• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Forward-Scattering Angles of Atmospheric Aerosols in North China

    2014-03-30 07:54:04JIAShengJieandDaRen

    JIA Sheng-Jieand Lü Da-Ren

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    Optimal Forward-Scattering Angles of Atmospheric Aerosols in North China

    JIA Sheng-Jie1,2and Lü Da-Ren1

    1Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Science, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    The accurate understanding of atmospheric aerosol extinction coefficients is very important for atmospheric science research. To achieve a fast and simple method for determining the parameters, the selection of optimal forward-scattering angles of atmospheric aerosols is required. In this paper, the authors introduce the detection basis of forward-scattering of atmospheric aerosols, and the authors verify the sensitivity of the phase function to the real part of the complex refractive index. The authors use the Jaenicke urban aerosol model to determine that forward-scattering angles near 33° are suitable. However, the optimal forward-scattering angles in North China are between 37° and 40°. Numerical simulation shows that certain types of particle size distribution of newly generated particles and pollution have limited influences on the selection of forward-scattering angles. But the ranges of these insensitive angles shift ~ 10 degrees for dust intrusion, and the relative deviations of the phase function are less than 5.0% within extra angles of 0° to 3°. This study can serve as a reference for the selection of optimal forward-scattering angles for visibility meters and Present Weather Identifiers (PWIs) in addition to the detection of forward-scattering optical properties.

    forward-scattering angles, phase function, complex refractive index, visibility meters

    1 Introduction

    Atmospheric aerosols are solid and liquid particles suspended in the atmosphere with diameters that range from ~10?3μm to 10 μm (Zhang, 1995) that originate from molecules of nucleated clusters of crustal dust up to tens of microns in cloud droplets (D’Almeida et al., 1991). Aerosol particles vary greatly in size, source, chemical composition, optical properties, amount, distribution in space and time, and lifetime in the atmosphere. However, the various factors that influence the characteristics of atmospheric aerosols are not known comprehensively thus far (Intergovernmental Panel on Climate Change (IPCC), 2007).

    As a key component of aerosol research, the scattering characteristics of the anterior hemisphere of atmosphericaerosols particles ranged from 0° and 90° along the direction of the incident wave, hereinafter referred to as forwardscattering, has been studied for many years (Van de Hulst, 1957; Lü and Wei, 1978; Yang and Liou, 2000). Previous studies (Lü et al., 1981; Qiu et al., 1984) have focused mainly on theoretical and experimental analyses of the forward-scattering of atmospheric aerosols within small angles, which were used for the retrievals of size distributions and complex refractive indices of aerosol particles. Qiu and Zhou (1986) discussed the sensitivity of phase function to the scattering parameters of the atmospheric aerosols because of the potential for high accuracy and portability in measuring the atmospheric aerosol optical properties. However, limited studies have been conducted for quantitative analysis of phase function sensitivity to the complex refractive index by size distribution (Li et al., 1994; Li and Peng, 2012). In the present study, for the selection of optimal forward-scattering angles of aerosols, these sensitivities were studied quantitatively according to observational datasets and numerical simulation.

    A prototype of forward-scattering Present Weather Identifiers (PWIs) was developed by the Institute of Atmospheric Physics, Chinese Academy of Science, in December 2008 in which an automatic real-time instrument was proposed that accurately measures visibility and distinguishes weather types such as fog, haze, and mist. This type of instrument is important for near-future automatic weather observations in China (China Meteorological Administration, 2006). One of the crucial functions of the instrument is the selection of optimal forward-scattering angles of atmospheric aerosols according to the observed aerosol properties in China. In Section 2 of this paper, we introduce the theoretical basis of forward-scattering detection, and the selection of optimal forward-scattering angles of atmospheric aerosols with typical aerosol models is discussed in Section 3.1. Three types of aerosol conditions including new-particle generation, pollution, and dusty weather are simulated, and the influence of their differences on the selection of optimal forward-scattering angles is discussed in Section 3.2. Finally, we summarize the optimal forward-scattering angles of atmospheric aerosols in North China in Section 3.3.

    2 The theoretical basis of forward-scattering detection

    Briefly, the scattering intensityI(θ) from a fixedforward-scattering angle of atmospheric aerosol particles is defined by the following equation (Liou, 2004):

    whereθis the forward-scattering angle,I0is the incident energy,σsis the scattering coefficient,Ris the distance from the observation point to the scatters, andP(θ) is the normalized scattering phase function. Equation (1) can be simplified as:

    wherekis the measuring constant.

    Because the complex refractive index and the number concentration distributions, hereafter referred to as size distributions, of atmospheric aerosol particles change continually, quantitative analysis of the extinction coefficient by a fixed forward-scattering angle of aerosol particles requires the following criteria:

    1) The phase functionP(θ) is insensitive to the complex refractive index and the particle size distribution; that is,P(θ) can be considered as a constant when theθangle changes.

    2) There is no absorption effect on the aerosol particles or there is a defined linear relationship between the scattering coefficient and extinction coefficient of aerosol particles. That is

    whereσeis the extinction coefficient,cis a constant, andc≤ 1.

    3) The shape of aerosol particles is spherical.

    The first criterion is the theoretical basis of optimal forward-scattering detection, in which the phase function is insensitive to the complex refractive index and the size distribution of aerosols. Because the types of atmospheric aerosol size distribution differ significantly among regions, it is necessary to determine the optimal forwardscattering angles according to the observed aerosol types. The scattering coefficient of aerosol particles can be calculated by Eq. (1).

