• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly Biased Hygroscopicity Derived from Size-Resolved Cloud Condensation Nuclei Activation Ratios without Data Inversion

    2014-03-30 07:54:06DENGZhaoZeandRANLiang

    DENG Zhao-Ze and RAN Liang

    Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    Highly Biased Hygroscopicity Derived from Size-Resolved Cloud Condensation Nuclei Activation Ratios without Data Inversion

    DENG Zhao-Ze and RAN Liang

    Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    The impact of aerosols on the climate and atmospheric environment depends on the water uptake ability of particles; namely, hygroscopic growth and activation into cloud condensation nuclei (CCN). The size-resolved activation ratios (SRAR), characterizing the fraction of aerosol particles that act as CCN at different particle sizes and supersaturations, can be measured using a combination of differential mobility analyzers (DMA) and particle counters. DMA-based measurements are influenced by the multiply charged particles and the quasi-mono-dispersed particles (effect of DMA transfer function) selected for each prescribed particle size. A theoretical study, assuming different particle number size distributions and hygroscopicity of aerosols, is performed to study the effects of the DMA transfer function and multiple charging on the measured SRAR and the derived hygroscopicity. Results show that the raw SRAR can be significantly skewed and hygroscopicity may be highly biased from the true value if the data are not corrected. The effect of the transfer function is relatively small and depends on the sample to sheath flow ratio. Multiply charged particles, however, can lead to large biases of the SRAR. These results emphasize that the inversion algorithm, which is used to correct the effects of the DMA transfer function and multiple charging, is necessary for accurate measurement of the SRAR.

    cloud condensation nuclei, size-resolved activation ratio, data inversion

    1 Introduction

    Atmospheric aerosols have a direct effect on climate and environment by altering the budget of radiation and an indirect effect by changing the properties of clouds. Both the direct and indirect effects of aerosols depend not only on their population and dry sizes, but also on their water uptake ability. When exposed to humidified air, particles grow in size, and hence scatter more light and degrade the visibility. At sufficient supersaturations, a fraction of aerosol particleswill be activated as cloud condensation nuclei (CCN) and form cloud droplets. Particles with larger hygroscopicity can grow to a larger size in a subsaturated condition and be activated as CCN at lower supersaturations.

    A great many studies have been carried out to measure the hygroscopicity of aerosols using different approaches. Humidified tandem differential mobility analyzers (H-TDMA) have been used to measure diameter growth factors at a maintained relative humidity (Swietlicki et al., 2008; Massling et al., 2009; Meier et al., 2009; Liu et al., 2011). Scattering growth factors of bulk aerosols have been measured using humidified nephelometers (Pan et al., 2009) or visibility meters (Li et al., 2013). Hygroscopic parameters can also be determined from measurements of the aerosol chemical composition (Liu et al., 2014).

    In recent years, size-resolved activation ratios (SRAR) (Frank et al., 2006), which can be used to characterize aerosol hygroscopicity in supersaturated conditions, have been measured using a combination of differential/ scanning mobility particle sizers (DMPS/SMPS) (Wang et al., 2003; Wiedensohler et al., 2012) and CCN counters (CCNC) (Roberts and Nenes, 2005; Lance et al., 2006). This method was applied to calibrate the CCNC (Rose et al., 2008), and also to measurements made in the laboratory (Cruz and Pandis, 1997) and in field campaigns (Dusek et al., 2006; Rose et al., 2010; Deng et al., 2011; Gunthe et al., 2011). The SRAR, which provides the information on both the size-resolved chemical compositions and the mixing states of aerosols, was used to reasonably predict the CCN number concentrations in closure studies (Deng et al., 2013). The diameter where 50% of the particles are activated (D50) is commonly referred to as the critical dry diameter and is used to calculate hygroscopicity parameters.

    However, SRAR requires data inversion, since the measurements employ a differential mobility analyzer (DMA) to separate mono-dispersed aerosol particles from the poly-dispersed ones. There are two effects: 1) rather than selecting only one single particle size (electrical mobility) the DMA selects a range of particle sizes (DMA transfer function); 2) rather than selecting only particles with a prescribed size and a single charge the DMA also selects some larger ones carrying multiple charges with the same electrical mobility. Both the DMA transfer function width and the multiple charging skew the measured SRAR. Petters et al. (2007) found that multiply charged particles might lead to a non-monotonic SRAR if themode diameter of the particle number size distribution (PNSD) exceeds the critical dry diameter and the estimated D50 by minimizing theχ2-statistic defined therein. Rose et al. (2008) corrected for multiply charged particles by assuming a constant multiply charged fraction across the whole size range, and characterized SRAR as a two-step function. Frank et al. (2006), Moore et al. (2010), and Deng et al. (2012) presented different methods for full inversion algorithms, which are used to correct the effects of the DMA transfer function and multiple charging.

    During several measurement campaigns in the North China Plain, the inverted SRAR differ largely from the raw data, which usually overestimate the activation ratios around the critical diameters. In this work, the highly biased hygroscopicity parameters derived from the raw SRAR are presented via a theoretical study to emphasize the importance of data inversion.

    2 Methodology

    To estimate the potential deviation induced by lack of data inversion, we perform a forward numerical calculation of the measured quantities using assumed aerosol properties and instrument settings.

