bands

    Two other AERONET sites were sampled to get more data. Alta Floresta, located at the southern edge of the Amazon rain forest (9.87°S, 56.10°W), and Maine Soroa, located quite near to the Sahara-Sahel desert (13.22°N, 12.02°E), were selected. Biomass burning aerosols are produced by forest and grassland fires at the Alta Floresta site. The dominant aerosol type is coarse-mode dust particles at the Maine Soroa site. Similar to the study at the Beijing site, fine-mode pollution cases with different AOTs were analyzed from Alta Floresta data, and dust cases with different AOTs were analyzed from Maine Soroa data.

    For all cases, the PARASOL pixels of the 200 km × 200 km zone around every site were considered. The scattering angles usually range from ~ 90° to ~ 160° for PARASOL observation geometry. The variation in scattering angle range narrowed down to ~ 100° to ~ 120° for dust days independent of geological location. Measurements at ~ 100°, ~ 105°, ~ 110°, ~ 115°, ~ 120°, ~ 130°, ~140°, and ~ 150° scattering angles were used to analyze the spectral ratio of the polarized radiances for five AOT bins. Only the observation samples at the ~ 110° scattering angle were comprehensive enough to generate a useful scatter plot. Therefore, the measurements at ~ 110° (109°<Θ<111°) scattering angle were used. To exclude the effect of aerosol concentration, data were analyzed separately into five AOT bins (0.5-0.6, 0.9-1.1, 1.2-1.3, 1.5-1.75, and 2.0-2.5).

    The scatter plots of polarized radiances for the 490 nm and 670 nm wavelength pair for the five AOT bins are shown in Fig. 3. The green triangles and black dots are for fine-mode pollution and coarse-mode dust, respectively. It can be seen that the slopes from linear fits of polarized radiance at 670 nm and 490 nm are less than 0.35 for coarse dust aerosols. However, the slopes for fine-mode aerosols are greater than 0.60. These distinct slopes for coarse- and fine-mode aerosols allow us to use polarized radiance data and variation of polarized radiance with AOT, as described in section 3.1, to classify aerosol types. This is the basis for the SVM feature selection described in section 3.3.

    3.3 Aerosol type and cloud detection by using multiclass SVM

    Using the suggestion derived in section 3.2, the PARASOL multi-spectral polarized data and multiclass SVM method were combined to identify four sky conditions (clear, cloudy, fine-mode aerosol pollution, and coarse-mode dust).

    A set of features that describes one case (i.e., a row of predictor values) is called a vector feature. Twelve vector features were chosen for this study. They are radiances at 490, 670, and 865 nm; polarized radiances at 490, 670, and 865 nm; spectral ratios of radiance:L(670)/L(490),L(865)/L(490),L(865)/L(670); and spectral ratios of polarized radiance:Lp(670)/Lp(490),Lp(865)/Lp(490),Lp(865)/Lp(670).

    Figure 3 Scatter plots and linear fits for polarized radiance pairs at 670 and 490 nm for different AOT bins considering fine-mode pollution and coarse-mode dust.

    For the analysis, the training samples were selected according to different sky conditions by using the combined Moderate Resolution Imaging Spectroradiometer (MODIS) Red Green Blue (RGB) images, PARASOL images, and AERONET aerosol data. There were 200 training samples, 50 samples for every sky condition. Then the sky conditions on any day were identified by using the multiclass SVM model. It takes ~ 0.25 s to finish each classification.

    4 Results and discussion

    Two specific classification cases are described in thissection. The classification result of fine-mode aerosol pollution on 16 September 2006, around Beijing is shown in Fig. 4a. The corresponding PARASOL RGB image and MODIS/Aqua FMF (Fine Mode Fraction at 550 nm) image are given in Figs. 4b and 4c for comparison. There is good agreement between the classification result and the MODIS FMF image in terms of identifying the aerosol-type regions, although there are some discrepancies in the transitional regions between coarseand fine-mode aerosols. The smoke plume spreading Beijing-Tianjin-Hebei and Bohai Sea rim region (36-41°N, 114-120°E) in the PARASOL RGB image is obvious in the classification result; however, cloud classification was not accurate. It is possible that since onlyopaque cloud pixels were chosen as the training samples, and translucidus clouds, such as thin cirrus, were not considered, this could have affected the classification results. On 16 September 2006, the ground-based measured AOT at 440 nm, AE (440-870 nm), and FMF at 670 nm from AERONET were 2.06, 1.45, and 0.95, respectively, at the Beijing site. The values at the Xianghe site located between two megacities (Beijing 70 km to the northwest and Tianjin 70 km to the southeast) were 1.92, 1.42, and 0.93. The higher AE (>1.2) and FMF (approaching 1) validated that the fine-mode aerosols were dominant around Beijing that day, which is consistent with the aerosol classification results.