    For some applications related to extinction coefficients, however, such as forward-scattering visibility meters, the second criterion should be considered. Assuming that the incident wavelength is 550 nm (Han et al., 2012), the complex refractive index is generally less than 0.008 (World Meteorological Organization (WMO), 1983; D’Almeida et al., 1991) excluding some special conditions such as soot-polluted cities. In addition, according to the Mie theory (Mie, 1908), scattering energy accounts for most of the extinction energy for a high-number concentration and a larger equivalent radius of particles. In such cases, the single scattering albedo (SSA) of particles is close to 1.0.

    For the third criterion, it is clear that most of the actual atmospheric aerosol particles are non-spherical. However, the differences in phase functions of spherical and non-spherical particles is negligible for forward-scattering within the forward-scattering angles from 0° to 40° for monodispersed aerosol particles (Yang and Liou, 2000) and from 0° to 50° for polydispersed particles (Liou, 2004). Therefore, to facilitate calculation, the assumption of spherical particles was used in this paper.

    3 Optimal selection of forward-scattering angles

    Considering the aforementioned criteria, it is necessary to determine the aerosol size distributions in the quantitative study of optimal forward-scattering angles. However, the actual aerosol size distributions undergo spatiotemporal changes. For various research purposes, scientists have proposed several aerosol size distribution models such as gamma distribution for environmental aerosol particles (Deirmendjian, 1969), Junge distribution for urban aerosol particles (Junge, 1963), and hierarchical representation distribution (Seinfeld and Pandis, 1998). In these models, lognormal distribution is used most often (Shi, 2007). For more realistic study (Jaenicke, 1993), we used the following equation to describe the aerosol size distribution:

    HereNi(cm?3) is the number concentration of theith bin,r(nm) is the diameter of the aerosol particle,rpi(nm) is the median diameter of theith bin, andσgiis the standard deviation of theith bin.

    In the following sections (3.1-3.3), the sensitivity of phase function to the real part of the complex refractive index for typical aerosol size distributions has been studied by using the Bohren-Huffman Mie model (BHMIE; Bohren and Huffman, 1983; Wiscombe, 1996; Du, 2004). First, we tested the sensitivity by using typical aerosol models (Jaenicke, 1993). On the basis of an observed aerosol dataset obtained from Wuqing station in Tianjin, three typical aerosol size distributions were simulated. Therefore, the optimal forward-scattering angles of atmospheric aerosols were studied in North China according to the observation of a regional atmospheric background station.

    3.1 Typical aerosol models

    On the basis of a large number of observational data obtained from various regions, Jaenicke (1993) categorized seven typical aerosol size distributions including urban, marine, rural, remote continent, free troposphere, polar, and desert. In this section, we selected four of the distribution types that are most affected by human activities (Table 1). To better describe the size distributions, the sensitivity of phase function to the real part of the complex refractive indexR(θ,m) is defined by the follow equation:

    wherem=mR? mI×iis the complex refractive index of aerosol particles,mRis the real part andmIis the imaginary part.m0= 1.5 ? 0.01 ×i,mI= 0.01. The imaginary part refers to the second criterion described in Section 2.

    Table 1 Variables of the Jaenicke aerosol models in four typical regions and their insensitive angles with relative deviation (RD).

    Figure 1 shows the sensitivity of the phase function to the real part of the complex refractive index determined by using the Jaenicke aerosol models. The modified phase functionR(θ,m) maintained the value of 0.90 to 1.10 with aθrange of 28° to 33°, whereasmRvaried from 1.3 to 1.7 (Table 1). For the urban aerosol model (Fig. 1a), the insensitive angle is in the vicinity of 33° due to the relative deviation of less than 5.0%; the relative deviation is equal to 1-R(θ,m). This conclusion is generally applied to determine forward-scattering angles for visibility meters (Vaisala, 2002; Zeng et al., 1999). In the following section, three typical aerosol size distributions are simulated and analyzed to determine the various influences on the selection of the optimal forward-scattering angles.

    3.2 Numerical simulation

    In general, the size distribution and the chemical compositions of atmospheric aerosols change significantly according to various weather conditions or pollution incidents (Seinfeld and Pandis, 2006). In the present study, three representative events including new particle generation, pollution, and dust intrusion were selected, and the corresponding size distributions were simulated (Table 2). As shown in Table 2, type (a) is the observed average aerosol size distribution from Wuqing station, and types (b)-(d) are the simulation results of aerosol size distribution based on type (a) according to the three events, respectively. To better reflect the simulation results, the new particle generation (type (b)) enhanced theNvalue of mode I, and the pollution incident (type (c)) enhanced theNvalue of mode III. TheNvalue of mode I was set to zero, and theNvalue of mode IV was setting to 100 in the dust intrusion incident (type (d); Seinfeld and Pandis, 2006; Shen, 2009). The rigorously validated raw data (type (a); Ma et al., 2011) was obtained from the research data recorded during the Hachi campaign in Wuqing, Tianjin Province (Liang, 2012).

    Figure 1 Sensitivity of the phase function to the real part of the complex refractive index as determined by using Jaenicke aerosol models. The color bar isR(θ,m), and (a)-(d) are urban, marine, rural, and remote continent, respectively.

    Table 2 Variables of the four aerosol models under four weather conditions and their insensitive angles with relative deviation (RD).