    2.1 Assumption of particle number size distribution and hygroscopicity

    The PNSD of atmospheric aerosols can be roughly represented by a logarithmic normal distribution, i.e.,

    whereDis the diameter of aerosol particles. The aerosol number concentration,Na, is assumed to be constant (20000 cm3), sinceNadoes not influence the calculation of activation ratios. Here, the geometric deviation,gσ, is set as 1.5-2.0 (Wu et al., 2008; Shen et al., 2011). The geometric mean diameter,Dg, which usually varies from several to hundreds of nanometers, has a significant influence on the calculated results. Here,Dgis chosen as a set of values between 50 nm and 200 nm, which covers the range of peaks for CCN-active aerosols.

    The hygroscopicity of atmospheric aerosols is complicated, because aerosol particles are composed of a large number of substances and these compounds can be internally or externally mixed. Petters and Kreidenweis (2007) proposed a single parameter,κ, to represent the hygroscopicity of aerosols, which avoids a detailed description of chemical compositions and allows measurements and parameterizations of hygroscopicity from different methods to be linked. To simplify the characterization of hygroscopicity, we adapted the size-dependentκfrom Liu et al. (2014) as centralκvalues at the given dry sizes. The SRAR at supersaturation,S, can be expressed as

    where the critical dry diameter,Dc(S), is determined by the supersaturationS, the temperatureT, and the sizedependentκ. The parameterC, which is zero for aerosols with homogenous chemical compositions, represents the effect of the aerosol-mixing state on hygroscopicity.Cis set asDc(S)/10, which well characterizes the aerosol activation curves according to previous measurements.

    The number size distribution of particles serving as CCN (CNSD) at supersaturationScan therefore be expressed as

    2.2 Measured concentrations in condensation particle counter (CPC) and CCNC

    The DMPS/SMPS-CCNC system measures CN and CCN number concentrations, (NCN(D) andNCCN(D,S)), at different sizes and different supersaturations, and thus provides measurements of SRAR,Am(D,S) =NCCN(D,S)/NCN(D). The DMA selects particles with a certain range of electrical mobility. The selected portion of particles from the DMA, however, contains not only particles with specified diameters, but also ones with the same mobility but multiply charged. Both the DMA transfer function width and the multiple charging contribute to skewing the direct measurement of activation ratios. Here, we simulate the concentrations measured in CPC and CCNC following Hagen and Alofs (1983).

    The DMA selects particles with mobilityZi(i= 1, 2, …,I) when assigned a diameterDi, and the measured concentration

    where the size parameterx= logD. The kernal function,G(i,x), is

    whereφ(x,υ) is the probability that a particle of sizexcarriesυcharges. (Wiedensohler, 1988).Ω(x,υ,i) is the transfer function of the DMA (Knutson and Whitby, 1975), and is related to the sample to sheath flow ratio.

    Equation (4) is calculated numerically at intervals much smaller than the measurement, in size range [xint,1,xint,J]. The particle number size distribution at sizexint,jis expressed as a linear interpolation of those at selected sizes,

    Equation (4) is thereby written as

    where

    Dirac Function

    Let

    then Eq. (4) becomes

    The equation set-up can be written in matrix form as

    whereTis anI×Imatrix determined by the DMA hardware and settings, andRandNare vectors with lengthI. With known number size distribution,, the concentrations measured by CPC and CCNC can be calculated.

    3 Results

    3.1 An example of biased SRAR

    Figure 1 presents an example of the calculated results, assuming PNSD with a geometric mean diameter of 120 nm, a geometric deviation of 1.5, and a critical dry diameter of 70 nm (equivalently,κ= 0.2257 at a supersaturation of 0.4372% and a temperature of 20°C). In this case, the sample to sheath ratio is set as 1:4.

    Figure 1a shows the PNSD and corresponding CNSD induced from the assumed SRAR. Using the charging probability of particles and the flow ratio setting in the DMA, the raw concentrations of CN and CCN measured by CPC and CCNC are calculated (Fig. 1b), which provides an estimation of SRAR taking account of the non-zero width of the DMA transfer function width and the multiply charged particles (Fig. 1c). The activationratios are generally higher than the true values. As the activation ratio is larger for larger sizes, the raw activation ratios for a selected particle size are enhanced due to the inclusion of larger particles with the same mobilities and multiple charges. The width of the activation curve is also larger than the true value.

    Figure 1 An example of particle/cloud condensation nuclei (CCN) number (a) size distributions, (b) the measured concentrations, and (c) activation ratios.

    An activation critical diameter,D50,raw, can be calculated as the diameter where the raw activation ratio is 0.5. In this case,D50,rawis 60.8 nm, while the true value is 70 nm. If the SRAR are not corrected for multiple charging and the DMA transfer function, the derived hygroscopicity is overestimated asκ= 0.3455 at a diameter of 60.8 nm.

    3.2 Biased hygroscopicity for PNSDs with different geometric mean diameters

    The numerical calculation of the concentrations measured by CPC and CCNC is performed for PNSD with different geometric mean diameters and geometric deviations at different supersaturations. The critical diameters and hygroscopicity are calculated for the SRAR without data inversion (Fig. 2a). Here only the results for the geometric deviation of 1.5 are shown, since the results for other geometric deviations are similar.