    The classification of dust weather on the North China Plain on 24 April 2009, is depicted in Fig. 5a. The corresponding PARASOL RGB image and MODIS/Aqua FMF image are given in Figs. 5b and 5c. The dust plume in the RGB image (Fig. 5b) is consistent with the dust classification results (Fig. 5a). Most MODIS FMF values over the land were less than 0.2, and the rest were less than 0.5. On 24 April 2009, the ground-based measured AOT at 440 nm and AE from AERONET were 1.24 and 0.64, respectively, at the Beijing site. The AERONET measurements were missing for the Xianghe site on that day. The lower AERONET AE (>0.8) and MODIS FMF validated that dust aerosols dominated around Beijing on that day. In addition, the CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) VFM (Vertical Feature Mask) aerosol sub-type on 24 April 2009 (Fig. 6), also showed that dust aerosols were spread along the CALIOP orbit ranging from 35.76°N, 116.59°E to 41.15°N, 114.96°E.

    Figure 4 The classification result using (a) PARASOL data, (b) the PARASOL RGB image, and (c) the MODIS/Aqua FMF (Fine Mode Fraction at 550 nm) image on 16 September 2006 around Beijing.

    There are finely-delineated sky conditions in the RGB image. In comparison, the classification results are relatively rough. A possible reason is that the training samples of SVM were selected and defined according to strictly-delineated sky conditions, taking no account of transitional sky conditions. Furthermore, on the classification images there are straight edges along the regions extending several hundred kilometers. The reason is that classification results are linearly interpolated this surface at the points specified by latitude and longitude. The interpolation has discontinuities in the first and zeroth derivatives, which results in straight line features extending several hundred kilometers. A better interpolation scheme aimed at eliminating these artificial features on classification images will be investigated in a future study.

    Figure 5 The classification result using (a) PARASOL data, (b) the PARASOL RGB image, and (c) the MODIS/Aqua FMF image on 24 April 2009 around Beijing.

    Another limitation of our classification analysis is that fine- and coarse-mode areas are shown as distinct regions, but in reality, mixed aerosols occur more frequently than regions dominated by just one aerosol, especially around Beijing. However, it is very difficult to detect a mixed aerosol using only PARASOL data, at present. For our next study, we will try detecting mixed aerosols by combining PARASOL, MODIS, and CALIOP data.

    Figure 6 The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) Vertical Feature Mask (VFM) aerosol sub-type image on 24 April 2009.

    Acknowledgements. We thank Prof. Xiang’ao XIA for his valuable comments on the manuscript. We also thank two anonymous reviewers for their detailed and constructive comments in improving the paper. This work was supported by the National Basic Research Program of China (Grant Nos. 2010CB950804 and 2013CB955801), the Strategic Priority Research Program—Climate Change: Carbon Budget and Relevant Issues (Grant No. XDA05040202).

    Bellouin, N., O. Boucher, D. Tanre, et al., 2003: Aerosol absorption over the clear-sky oceans deduced from POLDER-1 and AERONET observations,Geophys. Res. Lett., 30(14), 1748, doi:10.1029/2003gl017121.

    Deschamps, P. Y., F. M. Bréon, and M. Leroy, et al., 1994: The POLDER mission: Instrument characteristics and scientific objectives,IEEE Trans. Geosci. Remote Sens., 32, 598-615.

    Duan, K. B., and S. S. Keerthi, 2005: Which is the best multiclass SVM method? An empirical study,Mult. Classifier Sys., 3541, 278-285.

    Dubovik, O., and M. D. King, 2000: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements,J. Geophys. Res., 105(D16), 20673-20696.

    Giles, D. M., B. N. Holben, T. F. Eck, et al., 2012: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions,J. Geophys. Res., 117(D17), doi:10.1029/2012jd018127.

    Higurashi, A., and T. Nakajima, 2002: Aerosol type classification with seawifs four-channel radiance data, in:11th Conference on Atmospheric Radiation, OGDEN, UT, 3-7 June, 2002, 59-62.