    The relative deviations of the phase function were less than 10.0% whenθchanged from 30° to 52° and were less than 5.0% near 37° (Fig. 2 and Table 2). The phase function of the new particle generation (Fig. 2b) and the pollution incident (Fig. 2c) had a limited effect in the range of the angles, but for the dust intrusion incident, these insensitive angles were in the range of 28° to 40° (Table 2). It was noted that the relative deviation was even less than 5.0% within 0° to 3° in the dust intrusion incident, in which the relative deviation would normally be above 20.0% for other weather conditions. The phenomena of unusually low relative deviation at 0° to 3° has not been reported in other studies and it will supply an additional selection for the optimal forward-scattering angle in desert areas or areas with heavy dust pollution.

    It can be concluded from Figs. 1 and 2 that the insensitive angles of the phase function to the real part of the complex refractive index are in the range of 28° to 52° and vary according to the size distributions of the atmospheric aerosols. Thus, it is very important to study typical size distributions of atmospheric aerosols in various regions before determining the optimal forward-scattering angles of aerosols for inversion methods. In Section 3.3, a representative site is selected in North China as an example of such analysis.

    3.3 Optimal forward-scattering detection angles in North China

    The particle size distributions of atmospheric aerosols in North China were observed by the Chinese Academy of Meteorological Sciences (CAMS) at the Shangdianzi regional atmospheric background station during March 2008 to February 2009 (Shen, 2009). The observation instruments used were the Twin Differential Mobility Particle Sizer (TDMPS, IfT, Leipzig, Germany; Birmili et al., 1999) and the Aerodynamic Particle Sizer (APS Model3320, TSI, Inc., Shoreview, MN USA) that measure magnitudes of aerosols with diameters of 3 nm to 10 μm. Shen (2009) parameterized aerosol distributions to three modal lognormal size distributions according to the seasonal average of the dataset.

    Figure 2 Sensitivity of the phase function to the real part of the complex refractive index under (a) the average status, (b) new-particle generation, (c) pollution incident, and (d) dusty weather based on the dataset obtained from Wuqing station.

    The detailed optimal forward-scattering angles in Shangdianzi determined in the present study are shown in Fig. 3, and the parameterized distributions are shown in Table 3. It is obvious that the relative deviations of the phase function were less than 10.0% whenθwas in the range of 30° to 45°. During spring and autumn,θwas slightly smaller than that in winter and summer. However, the changes in all of the aforementioned seasonal angular ranges were significantly smaller than those in the dust intrusion incident (see Fig. 2). Furthermore, the relative deviations of the phase function were less than 5.0% when the forward-scattering angles ranged from 37° to 40° (Table 3). Because the aerosol models in Shangdianzi are typical of those in North China (Ke and Yang, 2007; Su et al., 2009), they are considered to be suitable for retrieving forward-scattering parameters, such as extinct coefficient, in this region with the same forward-scattering angles. This conclusion corresponds to the results of observational data recorded in Wuqing (Fig. 2a; Liang, 2012).

    4 Conclusion

    The study introduced a new detection theory based on the forward-scattering of atmospheric aerosols and presented three criteria for forward-scattering retrieval to quantitatively analyze the extinction coefficients of aerosols. The sensitivity of the phase function to the real part of the complex refractive index for typical aerosol size distributions was determined through BHMIE. The results are summarized in the following points:

    1) The phase function was insensitive to the changes of the real part of the complex refractive index near 33° in the case of Jaenicke urban aerosol model (Jaenicke, 1993). The relative deviations of the phase function wereless than 5.0% at that angle. This result is the theoretical basis for the selection of forward-scattering angles for the previous instruments of visibility meters and PWIs.

    Figure 3 Sensitivity of the phase function to the real part of complex refractive index recorded at Shangdianzi station during (a) spring, (b) summer, (c) autumn, and (d) winter.

    Table 3 Seasonal parameterized size distributions and their insensitive angles recorded at Shangdianzi station.

    2) The numerical simulation showed that the relative deviations of phase function were less than 10.0% in the forward-scattering angles from 30° to 52°, and the relative deviations were less than 5.0% in vicinity of 37°. The types of particle size distribution of new particle generation and pollution incidents had limited influence on the selection of the optimal forward-scattering angles. However, the range of these insensitive angles shifted by ~10 degrees for the dust intrusion incident, and the relative deviations were less than 5.0% within 0° to 3°. This process can be used as an additional selection method for optimal forward-scattering angles in desert areas or areas with heavy dust pollution.

    3) The observational data from the Shangdianzi regional atmospheric background station showed that the optimal forward-scattering angles were in the range of 37° to 40° in North China, which had limited influence on seasonal changes of aerosol size distributions.

    For accurate retrieval of the extinction coefficients of atmospheric aerosols, the optimal forward-scattering angles are needed. However, due to the variety in actual aerosol size distribution models with time, locations, species, and components, the errors from this method necessitate more discussion.

    The above analysis was used as the basis for design of the forward-scattering angles of PWIs. A comparison of the measurements of PWIs with those of various forward-scattering angles by IAP and by other manufacturers should be conducted in the near future. Moreover, the aerosol models and complex refractive index under various weather conditions and regions need further study to determine the optimal forward-scattering angles for reality aerosol conditions in the entire country of China.