    The true values of hygroscopicity,κ, are between 0.22 and 0.24 at diameters of 40-120 nm; they slightly increase with diameter, and reach 0.33 at a diameter of 270 nm. Without data inversion, the measured hygroscopicity for PNSDs with a small geometric mean diameter is overestimated at small critical sizes (large supersaturations) and is underestimated at large critical dry sizes (small supersaturations). For PNSDs with large geometric mean diameters, the hygroscopicity is generally overestimated, especially at small critical sizes (large supersaturations). Super-100 nm particles have a high probability of being doubly charged, leading to a large deviation of the calculated hygroscopicity from the true values for PNSDs with large geometric mean diameters.

    3.3 Influence of multiply charged particles on the measured hygroscopicity

    To quantify the contribution of multiply charged particles to the biases of hygroscopicity, we also perform a calculation considering only the singly charged particles. The thin lines in Fig. 1b present the concentration of singly charged particles measured by CPC and CCNC. The measured number concentrations for particles smaller than 200 nm contain a fraction of multiply charged particles, since super-100 nm particles have a large probability of being multiply charged. The resulting SRARs (Fig. 1c) are not an exact fit but are close to the true values compared to the SRARs with multiply charged particles. The hygroscopicity derived from singly charged particles (Fig. 2b) decreases with diameter between 40 nm and 120 nm, while the true value increases with diameter. The measured hygroscopicity for a singly charged particle is higher for PNSDs with larger geometric mean diameters. However, the measured hygroscopicity for singly charged particles are only slightly different from the true values, less than 0.04, indicating that multiply charged particles account for most of the deviation.

    3.4 Influence of DMA sample to sheath flow ratio on the measured hygroscopicity

    The width of the DMA transfer function also influences the derived hygroscopicity. The width of the DMA transfer function, which is determined mainly by the DMA sample to sheath flow ratio,Fsa/Fsh, is usually characterized in the range of mobility by a triangle with a height of one-and-a-half times the width ofZiFas/Fshcentered at the prescribed mobility,Zi. The hygroscopicity parameters are recalculated using a narrower DMA transfer function at anFsa/Fshof 1:10. The derived hygroscopicity parameters are also highly biased when multiply charged particles are included (Fig. 3a), although they arecloser to the true values than those using anFsa/Fshof 1:4. The derived hygroscopicity parameters without multiply charged particles are very close to the true values (Fig. 3b), with the largest deviation less than 0.01. A narrower DMA transfer function results in a smaller bias, because the quasi-mono-dispersed particles selected by the DMA have a smaller size range.

    Figure 2 True values of the hygroscopicity parameter,κ, and those from measurements without data inversion with a differential mobility analyzers (DMA) sample to sheath flow ratio of 1:4. The black solid line represents the true hygroscopicity, while the others are the measurements of aerosols with different geometric mean diameters: (a) particles with all charges; (b) only singly charged particles.

    Figure 3 True values of the hygroscopicity parameter,κ, and those from measurements without data inversion with a DMA sample to sheath flow ratio of 1:10. The black solid line represents the true hygroscopicity, while the others are the measurements of aerosols with different geometric mean diameters: (a) particles with all charges; (b) only singly charged particles.

    4 Conclusion and discussion

    The DMA-based systems separate particles with a prescribed size by extracting the ones with a small range of electrical mobilities. Data inversion is required for measured concentrations because the selected particles are quasi-mono-dispersed and may carry more than one charge. The multiply charged particles can significantly alter the raw SRAR. Generally, the SRAR are overestimated, since the multiply charged particles are larger in size and have higher activation ratios. The effect of multiply charged particles is more prominent for PNSDs with a large fraction of super-100 nm particles, which have a larger probability of being multiply charged than smaller particles. The DMA transfer function, determined by the sample to sheath flow ratio, has a minor influence on the raw SRAR compared to the multiple charging of particles. Although a smaller sample to sheath flow ratio is favorable for reducing the deviation of measurements, the limited sampling time might result in a smaller sampling volume and increase the fluctuation error. The raw SRAR, as well as the hygroscopicity derived from the D50 of the raw SRAR, might be highly biased if the effects of multiple charging and the DMA transfer function are not corrected. The effect of the DMA transfer function and multiple charging on the raw SRAR and derived hygroscopicity parameter clearly indicates data inversion to be critical for the size-resolved CCN measurement. It is recommended that a high sample to sheath flow ratio (considering the size range and other measurement requirements) should be set to reduce the fluctuation error and the observational data should be corrected with a full inversion algorithm.

    Acknowledgements. This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 41205098 and 41305114) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Grant No. XDA05100000).

    Cruz, C. N., and S. N. Pandis, 1997: A study of the ability of pure secondary organic aerosol to act as cloud condensation nuclei,Atmos. Environ., 31, 2205-2214, doi:10.1016/S1352-2310(97) 00054-X.

    Deng, Z. Z., C. S. Zhao, N. Ma, et al., 2011: Size-resolved and bulk activation properties of aerosols in the North China Plain,Atmos. Chem. Phys., 11, 3835-3846, doi:10.5194/acp-11-3835-2011.

    Deng, Z. Z., C. S. Zhao, N. Ma, et al., 2012: A method for measuring aerosol activation ratios with high size resolution,Acta Sci. Nat. Univ. Pekin., 48, 386-392.

    Deng, Z. Z., C. S. Zhao, N. Ma, et al., 2013: An examination of parameterizations for the CCN number concentration based on in situ measurements of aerosol activation properties in the North China Plain,Atmos. Chem. Phys., 13, 6227-6237, doi:10.5194/ acp-13-6227-2013.