    Hsu, N. C., S. C. Tsay, M. D. King, et al., 2004: Aerosol properties over bright-reflecting source regions,IEEE Trans. Geosci. Remote Sens., 42(3), 557-569, doi:10.1109/Tgrs.2004.824067.

    Jeong, M. J., and Z. Q. Li, 2005: Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and total ozone mapping spectrometer,J. Geophys. Res., 110(D10), doi:10.1029/2004jd0 04647.

    Martonchik, J. V., D. J. Diner, R. A. Kahn, et al., 1998: Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging,IEEE Trans. Geosci. Remote Sens., 36(4), 1212-1227.

    Niang, A., F. Badran, C. Moulin, et al., 2006: Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method,Remote Sens. Environ., 100(1), 82-94.

    Suykens, J. A. K., 2001: Support vector machines: A nonlinear modelling and control perspective,European J. Control, 7, 311-327.

    Vapnik, V. N., 1999: An overview of statistical learning theory,IEEE Trans. Neural Netw., 10, 988-999.

    :Fan, X.-H., and H.-B. Chen, 2014: Aerosol type identification using PARASOL multichannel polarized data, Atmos.Oceanic Sci. Lett., 7, 224-229,

    10.3878/j.issn.1674-2834.13.0088.

    Received 19 November 2013; revised 18 February 2014; accepted 18 February 2014; published 16 May 2014