    Acknowledgements. This study is supported mainly by the China Meteorological Administration under Grant GYHY200806031 and by the Chinese Academy of Sciences under Grant XDA05040302. The authors thank Professor Jinhuan QIU for his help with numerical simulation. The authors also thank the two anonymous reviewers for their constructive comments and suggestions.

    Birmili, W., F. Stratmann, and A. Wiedensohler, 1999: Design of a DMA based size spectrometer for a large particle size range and stable operation,J. Aerosol Sci., 30(4), 549-533.

    Bohren, C. F., and D. R. Huffman, 1983:Absorption and Scattering of Light by Small Particles, John Wiley, Hoboken, 530pp.

    China Meteorological Administration (CMA), 2006:Meteorological Development "Eleventh Five-Year Plan" (2006-2010)(in Chinese), 21pp, available at http://www.sdpc.gov.cn/fzgggz/fzgh/ ghwb/115zxgh/200710/P020071016507296438862.pdf.

    D'Almeida, G. A., P. Koepke, and E. P. Shettle, 1991:Atmospheric Aerosols: Global Climatology and Radiative Characteristics, A. Deepak Publishing, Hampton, 561pp.

    Deirmendjian, D., 1969:Electromagnetic Scattering on Spherical Polydispersions, Elsevier, New York, 290pp.

    Du, H., 2004: Mie-scattering calculation,Appl. Opt., 43, 1951-1956.

    Han, Y., R. Z. Rao, Y. J. Wang, et al., 2012: Inversive method on atmospheric aerosol scattering phase function,Infrared Laser Eng.(in Chinese), 41(11), 3050-3054.

    IPCC, 2007:Climate Change 2007:The Physical Science Basis, Contribution of Working Group I to Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon (Eds.), Cambridge University Press, Cambridge and New York, 171-180.

    Jaenicke, R., 1993: Tropospheric aerosols, in:Aerosol-Cloud-Climate Interactions, P. V. Hobbs (Eds.), Academic Press, San Diego, 235pp.

    Junge, C. E., 1963:Air Chemistry and Radioactivity, Academic Press, New York, 382pp.

    Ke, Z. J., and J. Tang, 2007: An observation study of the scattering properties properties of aerosols over Shangdianzi, Bejing,Chinese J. Atmos. Sci.(in Chinese), 31(3), 553-559.

    Li, C. W., and P. Peng, 2012: Visibility measurement using multi-angle forward scattering by liquid droplets,Measur. Sci. Tech., 23(10), 5802-5813.

    Li, G. H., J. B. Zhang, H. L. Hu, et al., 1994: Sensitivity analysis of light scattering and extinction parameters to the aerosol refractive index,Acta Optica. Sinica, 14(5), 551-553.

    Liang, S., N. Ma, W. J. Xu, et al., 2012: Analysis of particle size distribution measurements from a summer campaign in suburban Tianjin,Acta Sci. Nat. Univ. Pekin.(in Chinese), 48(2), 246-252.

    Liou, K. N., 2004:Introduction to Atmospheric Radiation(2nd ed.), China Meteorological Press, Beijing, 614pp.

    Lü, D. R., and Z. Wei, 1978: the theoretical calculation of atmospheric aerosol extinction by laser,Chinese J. Atmos. Sci.(in Chinese), 2(1), 145-152.

    Lü, D. R., X. J. Zhou, and J. H. Qiu, 1981: Theory and numerical experimental study of remote sensing of atmospheric aerosol size distribution by combined solar extinction and forward scattering method,Sci. China, 12, 1516-1523.

    Ma, N., C. S. Zhao, A. Nowak, et al., 2011: Aerosol optical properties in the North China Plain during HaChi campaign: An in-situ optical closure study,Atmos. Chem. Phys., 11, 5959-5973.

    Mie, G., 1908: Beitr?ge zur optic trüber Medien speziell kolloidaler Metall?sungen,Ann. Phys., 25, 377-445.

    Qiu, J. H., and X. J. Zhou, 1986: Simultaneous determination of aerosol size distribution and refractive index and surface albedo from radiance. Part I: Theory,Adv. Atmos. Sci., 3(2), 162-171.

    Qiu, J. H., X. J. Zhou, and Y. Z. Zhao, 1984: Theory analysis on aerosol refractive index by using remote sensing angle scattering method,Sci. China Ser. B-Chem., 10, 961-970.

    Seinfeld, J. H., and S. N. Pandis, 1998:Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, John Wiley & Sons, Inc., New Jersey, 350-355.

    Seinfeld, J. H., and S. N. Pandis, 2006:Atmospheric Chemistry and Physics: From Air Pollution to Climate Change(2nd ed.), John Wiley & Sons, Inc., New Jersey, 369-381.

    Shen, X. J., 2009:Particle Size Distribution Measurement and Analysis at Shangdianzi in Beijing(in Chinese), M. S.’s thesis, Chinese Academy of Meteorological Sciences, 30-34.

    Shi, G. Y., 2007:Atmospheric Radiation(in Chinese), Science Press, Beijing, 402pp.

    Su, C., X. L. Zhang, Q. Liu, et al., 2009: Analysis of the characteristics of aerosol scattering coefficient at Shangdianzi background station,Climatic Environ. Res.(in Chinese), 14(5), 537-545.

    Vaisala company, 2002:Weather Sensor FD12P User’s Guide, available at www.vaisala.com/Vaisala%20Documents/FD12P% 20User%20Guide%20in%20English.pdf, 10-24.

    Van de Hulst, H. C., 1957:Light Scattering by Small Particles, Wiley, New York, 446pp.