    Dusek, U., G. P. Frank, L. Hildebrandt, et al., 2006: Size matters more than chemistry for cloud-nucleating ability of aerosol particles,Science, 312, 1375-1378, doi:10.1126/science.1125261.

    Frank, G. P., U. Dusek, and M. O. Andreae, 2006: Technical note: A method for measuring size-resolved CCN in the atmosphere,Atmos. Chem. Phys. Discuss., 6, 4879-4895, doi:10.5194/acpd-6-4879-2006.

    Gunthe, S. S., D. Rose, H. Su, et al., 2011: Cloud condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing,Atmos. Chem. Phys., 11, 11023-11039, doi:10.5194/acp-11-11023-2011.

    Hagen, D. E., and D. J. Alofs, 1983: Linear inversion method to obtain aerosol size distributions from measurements with a differential mobility analyzer,Aerosol Sci. Tech., 2, 465-475,doi:10.1080/02786828308958650.

    Knutson, E. O., and K. T. Whitby, 1975: Aerosol classification by electric mobility: Apparatus, theory, and applications,J. Aerosol Sci., 6, 443-451, doi:10.1016/0021-8502(75)90060-9.

    Lance, S., J. Medina, J. N. Smith, et al., 2006: Mapping the operation of the DMT continuous flow CCN counter,Aerosol Sci. Tech., 40, 242-254, doi:10.1080/02786820500543290.

    Li, C. C., X. He, Z. Z. Deng, et al., 2013: Dependence of mixed aerosol light scattering extinction on relative humidity in Beijing and Hong Kong,Atmos. Oceanic Sci. Lett., 6, 117-121.

    Liu, H. J., C. S. Zhao, B. Nekat, et al., 2014: Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain,Atmos. Chem. Phys., 14, 2525-2539, doi:10.5194/acp-14-2525-2014.

    Liu, P. F., C. S. Zhao, T. G?bel, et al., 2011: Hygroscopic properties of aerosol particles at high relative humidity and their diurnal variations in the North China Plain,Atmos. Chem. Phys., 11, 3479-3494, doi:10.5194/acp-11-3479-2011.

    Massling, A., M. Stock, B. Wehner, et al., 2009: Size segregated water uptake of the urban submicrometer aerosol in Beijing,Atmos. Environ., 43, 1578-1589, doi:10.1016/j.atmosenv.2008.06. 003.

    Meier, J., B. Wehner, A. Massling, et al., 2009: Hygroscopic growth of urban aerosol particles in Beijing (China) during wintertime: A comparison of three experimental methods,Atmos. Chem. Phys., 9, 6865-6880, doi:10.5194/acp-9-6865-2009.

    Moore, R. H., A. Nenes, and J. Medina, 2010: Scanning mobility CCN analysis-a method for fast measurements of size-resolved CCN distributions and activation kinetics,Aerosol Sci. Tech., 44, 861-871, doi:10.1080/02786826.2010.498715.

    Pan, X. L., P. Yan, J. Tang, et al., 2009: Observational study of influence of aerosol hygroscopic growth on scattering coefficient over rural area near Beijing mega-city,Atmos. Chem. Phys., 9, 7519-7530, doi:10.5194/acp-9-7519-2009.

    Petters, M. D., and S. M. Kreidenweis, 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity,Atmos. Chem. Phys., 7, 1961-1971, doi:10. 5194/acp-7-1961-2007.

    Petters, M. D., A. J. Prenni, S. M. Kreidenweis, et al., 2007: On measuring the critical diameter of cloud condensation nuclei using mobility selected aerosol,Aerosol Sci. Tech., 41, 907-913, doi:10.1080/02786820701557214.

    Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements,Aerosol Sci. Tech., 39, 206-221, doi:10.1080/027868290913 988.

    Rose, D., S. S. Gunthe, E. Mikhailov, et al., 2008: Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment,Atmos. Chem. Phys., 8, 1153-1179, doi:10.5194/ acp-8-1153-2008.

    Rose, D., A. Nowak, P. Achtert, et al., 2010: Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China—Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity,Atmos. Chem. Phys., 10, 3365-3383, doi:10.5194/acp-10-3365-2010.

    Shen, X. J., J. Y. Sun, Y. M. Zhang, et al., 2011: First long-term study of particle number size distributions and new particle formation events of regional aerosol in the North China Plain,Atmos. Chem. Phys., 11, 1565-1580, doi:10.5194/acp-11-1565- 2011.

    Swietlicki, E., H.-C. Hansson, K. H?meri, et al., 2008: Hygroscopic properties of submicrometer atmospheric aerosol particles measured with H-TDMA instruments in various environments—A review,Tellus B, 60, 432-469, doi:10.1111/j.1600-0889.2008. 00350.x.

    Wang, J., R. C. Flagan, and J. H. Seinfeld, 2003: A differential mobility analyzer (DMA) system for submicron aerosol measurements at ambient relative humidity,Aerosol Sci. Tech., 37, 46-52, doi:10.1080/02786820300891.

    Wiedensohler, A., 1988: An approximation of the bipolar charge distribution for particles in the submicron size range,J. Aerosol Sci., 19, 387-389, doi:10.1016/0021-8502(88)90278-9.