    FAN Xue-Hua, fxh@mail.iap.ac.cn

    噜噜噜噜噜久久久久久91| 色吧在线观看| 91九色精品人成在线观看| 亚洲人成伊人成综合网2020| 嫩草影院入口| 亚洲最大成人av| 国产91精品成人一区二区三区| 欧美最新免费一区二区三区 | 一区二区三区四区激情视频 | 亚洲av日韩精品久久久久久密| 深夜a级毛片| 天天一区二区日本电影三级| 国产成人a区在线观看| 最新在线观看一区二区三区| 给我免费播放毛片高清在线观看| 国产成人福利小说| 亚洲成人中文字幕在线播放| 国内少妇人妻偷人精品xxx网站| 91狼人影院| 国产高清三级在线| 性欧美人与动物交配| 久久九九热精品免费| 国产成人福利小说| 久久精品国产清高在天天线| 丁香欧美五月| 久久欧美精品欧美久久欧美| 国产精品久久久久久久电影| 黄色配什么色好看| 搞女人的毛片| 国产综合懂色| 熟女人妻精品中文字幕| 亚洲欧美日韩高清专用| 18美女黄网站色大片免费观看| 色哟哟·www| 国产私拍福利视频在线观看| 亚洲自拍偷在线| 欧美+亚洲+日韩+国产| 久久久久国产精品人妻aⅴ院| 欧美潮喷喷水| 乱码一卡2卡4卡精品| 欧美另类亚洲清纯唯美| 午夜激情欧美在线| 久久久久国内视频| 色综合站精品国产| 高清日韩中文字幕在线| 搡老岳熟女国产| 国产精品一区二区三区四区免费观看 | 日韩中字成人| 欧美激情国产日韩精品一区| aaaaa片日本免费| 制服丝袜大香蕉在线| 亚洲国产欧洲综合997久久,| 国产伦精品一区二区三区视频9| 91午夜精品亚洲一区二区三区 | 国产激情偷乱视频一区二区| 久久伊人香网站| 99热这里只有是精品在线观看 | 国产精品一区二区三区四区免费观看 | 天天一区二区日本电影三级| 国内精品久久久久精免费| 国产精品久久电影中文字幕| 欧美黄色淫秽网站| 精品熟女少妇八av免费久了| 久久久久久久精品吃奶| 成年女人永久免费观看视频| www.色视频.com| 嫩草影视91久久| 成年版毛片免费区| 欧美+日韩+精品| 久久久久久久久中文| 免费在线观看日本一区| 亚洲精品456在线播放app | 国产精品久久久久久精品电影| 日韩人妻高清精品专区| 夜夜看夜夜爽夜夜摸| 免费看光身美女| 国产大屁股一区二区在线视频| 特大巨黑吊av在线直播| 国内精品久久久久久久电影| 国产精品永久免费网站| 国产成人a区在线观看| 国产欧美日韩精品一区二区| 午夜免费男女啪啪视频观看 | 亚洲精品日韩av片在线观看| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 欧美黑人巨大hd| 欧美成狂野欧美在线观看| 1024手机看黄色片| 国产成人欧美在线观看| av黄色大香蕉| 老司机午夜福利在线观看视频| 两人在一起打扑克的视频| 最新在线观看一区二区三区| 最新在线观看一区二区三区| 校园春色视频在线观看| 欧美极品一区二区三区四区| 精品人妻一区二区三区麻豆 | 亚洲成av人片在线播放无| 国产欧美日韩精品一区二区| 免费av观看视频| 免费av不卡在线播放| 色哟哟哟哟哟哟| 欧美最新免费一区二区三区 | 国内精品美女久久久久久| 日本黄大片高清| 亚洲自拍偷在线| 丰满的人妻完整版| 九九久久精品国产亚洲av麻豆| 久久久久精品国产欧美久久久| 亚洲,欧美,日韩| 亚洲精品在线美女| 又粗又爽又猛毛片免费看| 天堂动漫精品| 欧美成人a在线观看| 两人在一起打扑克的视频| 亚洲av成人精品一区久久| 成人国产综合亚洲| 亚洲成人免费电影在线观看| eeuss影院久久| 亚洲av一区综合| 无人区码免费观看不卡| 日本一本二区三区精品| 国产精品98久久久久久宅男小说| 精品人妻1区二区| 悠悠久久av| 国产在线精品亚洲第一网站| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 成人国产综合亚洲| 精品久久久久久久久久免费视频| 日本在线视频免费播放| 99久久精品国产亚洲精品| 两个人视频免费观看高清| avwww免费| 成年女人永久免费观看视频| 日本 av在线| 国产精品久久久久久精品电影| 亚洲综合色惰| 日韩欧美一区二区三区在线观看| 色综合亚洲欧美另类图片| 黄片小视频在线播放| 丰满人妻一区二区三区视频av| 免费av毛片视频| 他把我摸到了高潮在线观看| 美女高潮喷水抽搐中文字幕| 久久精品影院6| 十八禁网站免费在线| 国产精品久久久久久精品电影| 亚洲av成人av| 有码 亚洲区| 女生性感内裤真人,穿戴方法视频| 欧美日韩乱码在线| 欧美成人a在线观看| 