    Wiscombe, W., 1996:Mie Scattering Calculations-Advances in Technique And Fast, Vector-Speed Computer Codes, NCAR Teshnical Note TN-140+STR, National Center For Atmospheric Research, Boulder, 6-24, doi:10.5065/D6ZP4414.

    WMO, 1983:Report of the Experts Meeting on Aerosols and Their Climatic Effects, Rep. WCP-55, Geneva, 107pp.

    Yang, P., and K. N. Liou, 2000:Finite-Difference Time Domain Method for Light Scattering by Nonspherical and Inhomogeneous Particles, Academic Press, San Diego, 49pp.

    Zeng, S. E., and G. L. Wang, 1999: Observation and instrument of visibility,J. Appl. Meteor. Sci.(in Chinese), 10(2), 207-212.

    Zhang, C. C., and W. X. Zhou, 1995:Atmospheric Aerosols Tutorials, China Meteorological Press, Beijing, 328pp.

    :Jia, S.-J., and D.-R. Lü, 2014: Optimal forward-scattering angles of atmospheric aerosols in North China,Atmos. Oceanic Sci. Lett., 7, 236-242,

    10.3878/j.issn.1674-2834.13.0113.

    Received 2 January 2014; revised 27 January 2014; accepted 21 February 2014; published 16 May 2014