    Wiedensohler, A., W. Birmili, A. Nowak, et al., 2012: Mobility particle size spectrometers: Harmonization of technical standards and data structure to facilitate high quality long-term observations of atmospheric particle number size distributions,Atmos. Meas. Tech., 5, 657-685, doi:10.5194/amt-5-657-2012.

    Wu, Z., M. Hu, P. Lin, et al., 2008: Particle number size distribution in the urban atmosphere of Beijing, China,Atmos. Environ., 42, 7967-7980, doi:10.1016/j.atmosenv.2008.06.022.

    :Deng, Z.-Z., and L. Ran, 2014: Highly biased hygroscopicity derived from size-resolved cloud condensation nuclei activation ratios without data inversion,Atmos. Oceanic Sci. Lett., 7, 254-259,

    10.3878/j.issn. 1674-2834.13.0116.

    Received 31 December 2013; revised 24 March 2014; accepted 11 April 2014; published 16 May 2014

    DENG Zhao-Ze, dengzz@mail.iap.ac.cn

    级片在线观看| 1024手机看黄色片| 色av中文字幕| 国产精华一区二区三区| 亚洲男人天堂网一区| 少妇粗大呻吟视频| 欧美成人午夜精品| 9191精品国产免费久久| 可以在线观看毛片的网站| 99热这里只有是精品50| 两个人看的免费小视频| xxx96com| 丰满人妻熟妇乱又伦精品不卡| 国产人伦9x9x在线观看| 国产v大片淫在线免费观看| 无人区码免费观看不卡| 亚洲欧美日韩高清专用| 欧美人与性动交α欧美精品济南到| 在线观看免费日韩欧美大片| 一本一本综合久久| 青草久久国产| 99精品久久久久人妻精品| 两性夫妻黄色片| 在线观看免费日韩欧美大片| 亚洲五月婷婷丁香| 欧美色视频一区免费| 黄色片一级片一级黄色片| 给我免费播放毛片高清在线观看| 国模一区二区三区四区视频 | 成人亚洲精品av一区二区| 国产精品自产拍在线观看55亚洲| 身体一侧抽搐| 午夜日韩欧美国产| 50天的宝宝边吃奶边哭怎么回事| 中文在线观看免费www的网站 | 亚洲欧美日韩无卡精品| 美女免费视频网站| 少妇人妻一区二区三区视频| 国产又色又爽无遮挡免费看| 久久天堂一区二区三区四区| 亚洲精品色激情综合| 亚洲九九香蕉| 老汉色av国产亚洲站长工具| 美女黄网站色视频| 99re在线观看精品视频| 久久精品夜夜夜夜夜久久蜜豆 | 免费看美女性在线毛片视频| 欧美zozozo另类| 欧美zozozo另类| 久久精品91无色码中文字幕| 一本久久中文字幕| 国产精品美女特级片免费视频播放器 | 啦啦啦韩国在线观看视频| 精品久久久久久久人妻蜜臀av| 亚洲精品av麻豆狂野| 91九色精品人成在线观看| 欧美激情久久久久久爽电影| 麻豆成人av在线观看| 久久国产精品影院| 日本黄色视频三级网站网址| 91字幕亚洲| 男女午夜视频在线观看| 99re在线观看精品视频| 一进一出好大好爽视频| 久久久水蜜桃国产精品网| 欧美日韩中文字幕国产精品一区二区三区| 精品久久久久久久毛片微露脸| 欧美性猛交╳xxx乱大交人| 我要搜黄色片| 亚洲七黄色美女视频| 国产成人精品无人区| 51午夜福利影视在线观看| 黄频高清免费视频| 久久精品国产亚洲av高清一级| 免费人成视频x8x8入口观看| 69av精品久久久久久| 禁无遮挡网站| 好男人在线观看高清免费视频| 在线观看日韩欧美| 欧美乱妇无乱码| 好男人在线观看高清免费视频| 午夜激情福利司机影院| 国产69精品久久久久777片 | 熟女少妇亚洲综合色aaa.