熟女人妻精品中文字幕| 熟女人妻精品中文字幕| 国产69精品久久久久777片| 久久伊人香网站| 级片在线观看| 日日摸夜夜添夜夜添小说| 久久久久国产精品人妻aⅴ院| 欧美激情久久久久久爽电影| 两性午夜刺激爽爽歪歪视频在线观看| 动漫黄色视频在线观看| 国产男靠女视频免费网站| 免费av毛片视频| 黄色视频,在线免费观看| 久久久久九九精品影院| 国产v大片淫在线免费观看| 老女人水多毛片| 午夜免费男女啪啪视频观看 | 蜜桃亚洲精品一区二区三区| 蜜桃亚洲精品一区二区三区| 久久人妻av系列| 又黄又爽又免费观看的视频| 日本免费一区二区三区高清不卡| 国产成年人精品一区二区| 欧美成人一区二区免费高清观看| 国产精品美女特级片免费视频播放器| 最近最新中文字幕大全电影3| 免费无遮挡裸体视频| 午夜福利在线观看免费完整高清在 | 男插女下体视频免费在线播放| 午夜激情欧美在线| 国产高清三级在线| 欧美精品啪啪一区二区三区| 神马国产精品三级电影在线观看| 久久人人爽人人爽人人片va | 国产精品久久久久久久久免 | 亚洲国产高清在线一区二区三| 精品一区二区三区人妻视频| 搡老岳熟女国产| 亚洲狠狠婷婷综合久久图片| 精品熟女少妇八av免费久了| 精品久久久久久久久久久久久| 免费看光身美女| 亚洲美女黄片视频| 美女高潮喷水抽搐中文字幕| 真人一进一出gif抽搐免费| 十八禁国产超污无遮挡网站| 精品福利观看| 看十八女毛片水多多多| 精品久久久久久久人妻蜜臀av| 国产69精品久久久久777片| 搞女人的毛片| 国产高清激情床上av| 高清毛片免费观看视频网站| 窝窝影院91人妻| av中文乱码字幕在线| 久久久久久大精品| 亚洲人成电影免费在线| 亚洲av不卡在线观看| 91九色精品人成在线观看| 亚洲 国产 在线| 性色av乱码一区二区三区2| 蜜桃久久精品国产亚洲av| 欧美区成人在线视频| 丰满人妻一区二区三区视频av| 日韩亚洲欧美综合| 真人做人爱边吃奶动态| 97碰自拍视频| 亚洲七黄色美女视频| 最新在线观看一区二区三区| 好看av亚洲va欧美ⅴa在| 国内少妇人妻偷人精品xxx网站| 丰满乱子伦码专区| 夜夜夜夜夜久久久久| 国产精品乱码一区二三区的特点| 国产主播在线观看一区二区| 亚洲精品久久国产高清桃花| 淫妇啪啪啪对白视频| 在线观看av片永久免费下载| 淫秽高清视频在线观看| 亚洲一区高清亚洲精品| 757午夜福利合集在线观看| 少妇丰满av| 久久久久国内视频| 脱女人内裤的视频| 免费看a级黄色片| 精品久久久久久久末码| 国产av麻豆久久久久久久| 亚洲成人精品中文字幕电影| 男女之事视频高清在线观看| 亚洲成a人片在线一区二区| 亚洲av五月六月丁香网| 久久人人爽人人爽人人片va | 老女人水多毛片| 中文字幕av成人在线电影| 精品免费久久久久久久清纯| 国产在视频线在精品| 国产一区二区三区视频了| 变态另类丝袜制服| 老司机午夜福利在线观看视频| 九九在线视频观看精品| 欧美日韩中文字幕国产精品一区二区三区| 国产精品亚洲av一区麻豆| 国产视频一区二区在线看| 精品久久久久久久久av| 蜜桃亚洲精品一区二区三区| 久久香蕉精品热| 18禁黄网站禁片免费观看直播| 中亚洲国语对白在线视频| 窝窝影院91人妻| 美女免费视频网站| 男女视频在线观看网站免费| 国产高清三级在线| 自拍偷自拍亚洲精品老妇| 一区二区三区免费毛片| 久久久久久久久中文| 精品国产三级普通话版| 久久久国产成人免费| 又黄又爽又免费观看的视频| 99热只有精品国产| 久久久国产成人精品二区| 国产精品亚洲一级av第二区| 色哟哟·www| 两人在一起打扑克的视频| 亚洲经典国产精华液单 | 国产精品一区二区免费欧美| 99国产极品粉嫩在线观看| 久久久久国内视频| 亚洲午夜理论影院| 一进一出好大好爽视频| 亚洲人与动物交配视频| 婷婷亚洲欧美| 男女做爰动态图高潮gif福利片| 简卡轻食公司| 天天一区二区日本电影三级| 久久精品国产清高在天天线| 国内毛片毛片毛片毛片毛片| 老女人水多毛片| 男人舔奶头视频| 舔av片在线| 欧美色欧美亚洲另类二区| 久久午夜亚洲精品久久| 青草久久国产| 国产伦精品一区二区三区四那| 日本黄色视频三级网站网址| 变态另类丝袜制服| 18禁黄网站禁片午夜丰满| 18+在线观看网站| 免费看a级黄色片| 国产伦人伦偷精品视频| 欧美高清性xxxxhd video| 黄色日韩在线| 在线观看一区二区三区| 一级毛片久久久久久久久女| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| 