    Lü Da-Ren, ludr@mail.iap.ac.cn

    亚洲美女黄片视频| 真实男女啪啪啪动态图| 久久午夜福利片| 日韩欧美一区二区三区在线观看| 你懂的网址亚洲精品在线观看 | 亚洲人成网站在线观看播放| 九九爱精品视频在线观看| 一级黄片播放器| 人妻少妇偷人精品九色| 中国美女看黄片| 亚洲自偷自拍三级| 亚洲精品日韩在线中文字幕 | 日韩欧美国产在线观看| 在线观看午夜福利视频| 精品国产三级普通话版| 成人av一区二区三区在线看| 婷婷亚洲欧美| 成人漫画全彩无遮挡| 人人妻人人看人人澡| 中文字幕免费在线视频6| 给我免费播放毛片高清在线观看| 色综合站精品国产| 精品久久久久久久久亚洲| 国产熟女欧美一区二区| 午夜日韩欧美国产| 免费黄网站久久成人精品| 日韩亚洲欧美综合| 综合色丁香网| 久久中文看片网| 最好的美女福利视频网| 在线观看66精品国产| 日日摸夜夜添夜夜添小说| 亚洲欧美清纯卡通| 久久久久久久久大av| 变态另类成人亚洲欧美熟女| 精品人妻熟女av久视频| 99国产精品一区二区蜜桃av| 舔av片在线| 国产成人a∨麻豆精品| 久久久色成人| 春色校园在线视频观看| 国产亚洲91精品色在线| 亚洲美女视频黄频| 亚洲精品一卡2卡三卡4卡5卡| 欧美不卡视频在线免费观看| 色av中文字幕| 美女cb高潮喷水在线观看| 精品久久国产蜜桃| 色综合站精品国产| 我要搜黄色片| 夜夜爽天天搞| 亚洲精品国产成人久久av| 欧美日韩在线观看h| 村上凉子中文字幕在线| 国产成人精品久久久久久| 亚洲,欧美,日韩| 黄色欧美视频在线观看| 精品国内亚洲2022精品成人| 联通29元200g的流量卡| 精品免费久久久久久久清纯| 丰满的人妻完整版| 精品人妻偷拍中文字幕| 波野结衣二区三区在线| 亚洲人成网站在线观看播放| 国产乱人偷精品视频| 久久人人爽人人片av| 久久天躁狠狠躁夜夜2o2o| 有码 亚洲区| 成人三级黄色视频| 国产女主播在线喷水免费视频网站 | 久久人人爽人人片av| 毛片一级片免费看久久久久| 九九热线精品视视频播放| 国产精品久久久久久精品电影| 国产男靠女视频免费网站| 你懂的网址亚洲精品在线观看 | a级毛片免费高清观看在线播放| 一区二区三区高清视频在线| 成年女人看的毛片在线观看| 国产白丝娇喘喷水9色精品| 人人妻人人澡人人爽人人夜夜 | 日本爱情动作片www.在线观看 | 老司机午夜福利在线观看视频| 老司机影院成人| 秋霞在线观看毛片| 能在线免费观看的黄片| 美女内射精品一级片tv| 美女cb高潮喷水在线观看| 亚洲婷婷狠狠爱综合网| 我要搜黄色片| 插阴视频在线观看视频| 美女xxoo啪啪120秒动态图| 岛国在线免费视频观看| 俺也久久电影网| 国产片特级美女逼逼视频| 色视频www国产| 精品人妻熟女av久视频| 国产精品日韩av在线免费观看| 国产精品,欧美在线| 婷婷色综合大香蕉| 97碰自拍视频| 国产亚洲精品久久久久久毛片| 国产伦在线观看视频一区| 看片在线看免费视频| 又黄又爽又刺激的免费视频.| 精品日产1卡2卡| 干丝袜人妻中文字幕| 麻豆av噜噜一区二区三区| 国产精品美女特级片免费视频播放器| 麻豆乱淫一区二区| 尤物成人国产欧美一区二区三区| 观看免费一级毛片| 大又大粗又爽又黄少妇毛片口| 亚洲成人久久爱视频| 久久久久九九精品影院| 久久午夜亚洲精品久久| 能在线免费观看的黄片| 久久午夜亚洲精品久久| 黄色视频,在线免费观看| 日韩强制内射视频| 一个人免费在线观看电影| 丝袜美腿在线中文| 久久久色成人| 午夜老司机福利剧场| 校园人妻丝袜中文字幕| 色哟哟·www| 女生性感内裤真人,穿戴方法视频| 18禁在线播放成人免费| 国产精品av视频在线免费观看| 自拍偷自拍亚洲精品老妇| 在线观看av片永久免费下载| 亚洲成人久久性| 全区人妻精品视频| 国产视频一区二区在线看| 精品福利观看| 黄色一级大片看看| 搡老熟女国产l中国老女人| 小蜜桃在线观看免费完整版高清| 亚洲图色成人| 国产成人a区在线观看| 色5月婷婷丁香| 黄色日韩在线| 国产精品不卡视频一区二区| 欧美一级a爱片免费观看看| 日本在线视频免费播放| 亚洲av成人精品一区久久| 伦精品一区二区三区| 久久久久久久久中文| 中文字幕人妻熟人妻熟丝袜美| 99久国产av精品| 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 91狼人影院| 一区二区三区高清视频在线| 免费在线观看影片大全网站| 老熟妇仑乱视频hdxx| 久久精品久久久久久噜噜老黄 | 禁无遮挡网站| 三级毛片av免费| 尤物成人国产欧美一区二区三区| 性色avwww在线观看| 国产精华一区二区三区| 国产v大片淫在线免费观看| 高清毛片免费看| 蜜桃久久精品国产亚洲av| 晚上一个人看的免费电影| 国产视频内射| 又爽又黄无遮挡网站| 啦啦啦啦在线视频资源| 一级av片app| 精品午夜福利视频在线观看一区| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜爱| 久久6这里有精品| 亚洲精品影视一区二区三区av| 亚洲精品久久国产高清桃花| 日本一二三区视频观看| 99久国产av精品国产电影| 国产亚洲精品久久久com| 可以在线观看的亚洲视频| 日本三级黄在线观看| 国产成人freesex在线 | 免费电影在线观看免费观看| 久久精品国产亚洲av香蕉五月| 黄片wwwwww| 亚洲av成人av| 毛片一级片免费看久久久久| 国产视频内射| 成人欧美大片| 熟妇人妻久久中文字幕3abv| 亚洲成av人片在线播放无| 成人特级黄色片久久久久久久| 亚洲乱码一区二区免费版| avwww免费| 国产精品爽爽va在线观看网站| 97热精品久久久久久| 久99久视频精品免费| 成人二区视频| 国产亚洲精品av在线| 此物有八面人人有两片| 禁无遮挡网站| 一个人观看的视频www高清免费观看| 丝袜美腿在线中文| 日韩高清综合在线| 精品一区二区三区视频在线| 日本撒尿小便嘘嘘汇集6| 欧美极品一区二区三区四区| 