| 午夜福利成人在线免费观看| 91麻豆av在线| 欧美极品一区二区三区四区| 淫妇啪啪啪对白视频| 成人18禁在线播放| 成人18禁在线播放| 精品一区二区三区av网在线观看| 啦啦啦观看免费观看视频高清| 国产亚洲精品综合一区在线观看 | 小说图片视频综合网站| 99热这里只有是精品50| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 亚洲精品在线美女| 日韩免费av在线播放| 白带黄色成豆腐渣| 亚洲精品在线美女| 97碰自拍视频| www日本黄色视频网| 两个人免费观看高清视频| 一区二区三区国产精品乱码| 欧美日韩瑟瑟在线播放| 久久婷婷成人综合色麻豆| av天堂在线播放| 国产一区二区在线观看日韩 | 国产成人一区二区三区免费视频网站| 狂野欧美激情性xxxx| 天堂影院成人在线观看| 真人做人爱边吃奶动态| 在线观看66精品国产| 伊人久久大香线蕉亚洲五| 两个人免费观看高清视频| 久久久水蜜桃国产精品网| 日本免费a在线| 18禁裸乳无遮挡免费网站照片| 麻豆国产av国片精品| 欧美成人免费av一区二区三区| 欧美大码av| 国产亚洲精品一区二区www| 国语自产精品视频在线第100页| 99久久久亚洲精品蜜臀av| 国内少妇人妻偷人精品xxx网站 | 少妇粗大呻吟视频| 午夜免费成人在线视频| av欧美777| 亚洲精品粉嫩美女一区| 丝袜美腿诱惑在线| 这个男人来自地球电影免费观看| 久99久视频精品免费| 成人三级做爰电影| 久久人妻av系列| 久久精品国产综合久久久| 国产精品一区二区精品视频观看| 久久欧美精品欧美久久欧美| 国产不卡一卡二| 亚洲精品国产精品久久久不卡| 岛国在线免费视频观看| 久久午夜亚洲精品久久| 99久久综合精品五月天人人| 亚洲人成网站高清观看| 亚洲自偷自拍图片 自拍| 久久国产精品影院| 一进一出抽搐gif免费好疼| 美女大奶头视频| 国产精品一及| 久久久久久大精品| 一边摸一边抽搐一进一小说| 久久久久性生活片| 国产片内射在线| 亚洲中文日韩欧美视频| 一二三四在线观看免费中文在| 波多野结衣高清无吗| 国产精品一及| 日本a在线网址| 在线观看日韩欧美| svipshipincom国产片| 超碰成人久久| 欧美又色又爽又黄视频| 十八禁网站免费在线| 母亲3免费完整高清在线观看| 亚洲欧美激情综合另类| 美女高潮喷水抽搐中文字幕| av有码第一页| 亚洲人成伊人成综合网2020| 国产熟女xx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一码二码三码区别大吗| 午夜福利成人在线免费观看| av免费在线观看网站| 午夜免费观看网址| 欧美成人性av电影在线观看| 法律面前人人平等表现在哪些方面| 成年版毛片免费区| www日本黄色视频网| 免费人成视频x8x8入口观看| 国产成人啪精品午夜网站| 国产精品98久久久久久宅男小说| 久久精品国产亚洲av香蕉五月| 国产精品久久视频播放| 黄色丝袜av网址大全| 久热爱精品视频在线9| 久久天堂一区二区三区四区| 俺也久久电影网| 婷婷丁香在线五月| 怎么达到女性高潮| 三级男女做爰猛烈吃奶摸视频| 亚洲自拍偷在线| 亚洲七黄色美女视频| 国产成人欧美在线观看| 99精品在免费线老司机午夜| 成人午夜高清在线视频| 男人的好看免费观看在线视频 | 欧美日韩精品网址| 亚洲美女黄片视频| 19禁男女啪啪无遮挡网站| 欧美成人一区二区免费高清观看 | 很黄的视频免费| 中文在线观看免费www的网站 | 性色av乱码一区二区三区2| 久9热在线精品视频| 亚洲第一电影网av| 超碰成人久久| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 国产精品久久久久久人妻精品电影| 久久久久久亚洲精品国产蜜桃av| 看免费av毛片| 亚洲国产高清在线一区二区三| 久久人人精品亚洲av| 国产亚洲欧美在线一区二区| 一本一本综合久久| 亚洲欧洲精品一区二区精品久久久| 老司机午夜十八禁免费视频| 夜夜躁狠狠躁天天躁| 在线观看免费视频日本深夜| www日本黄色视频网| 亚洲九九香蕉| 99riav亚洲国产免费| 欧洲精品卡2卡3卡4卡5卡区| 欧美激情久久久久久爽电影| 久久久国产欧美日韩av| 国产av不卡久久| 青草久久国产| 亚洲欧洲精品一区二区精品久久久| 少妇熟女aⅴ在线视频| 午夜福利在线在线| 黄色视频不卡| 国产精华一区二区三区| 国产av一区在线观看免费| 又黄又爽又免费观看的视频| 欧美av亚洲av综合av国产av| 黄色视频,在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 91老司机精品| 小说图片视频综合网站| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人一区二区三区免费视频网站| 丁香六月欧美| 动漫黄色视频在线观看| 久久中文看片网| 日韩高清综合在线| 一卡2卡三卡四卡精品乱码亚洲| 女人爽到高潮嗷嗷叫在线视频| 国产爱豆传媒在线观看 | 国产片内射在线| 亚洲一区中文字幕在线| 色在线成人网| 国产精品爽爽va在线观看网站| 午夜老司机福利片| 欧美日本视频| 村上凉子中文字幕在线| 成在线人永久免费视频| 无人区码免费观看不卡| 精品高清国产在线一区| 国产高清视频在线播放一区| 丰满人妻一区二区三区视频av | 久久久久久久久免费视频了| 一级黄色大片毛片| 草草在线视频免费看| 狠狠狠狠99中文字幕| www.