动漫黄色视频在线观看| 色吧在线观看| 男女之事视频高清在线观看| 国产亚洲精品久久久com| 亚洲国产精品久久男人天堂| 在线十欧美十亚洲十日本专区| av欧美777| 日韩av在线大香蕉| 99热6这里只有精品| 成人精品一区二区免费| 日本黄色视频三级网站网址| av欧美777| 亚洲最大成人av| 午夜精品久久久久久毛片777| 亚洲avbb在线观看| 搞女人的毛片| 亚洲专区中文字幕在线| 丰满人妻一区二区三区视频av| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 久久久精品大字幕| 波野结衣二区三区在线| 中文字幕人成人乱码亚洲影| 我要看日韩黄色一级片| 一级作爱视频免费观看| 尤物成人国产欧美一区二区三区| 网址你懂的国产日韩在线| 婷婷色综合大香蕉| or卡值多少钱| 亚洲人成电影免费在线| 国产色爽女视频免费观看| 少妇高潮的动态图| 热99在线观看视频| av女优亚洲男人天堂| 内射极品少妇av片p| 悠悠久久av| 亚洲精品粉嫩美女一区| 熟女人妻精品中文字幕| 欧美国产日韩亚洲一区| 日韩精品中文字幕看吧| 亚洲真实伦在线观看| 午夜福利免费观看在线| 简卡轻食公司| 国产色婷婷99| 国产老妇女一区| 床上黄色一级片| 男人和女人高潮做爰伦理| 国产在视频线在精品| 网址你懂的国产日韩在线| 精华霜和精华液先用哪个| 一区二区三区四区激情视频 | 国产精品三级大全| 国产精品嫩草影院av在线观看 | 听说在线观看完整版免费高清| 国产美女午夜福利| av专区在线播放| 国产精品综合久久久久久久免费| 国产国拍精品亚洲av在线观看| 国产精华一区二区三区| 久久久久精品国产欧美久久久| 亚洲va日本ⅴa欧美va伊人久久| 免费看a级黄色片| 综合色av麻豆| 免费看日本二区| 国产免费男女视频| 嫩草影视91久久| 欧美一区二区国产精品久久精品| 午夜老司机福利剧场| 免费人成在线观看视频色| 午夜福利高清视频| 欧美日韩中文字幕国产精品一区二区三区| 欧美丝袜亚洲另类 | 91麻豆av在线| 久久久久国产精品人妻aⅴ院| 欧美在线黄色| 两个人视频免费观看高清| 婷婷丁香在线五月| 在线a可以看的网站| 亚洲综合色惰| 国产成人aa在线观看| 国内精品一区二区在线观看| 精品午夜福利在线看| 日本撒尿小便嘘嘘汇集6| 亚洲经典国产精华液单 | 成人av在线播放网站| 国产精品乱码一区二三区的特点| 久久亚洲精品不卡| 国产精华一区二区三区| 国产又黄又爽又无遮挡在线| 成年版毛片免费区| 国产蜜桃级精品一区二区三区| 免费人成视频x8x8入口观看| 男女那种视频在线观看| 波多野结衣高清无吗| 亚洲av第一区精品v没综合| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 国模一区二区三区四区视频| 国产aⅴ精品一区二区三区波| 亚洲国产精品合色在线| 婷婷色综合大香蕉| 亚洲七黄色美女视频| 国产精品伦人一区二区| 黄色日韩在线| 亚洲熟妇中文字幕五十中出| 精品无人区乱码1区二区| 日韩中文字幕欧美一区二区| 观看美女的网站| 色视频www国产| 国产视频一区二区在线看| 综合色av麻豆| 亚洲在线观看片| 国产伦精品一区二区三区视频9| 成人av在线播放网站| 中文字幕久久专区| 国产三级在线视频| av女优亚洲男人天堂| 白带黄色成豆腐渣| 亚洲国产欧洲综合997久久,| 欧美高清性xxxxhd video| 亚洲第一区二区三区不卡| 超碰av人人做人人爽久久| 国产在线男女| 亚洲熟妇熟女久久| 尤物成人国产欧美一区二区三区| 成人三级黄色视频| 午夜福利视频1000在线观看| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 一本精品99久久精品77| 国产精品久久久久久亚洲av鲁大| 51午夜福利影视在线观看| 99热这里只有是精品50| 免费av不卡在线播放| or卡值多少钱| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 在线观看午夜福利视频| a级一级毛片免费在线观看| 久久精品国产自在天天线| 日韩中字成人| 99热只有精品国产| 最近最新免费中文字幕在线| 欧美精品啪啪一区二区三区| 狠狠狠狠99中文字幕| 精品一区二区三区av网在线观看| 美女黄网站色视频| 国产av一区在线观看免费| 午夜a级毛片| 中出人妻视频一区二区| 国产爱豆传媒在线观看| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 