亚洲天堂国产精品一区在线| 国产探花在线观看一区二区| 在线播放无遮挡| 一个人看视频在线观看www免费| 亚洲专区国产一区二区| 1000部很黄的大片| 亚洲真实伦在线观看| 精品久久久久久久久亚洲| 国产精品av视频在线免费观看| 亚洲av免费在线观看| 国产亚洲91精品色在线| 欧美一区二区亚洲| 亚洲婷婷狠狠爱综合网| 亚洲欧美中文字幕日韩二区| 日本撒尿小便嘘嘘汇集6| 国产精品久久电影中文字幕| 久久久精品大字幕| 亚洲无线观看免费| 熟妇人妻久久中文字幕3abv| 97超碰精品成人国产| 国产探花在线观看一区二区| 日韩,欧美,国产一区二区三区 | 国产精品亚洲美女久久久| 亚洲人成网站在线播| 亚洲国产精品国产精品| 亚洲,欧美,日韩| 女同久久另类99精品国产91| 午夜福利在线观看免费完整高清在 | 秋霞在线观看毛片| 国产欧美日韩精品一区二区| 久久久久久九九精品二区国产| 午夜福利在线在线| 久久亚洲精品不卡| 99在线人妻在线中文字幕| 岛国在线免费视频观看| 桃色一区二区三区在线观看| 亚洲不卡免费看| 久久精品国产亚洲av天美| 久久久a久久爽久久v久久| 国产精品人妻久久久久久| 伦理电影大哥的女人| 欧美日韩一区二区视频在线观看视频在线 | 色5月婷婷丁香| 在线a可以看的网站| 久久精品人妻少妇| 国内揄拍国产精品人妻在线| 床上黄色一级片| 欧美在线一区亚洲| 麻豆国产av国片精品| 晚上一个人看的免费电影| 99热这里只有是精品50| 日韩成人伦理影院| 悠悠久久av| 久久精品国产亚洲av香蕉五月| 国产精品,欧美在线| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 久久精品国产鲁丝片午夜精品| 久久精品国产亚洲av涩爱 | 亚洲欧美精品综合久久99| 国产精品电影一区二区三区| 午夜福利在线观看免费完整高清在 | 成年av动漫网址| 内地一区二区视频在线| 国产 一区 欧美 日韩| 大香蕉久久网| 亚洲精品日韩av片在线观看| 免费观看人在逋| 久久精品夜色国产| 久久久久久久久久久丰满| 91狼人影院| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 男女之事视频高清在线观看| 在线免费观看不下载黄p国产| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| or卡值多少钱| 亚洲一区高清亚洲精品| 尾随美女入室| 国内精品美女久久久久久| 午夜福利在线在线| 日韩欧美三级三区| 校园人妻丝袜中文字幕| 国产精品美女特级片免费视频播放器| 高清毛片免费看| 尾随美女入室| 日本-黄色视频高清免费观看| 村上凉子中文字幕在线| 亚洲精品色激情综合| 丝袜美腿在线中文| 亚洲欧美中文字幕日韩二区| 女的被弄到高潮叫床怎么办| 91狼人影院| 久久久午夜欧美精品| 美女xxoo啪啪120秒动态图| 一级a爱片免费观看的视频| 99热网站在线观看| 久久精品综合一区二区三区| 69人妻影院| 成人av在线播放网站| 国产精品电影一区二区三区| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 男人狂女人下面高潮的视频| 国产伦精品一区二区三区四那| 精品不卡国产一区二区三区| 男女做爰动态图高潮gif福利片| 亚洲精品久久国产高清桃花| 91精品国产九色| 国产免费男女视频| 黑人高潮一二区| 一级黄片播放器| 久久久久久久久久成人| 99久久久亚洲精品蜜臀av| 欧美精品国产亚洲| 午夜激情欧美在线| 免费看光身美女| 少妇丰满av| 欧美成人a在线观看| 国内久久婷婷六月综合欲色啪| 中文资源天堂在线| 免费av不卡在线播放| 黄片wwwwww| 黄色视频,在线免费观看| 成人av在线播放网站| 99热这里只有是精品50| 日本成人三级电影网站| 黄片wwwwww| 日韩成人av中文字幕在线观看 | 人妻制服诱惑在线中文字幕| 亚洲精品日韩在线中文字幕 | 色综合亚洲欧美另类图片| 精品免费久久久久久久清纯| 美女 人体艺术 gogo| 在线播放国产精品三级| 天天一区二区日本电影三级| 丰满的人妻完整版| 日本欧美国产在线视频| 中文字幕av在线有码专区| 亚洲国产精品sss在线观看| 一级毛片久久久久久久久女| 最近2019中文字幕mv第一页| 亚洲第一电影网av| 人妻夜夜爽99麻豆av| 国产一区二区在线观看日韩| 91麻豆精品激情在线观看国产| 狂野欧美白嫩少妇大欣赏| 亚洲最大成人中文| 自拍偷自拍亚洲精品老妇| 日韩三级伦理在线观看| 观看美女的网站| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 天美传媒精品一区二区| 午夜福利成人在线免费观看| 悠悠久久av| 我要搜黄色片| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 国产视频一区二区在线看| 精品久久久久久久久亚洲| 97热精品久久久久久| 国内精品久久久久精免费| 波野结衣二区三区在线| 国内揄拍国产精品人妻在线| 亚洲av熟女| 国产精品久久电影中文字幕| 亚洲经典国产精华液单| 国产精品免费一区二区三区在线| 免费搜索国产男女视频| 欧洲精品卡2卡3卡4卡5卡区| av.在线天堂| 天堂√8在线中文| 成人性生交大片免费视频hd| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| 禁无遮挡网站| 黄色欧美视频在线观看| 身体一侧抽搐| 色综合站精品国产| 国产真实乱freesex| 搞女人的毛片| 国产一区亚洲一区在线观看| 夜夜夜夜夜久久久久| 精品少妇黑人巨大在线播放 | 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 国产毛片a区久久久久| 少妇丰满av| 黄色视频,在线免费观看| 成年av动漫网址| 亚洲电影在线观看av| 九色成人免费人妻av| 97超级碰碰碰精品色视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 五月玫瑰六月丁香| 久久人人爽人人片av| av在线亚洲专区| 日韩制服骚丝袜av| 乱系列少妇在线播放| 不卡视频在线观看欧美| www.