精华液| 老司机在亚洲福利影院| 亚洲美女视频黄频| 午夜福利在线观看吧| 国内久久婷婷六月综合欲色啪| 日韩国内少妇激情av| 亚洲精品在线观看二区| 亚洲精品粉嫩美女一区| 一个人观看的视频www高清免费观看 | 久久久久久久久中文| 神马国产精品三级电影在线观看 | netflix在线观看网站| 欧美日本亚洲视频在线播放| 18禁美女被吸乳视频| 成人亚洲精品av一区二区| 欧美日韩精品网址| 在线永久观看黄色视频| 高清毛片免费观看视频网站| 亚洲天堂国产精品一区在线| 亚洲电影在线观看av| 哪里可以看免费的av片| 非洲黑人性xxxx精品又粗又长| 怎么达到女性高潮| 亚洲成人久久性| 色综合站精品国产| 久久草成人影院| 国产精品一区二区三区四区免费观看 | 97碰自拍视频| 亚洲av日韩精品久久久久久密| 一级作爱视频免费观看| 一级毛片高清免费大全| 国产亚洲精品第一综合不卡| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 亚洲精品一卡2卡三卡4卡5卡| 丰满的人妻完整版| 黄片大片在线免费观看| 黄色a级毛片大全视频| 国内少妇人妻偷人精品xxx网站 | 90打野战视频偷拍视频| 99久久精品国产亚洲精品| 天天一区二区日本电影三级| 国产精品久久久人人做人人爽| 桃红色精品国产亚洲av| 看免费av毛片| 此物有八面人人有两片| 91av网站免费观看| 美女扒开内裤让男人捅视频| 在线观看66精品国产| 丰满人妻一区二区三区视频av | 女人爽到高潮嗷嗷叫在线视频| 巨乳人妻的诱惑在线观看| 99久久无色码亚洲精品果冻| 男女视频在线观看网站免费 | 男女那种视频在线观看| 亚洲成av人片在线播放无| 免费无遮挡裸体视频| 91字幕亚洲| 一进一出好大好爽视频| 90打野战视频偷拍视频| 18美女黄网站色大片免费观看| 99热6这里只有精品| 精品久久久久久久久久久久久| 在线观看舔阴道视频| 亚洲成人中文字幕在线播放| 美女大奶头视频| 深夜精品福利| 一个人免费在线观看的高清视频| 丝袜人妻中文字幕| 欧美3d第一页| 久久热在线av| 在线国产一区二区在线| 日韩国内少妇激情av| 久久精品91蜜桃| 久久国产乱子伦精品免费另类| 两个人免费观看高清视频| 亚洲国产欧美人成| 中亚洲国语对白在线视频| av片东京热男人的天堂| 级片在线观看| 黄色成人免费大全| 久久久国产精品麻豆| 成人三级做爰电影| 久久久久国产精品人妻aⅴ院| 久久精品国产清高在天天线| 国产精华一区二区三区| 看黄色毛片网站| 亚洲成人精品中文字幕电影| 国产精品 国内视频| 日韩大尺度精品在线看网址| 午夜免费成人在线视频| 亚洲七黄色美女视频| 精品第一国产精品| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 久久久久亚洲av毛片大全| 最近最新中文字幕大全免费视频| 91大片在线观看| 日本五十路高清| 母亲3免费完整高清在线观看| 午夜精品一区二区三区免费看| 欧美日本亚洲视频在线播放| 日韩大码丰满熟妇| 99国产精品99久久久久| 亚洲自拍偷在线| 亚洲五月天丁香| 亚洲av中文字字幕乱码综合| 午夜福利在线在线| 国产成人精品无人区| 老司机午夜福利在线观看视频| 成人特级黄色片久久久久久久| 久久香蕉国产精品| 两人在一起打扑克的视频| 国产精品免费视频内射| 变态另类丝袜制服| 欧美3d第一页| 亚洲熟女毛片儿| 淫秽高清视频在线观看| 欧美色欧美亚洲另类二区| 国产黄片美女视频| 变态另类丝袜制服| 精品熟女少妇八av免费久了| 亚洲专区字幕在线| 国产欧美日韩一区二区三| 1024手机看黄色片| 手机成人av网站| 男女床上黄色一级片免费看| 国产单亲对白刺激| 婷婷精品国产亚洲av| 国产成年人精品一区二区| 女人被狂操c到高潮| 午夜两性在线视频| 91成年电影在线观看| 成人18禁在线播放| 午夜福利在线在线| 欧美成人一区二区免费高清观看 | 看免费av毛片| 99re在线观看精品视频| 亚洲人与动物交配视频| 少妇熟女aⅴ在线视频| 老汉色av国产亚洲站长工具| 老司机午夜福利在线观看视频| 久久久久久免费高清国产稀缺| 黄色视频,在线免费观看| 观看免费一级毛片| 亚洲自拍偷在线| 精品熟女少妇八av免费久了| 欧美不卡视频在线免费观看 | 啦啦啦观看免费观看视频高清| www.自偷自拍.com| 色精品久久人妻99蜜桃| 91九色精品人成在线观看| 欧美黄色片欧美黄色片| 国产成人欧美在线观看| 国产视频一区二区在线看| 我要搜黄色片| 久久热在线av| 丁香欧美五月| 久9热在线精品视频| 欧美精品啪啪一区二区三区| 亚洲无线在线观看| 91老司机精品| 午夜a级毛片| 久久久精品国产亚洲av高清涩受| 久久香蕉精品热| 日本免费a在线| 精品国产乱子伦一区二区三区| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | 亚洲激情在线av| 午夜福利在线观看吧| 一卡2卡三卡四卡精品乱码亚洲| 国内精品一区二区在线观看| 18禁黄网站禁片免费观看直播| 久久精品国产亚洲av高清一级| 欧美成人免费av一区二区三区| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 中亚洲国语对白在线视频| www.精华液| 亚洲成人免费电影在线观看| 久久中文看片网| 久久香蕉激情| 日本一区二区免费在线视频| 在线看三级毛片| 又黄又爽又免费观看的视频| 美女黄网站色视频| 熟女少妇亚洲综合色aaa.