脱女人内裤的视频| 我的女老师完整版在线观看| 亚洲第一欧美日韩一区二区三区| 97碰自拍视频| 欧美成人一区二区免费高清观看| 熟妇人妻久久中文字幕3abv| a级毛片a级免费在线| 国内精品久久久久精免费| av欧美777| 国产单亲对白刺激| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线观看吧| 成人国产综合亚洲| 观看美女的网站| 免费看光身美女| 国产黄色小视频在线观看| 好看av亚洲va欧美ⅴa在| 偷拍熟女少妇极品色| 欧美日韩国产亚洲二区| 噜噜噜噜噜久久久久久91| 免费一级毛片在线播放高清视频| 他把我摸到了高潮在线观看| 成人亚洲精品av一区二区| 久久欧美精品欧美久久欧美| 欧美在线一区亚洲| 91狼人影院| 中文字幕熟女人妻在线| 波多野结衣巨乳人妻| 深夜精品福利| 级片在线观看| 色综合亚洲欧美另类图片| 婷婷丁香在线五月| 精品久久久久久,| 免费在线观看成人毛片| 男人舔奶头视频| 久99久视频精品免费| 人妻夜夜爽99麻豆av| 久久九九热精品免费| 亚洲第一区二区三区不卡| 99riav亚洲国产免费| 欧美日韩国产亚洲二区| 一个人免费在线观看的高清视频| 亚洲av中文字字幕乱码综合| 亚洲精品粉嫩美女一区| 成人美女网站在线观看视频| 亚洲,欧美精品.| av在线老鸭窝| 免费电影在线观看免费观看| 黄色丝袜av网址大全| 国产蜜桃级精品一区二区三区| 极品教师在线视频| 深夜a级毛片| 美女高潮的动态| 好男人电影高清在线观看| 简卡轻食公司| 日韩人妻高清精品专区| 麻豆国产av国片精品| 身体一侧抽搐| 一个人观看的视频www高清免费观看| 人妻制服诱惑在线中文字幕| 日韩欧美免费精品| 欧美激情国产日韩精品一区| 久久久精品欧美日韩精品| 欧美高清成人免费视频www| 久久精品影院6| 麻豆一二三区av精品| 有码 亚洲区| 午夜免费男女啪啪视频观看 | 麻豆成人午夜福利视频| 1000部很黄的大片| 国产精品嫩草影院av在线观看 | 一进一出抽搐动态| 熟女电影av网| 99riav亚洲国产免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 欧美精品国产亚洲| 国产大屁股一区二区在线视频| 99久久精品热视频| 国产成人欧美在线观看| 好男人电影高清在线观看| 亚洲国产色片| 亚洲中文字幕一区二区三区有码在线看| 国内毛片毛片毛片毛片毛片| 国产精品人妻久久久久久| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 精品久久久久久,| 精品无人区乱码1区二区| 日本黄大片高清| 久久久久国内视频| 一个人看的www免费观看视频| 少妇裸体淫交视频免费看高清| 国产精品人妻久久久久久| 国产免费av片在线观看野外av| 亚洲av电影不卡..在线观看| 99国产极品粉嫩在线观看| bbb黄色大片| 国产一区二区三区视频了| 性色avwww在线观看| 搞女人的毛片| 国产精品精品国产色婷婷| 麻豆一二三区av精品| 97超视频在线观看视频| 国产大屁股一区二区在线视频| av欧美777| 国产v大片淫在线免费观看| 看片在线看免费视频| 国产精品免费一区二区三区在线| 亚洲精品456在线播放app | 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 亚洲午夜理论影院| 色噜噜av男人的天堂激情| 国产成人啪精品午夜网站| 成人国产一区最新在线观看| 熟女人妻精品中文字幕| 自拍偷自拍亚洲精品老妇| 欧美丝袜亚洲另类 | 看黄色毛片网站| 欧美精品国产亚洲| 精品国内亚洲2022精品成人| 亚洲无线在线观看| 日韩欧美在线乱码| 亚洲av一区综合| 精品久久久久久久人妻蜜臀av| 国产成年人精品一区二区| 国产又黄又爽又无遮挡在线| 日韩欧美一区二区三区在线观看| 成熟少妇高潮喷水视频| 一a级毛片在线观看| 久久草成人影院| 亚洲成人中文字幕在线播放| 精品日产1卡2卡| 欧美又色又爽又黄视频| 国内精品久久久久久久电影| 久久欧美精品欧美久久欧美| 99久久精品国产亚洲精品| 国内少妇人妻偷人精品xxx网站| 成人性生交大片免费视频hd| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| 国产精品影院久久| 又爽又黄无遮挡网站| 婷婷色综合大香蕉| 别揉我奶头 嗯啊视频| 色吧在线观看| 日韩大尺度精品在线看网址| 久久久久久国产a免费观看| 免费av观看视频| 免费观看人在逋|