色视频.com| 亚洲国产色片| 亚洲中文日韩欧美视频| 自拍偷自拍亚洲精品老妇| 亚洲av熟女| 国产综合懂色| 一进一出抽搐gif免费好疼| 我要看日韩黄色一级片| 又爽又黄无遮挡网站| 国产精品1区2区在线观看.| 色吧在线观看| 久99久视频精品免费| av在线亚洲专区| 搡女人真爽免费视频火全软件 | 亚洲av不卡在线观看| 国产精品亚洲一级av第二区| 亚洲18禁久久av| 秋霞在线观看毛片| 国内精品一区二区在线观看| 99久久精品热视频| 亚洲国产精品成人久久小说 | 亚洲av中文字字幕乱码综合| 日本与韩国留学比较| 看十八女毛片水多多多| 精品乱码久久久久久99久播| 一进一出抽搐动态| 伊人久久精品亚洲午夜| 99热网站在线观看| 精品无人区乱码1区二区| 国产精品国产高清国产av| 高清日韩中文字幕在线| 国产中年淑女户外野战色| av.在线天堂| 男女视频在线观看网站免费| 国产亚洲精品综合一区在线观看| 国产成年人精品一区二区| 特大巨黑吊av在线直播| 国产一级毛片七仙女欲春2| 九九热线精品视视频播放| 99热这里只有精品一区| 三级国产精品欧美在线观看| 免费大片18禁| 久久精品国产亚洲av天美| 嫩草影视91久久| 国产精华一区二区三区| 日本熟妇午夜| 亚洲最大成人av| 国产色爽女视频免费观看| 国产一区二区三区av在线 | 观看美女的网站| 啦啦啦韩国在线观看视频| 99热网站在线观看| 可以在线观看的亚洲视频| 欧美日韩国产亚洲二区| 久久国产乱子免费精品| 日韩欧美精品免费久久| 日韩欧美在线乱码| 国产精品综合久久久久久久免费| 久久久久久国产a免费观看| 国产久久久一区二区三区| 国产男靠女视频免费网站| 欧美色视频一区免费| 亚洲专区国产一区二区| 丝袜美腿在线中文| 99久久精品一区二区三区| eeuss影院久久| 国产淫片久久久久久久久| 国内精品一区二区在线观看| 长腿黑丝高跟| 校园春色视频在线观看| 一进一出抽搐gif免费好疼| 亚洲欧美日韩卡通动漫| 久久久久久九九精品二区国产| 女生性感内裤真人,穿戴方法视频| 成熟少妇高潮喷水视频| 国产精品综合久久久久久久免费| 久久6这里有精品| 国产精品野战在线观看| 成人国产麻豆网| 麻豆精品久久久久久蜜桃| 在线观看免费视频日本深夜| 国国产精品蜜臀av免费| 午夜精品国产一区二区电影 | 91在线精品国自产拍蜜月| 亚洲av成人精品一区久久| 男人舔奶头视频| 插阴视频在线观看视频| 国产黄片美女视频| 91在线精品国自产拍蜜月| 色5月婷婷丁香| 综合色av麻豆| 成人综合一区亚洲| 久久99热这里只有精品18| 夜夜夜夜夜久久久久| 在线观看66精品国产| а√天堂www在线а√下载| 午夜免费男女啪啪视频观看 | 一本精品99久久精品77| 在线观看一区二区三区| 欧美成人免费av一区二区三区| 两个人的视频大全免费| 免费人成在线观看视频色| 亚洲精品粉嫩美女一区| 午夜视频国产福利| 色吧在线观看| 成人综合一区亚洲| 国产高清视频在线观看网站| 国产色婷婷99| 成年女人永久免费观看视频| 免费电影在线观看免费观看| 在线看三级毛片| 22中文网久久字幕| 亚洲人与动物交配视频| 欧美一区二区精品小视频在线| 六月丁香七月| 看十八女毛片水多多多| 欧美zozozo另类| 国产精品一区二区三区四区免费观看 | 最新中文字幕久久久久| 欧美3d第一页| 久久久久久九九精品二区国产| 亚洲欧美日韩高清专用| 日本成人三级电影网站| 天美传媒精品一区二区| 99热精品在线国产| 亚洲18禁久久av| 99热这里只有是精品50| 国产一区亚洲一区在线观看| 淫妇啪啪啪对白视频| 99热网站在线观看| 国产精品久久久久久久久免| 国产精品久久久久久亚洲av鲁大| 别揉我奶头~嗯~啊~动态视频| 国内精品美女久久久久久| 日本欧美国产在线视频| 女同久久另类99精品国产91| 欧美在线一区亚洲| 国产精品乱码一区二三区的特点| 免费观看人在逋| 国产免费男女视频| 美女xxoo啪啪120秒动态图| 国产在线男女| 久久久久久久午夜电影| 丝袜喷水一区| 97超视频在线观看视频| 99热这里只有是精品50| 九色成人免费人妻av| 国内精品久久久久精免费| 国产精品一二三区在线看| 国产av在哪里看| 干丝袜人妻中文字幕| 此物有八面人人有两片| 久久人人爽人人片av| 蜜臀久久99精品久久宅男| 别揉我奶头~嗯~啊~动态视频| 在线a可以看的网站| 男女视频在线观看网站免费| 成人亚洲欧美一区二区av| 日本欧美国产在线视频| 天天躁夜夜躁狠狠久久av| 美女 人体艺术 gogo| 国产三级在线视频| 欧美3d第一页| 欧美日韩精品成人综合77777| 欧美另类亚洲清纯唯美| 日本 av在线| 精品人妻一区二区三区麻豆 | av视频在线观看入口| h日本视频在线播放| 国产亚洲av嫩草精品影院| 不卡一级毛片| 乱系列少妇在线播放| 日韩精品青青久久久久久| 夜夜夜夜夜久久久久| 美女免费视频网站| 精品日产1卡2卡| 3wmmmm亚洲av在线观看| 欧美另类亚洲清纯唯美| 丰满的人妻完整版| 久久人妻av系列| 国产av不卡久久| 中文资源天堂在线| 日韩av在线大香蕉| 在线a可以看的网站| 国产欧美日韩一区二区精品| 日韩精品青青久久久久久| 免费看日本二区| 国产精品av视频在线免费观看| 又黄又爽又刺激的免费视频.| 国产成年人精品一区二区| 国产色婷婷99| 国产国拍精品亚洲av在线观看| 成人欧美大片| 中国国产av一级| 看免费成人av毛片| 97热精品久久久久久| 国内精品美女久久久久久| 国产麻豆成人av免费视频| 精品人妻视频免费看| 高清毛片免费看| 波多野结衣高清作品| 亚洲国产日韩欧美精品在线观看| 免费大片18禁| 色综合色国产| 在线观看午夜福利视频| 国产午夜福利久久久久久|