| 欧美又色又爽又黄视频| 午夜精品在线福利| 亚洲国产精品合色在线| 琪琪午夜伦伦电影理论片6080| 国产人伦9x9x在线观看| 欧美av亚洲av综合av国产av| 在线观看免费午夜福利视频| 久久国产精品影院| 男女之事视频高清在线观看| 看片在线看免费视频| 亚洲,欧美精品.| 亚洲第一欧美日韩一区二区三区| 国产爱豆传媒在线观看 | 欧美激情久久久久久爽电影| 亚洲精品国产精品久久久不卡| xxx96com| 国产免费av片在线观看野外av| 女人被狂操c到高潮| 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 国产黄片美女视频| 国产伦人伦偷精品视频| 亚洲av中文字字幕乱码综合| 亚洲av成人av| 久久热在线av| 午夜免费观看网址| 亚洲avbb在线观看| 美女免费视频网站| 精品一区二区三区四区五区乱码| 欧美日韩黄片免| 丝袜人妻中文字幕| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久人妻av系列| 午夜免费观看网址| 伦理电影免费视频| 国产精品香港三级国产av潘金莲| 99久久精品国产亚洲精品| 此物有八面人人有两片| 久9热在线精品视频| 999久久久精品免费观看国产| 久久精品成人免费网站| 国内精品一区二区在线观看| 亚洲无线在线观看| 可以在线观看毛片的网站| 国产成年人精品一区二区| 色尼玛亚洲综合影院| 草草在线视频免费看| 欧美日韩亚洲国产一区二区在线观看| 无遮挡黄片免费观看| av片东京热男人的天堂| 亚洲 国产 在线| 黄色片一级片一级黄色片| 亚洲全国av大片| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 久久天躁狠狠躁夜夜2o2o| 亚洲午夜精品一区,二区,三区| 18禁美女被吸乳视频| 国产成人精品久久二区二区免费| АⅤ资源中文在线天堂| 日本一本二区三区精品| 精品乱码久久久久久99久播| svipshipincom国产片| 两个人免费观看高清视频| 亚洲av电影不卡..在线观看| 亚洲自拍偷在线| 又爽又黄无遮挡网站| 精品人妻1区二区| 精品一区二区三区四区五区乱码| 国内少妇人妻偷人精品xxx网站 | 真人一进一出gif抽搐免费| 国产亚洲精品久久久久久毛片| 日本 欧美在线| 亚洲欧美精品综合一区二区三区| 欧美在线一区亚洲| 不卡av一区二区三区| 国产黄色小视频在线观看| 欧美乱码精品一区二区三区| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 国产精品九九99| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀| 久久久久久久久免费视频了| 黄片小视频在线播放| 九色国产91popny在线| www.999成人在线观看| 观看免费一级毛片| 免费在线观看完整版高清| 亚洲av成人精品一区久久| 亚洲精品色激情综合| 精品第一国产精品| 亚洲国产欧洲综合997久久,| 人妻丰满熟妇av一区二区三区| 美女高潮喷水抽搐中文字幕| 制服人妻中文乱码| 久久中文看片网| 精品久久久久久久久久免费视频| 丰满人妻一区二区三区视频av | 日本免费一区二区三区高清不卡| 日韩有码中文字幕| 伊人久久大香线蕉亚洲五| 老司机午夜十八禁免费视频| 国产野战对白在线观看| 久久久久国产一级毛片高清牌| 国产一区在线观看成人免费| 日韩欧美在线二视频| 国产91精品成人一区二区三区| 欧美大码av| 国产精品一区二区三区四区久久| 精品久久久久久久人妻蜜臀av| 香蕉丝袜av| 老司机在亚洲福利影院| 91国产中文字幕| 久久久久久九九精品二区国产 | 又粗又爽又猛毛片免费看| 最新在线观看一区二区三区| 男人舔女人下体高潮全视频| 久久久久精品国产欧美久久久| 亚洲精品美女久久久久99蜜臀| 黄色毛片三级朝国网站| 叶爱在线成人免费视频播放| 亚洲午夜精品一区,二区,三区| cao死你这个sao货| 亚洲 欧美 日韩 在线 免费| 午夜精品久久久久久毛片777| 国产野战对白在线观看| 午夜福利成人在线免费观看| 精品国产美女av久久久久小说| 啦啦啦观看免费观看视频高清| 亚洲狠狠婷婷综合久久图片| 熟妇人妻久久中文字幕3abv| 人成视频在线观看免费观看| 久久精品91蜜桃| 欧美人与性动交α欧美精品济南到| 国产av在哪里看| 美女扒开内裤让男人捅视频| 免费电影在线观看免费观看| 成人一区二区视频在线观看| 听说在线观看完整版免费高清| 亚洲一区中文字幕在线| 日韩大码丰满熟妇| 久久久久久九九精品二区国产 | 久久久久久九九精品二区国产 | 亚洲精品一区av在线观看| 久久这里只有精品19| 97人妻精品一区二区三区麻豆| www国产在线视频色| 少妇被粗大的猛进出69影院| 欧美一级a爱片免费观看看 | 啦啦啦观看免费观看视频高清| 欧美一区二区国产精品久久精品 | 老司机靠b影院| 久久久久国内视频| 妹子高潮喷水视频| x7x7x7水蜜桃| 国产精品香港三级国产av潘金莲| 91大片在线观看| 国产亚洲欧美在线一区二区| 搞女人的毛片| 国产成人影院久久av|