• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variation Trend and Characteristics of Anthropogenic CO Column Content in the Atmosphere over Beijing and Moscow

    2014-03-30 07:54:05WANGPuCaiGeorgyGOLITSYNWANGGengChenEvgenyGRECHKOVadimRAKITINEkaterinaFOKEEVAandAnatolyDZHOLA

    WANG Pu-Cai, Georgy S. GOLITSYN, WANG Geng-Chen, Evgeny I. GRECHKO, Vadim S. RAKITIN, Ekaterina V. FOKEEVA, and Anatoly V. DZHOLA

    1Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2А. М. Оbukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

    Variation Trend and Characteristics of Anthropogenic CO Column Content in the Atmosphere over Beijing and Moscow

    WANG Pu-Cai1, Georgy S. GOLITSYN2, WANG Geng-Chen1, Evgeny I. GRECHKO2, Vadim S. RAKITIN2, Ekaterina V. FOKEEVA2, and Anatoly V. DZHOLA2

    1Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2А. М. Оbukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia

    The anthropogenic CO column content in the atmosphere is derived from measurements with infrared grating spectrometers in Beijing, China, and Moscow, Russia, during 1992-2012. Some specific variation characteristics and long-term variation trends of the CO column content in the atmosphere in these regions are discussed. An evident variation trend of anthropogenic CO in the atmosphere for the Beijing region is not observed during 1992-2012, while for the Moscow region, it decreases yearly by about 1.4% for the same period. High CO concentrations appear quite frequently in Beijing, but much less frequently in Moscow, except during the natural fire events in summer 2010. From back trajectory analysis, the high CO concentration observed in Beijing can be attributed to the intensive CO emission sources in its surrounding areas.

    anthropogenic CO column content, infrared grating spectrometer, air pollution

    1 Introduction

    Anthropogenic CO concentration in the atmosphere, particularly over metropolitan regions, is attracting increasing attention from both scientists and policymakers around the world. CO, as an active minor constituent and gas pollutant in the atmosphere, plays an important role in atmospheric chemical processes. A change of CO concentration certainly affects the equilibrium of atmospheric chemical reactions and the balance of atmospheric species, including some pollutants such as ozone. Therefore, measuring atmospheric CO is very significant for the study of climate change and the atmospheric environment.

    Determining the CO column content in the atmosphere using a ground-based spectroscopic method has been conducted in Moscow since 1974 and in Beijing since 1992, using identical measuring apparatus and methods.

    With the rapid economic growth and fast urbanization during the last 20 years, Beijing has become a very im-portant metropolis in the world. Meanwhile, the territory of Moscow has doubled. As a result, anthropogenic emissions of pollutants into the atmosphere has increased and human activities have been much enhanced in both Beijing and Moscow. Nevertheless, there are general similarities in emission sources in Moscow and Beijing: for example, the dynamic growth of vehicles, which is considered to be a main emission source of CO in large cities (Duncan et al., 2007)—total vehicles were comparable in 2010; the main industrial enterprises were moved out from urban areas; and the main city power plants were transferred to gas. So in general, the amount and composition of the main emission sources in both megacities are similar. Therefore, a comparative study on the CO variation trend and some of its characteristics is helpful for evaluating the background level of air pollution and the impact of anthropogenic emissions on air quality.

    The daily variation characteristics of the CO content in the atmosphere in both Moscow and Beijing have been discussed previously (Wang et al., 1998a, b, 2005; Yurganov et al., 2011; Wu et al., 2005). The influence of wind direction and speed on the CO content and on its daily variation behaviors have also been investigated (Wu et al., 2005; Fokeeva et al., 2007; Yurganov et al., 2011). This paper focuses on studying the difference in the variation trend and characteristics of the CO column content—its anthropogenic part, in particular—between Beijing and Moscow, to try to gain more understanding about the emission sources that cause heavy pollution events.

    2 Instruments and methodology

    2.1 Instruments

    Long-term measurements of the CO column content in the atmosphere in both Beijing and Moscow have been conducted using identical grating infrared spectrometers with a spectral resolution of 0.2 cm?1. The record in Moscow is from time earlier than 1992 to 2012, while in Beijing it is from 1992 to 2012 and mainly during the late autumn and early winter seasons. The CO column content is calculated from the spectral absorption of the solar radiation received at the Earth’s surface by CO in the atmosphere in a selected spectral interval. The uncertainty of the measurement and derivation of the atmospheric CO column content is about 5%-7% (Rakitin et al., 2011).Details of the instruments’ specifications and the methodology for deriving the CO content are described in Dianov-Klokov et al. (1989), Wang et al. (1998b), Fokeeva et al. (2007), and Yurganov et al. (2011).

    2.2 Anthropogenic CO content

    The most significant issue is to derive the anthropogenic portion (or city emission part) of the CO content, denoted here as ΔU. It is defined as the difference between the measured CO content,U, at the site of study and that of its background site,UB.

    ΔU=U?UB.

    It can be seen that obtaining the background value of the CO content is vital for deriving the anthropogenic CO content. For Moscow, the rural Zvenigorod observation station (50 km northwest of Moscow, with few habitants and factories) is selected as its background site; while for Beijing, the minimum CO content observed on the cleanest days is used as the CO background value as there is no good background station that is not affected by human activities. Such an approach for determining theUBin Beijing is more reasonable, because the lowest concentration of all polluted species in the atmosphere is observed during the cleanest days and, in that case, the anthropogenic part of CO, ΔU, is close to zero.

    3 Results and discussion

    3.1 Long-term variation trend

    The anthropogenic CO content in the atmosphere, ΔU, in both Beijing and Moscow is derived from the dataset of 1992-2012 and the results are given in Fig. 1. It can be seen that there is an evident decreasing trend of CO city emissions for Moscow from 2003 to 2012 in spite of the continuous increase of vehicles in the city. On average, the rate is decreasing at 1.4% per year. The higher anthropogenic CO contents are observed mainly during the cold season, when a continuous anticyclone takes place, as well as in cases with a low wind speed in the boundary layer or a stagnant synoptic pattern (Wu et al., 2005; Rakitin et al., 2011). It should be noted that a high anthropogenic part of CO content greater than 0.11 atm?cm is never observed in Moscow during 2008-2012, except for summer 2010, when a natural fire occurred.

    Figure 1 Comparison of anthropogenic parts of CO content, ΔU, in the atmosphere in Beijing and Moscow during 1992-2012. The broken lines indicate the average ΔUin Beijing for 1992-2003 and 2006-2012, respectively.

    In Beijing, meanwhile, conditions influencing the CO content in the atmosphere are more complicated. During the observational period, haze pollution appears quite often on calm days and on days with a weak southern wind. On the pollution days, the CO column content is several times higher than its background level. At the same time, for half the observation days or more, the CO content is close to its background. Statistical analysis shows that the ratio of “dirty days” (ΔU≥ 0.08 atm?cm) to “clean days”(ΔU≥ 0.03 atm?cm) is, on average, 1.05 for Beijing and 0.18 for Moscow for the whole observation period of 1992-2012.

    An obvious decrease of CO content in Beijing during 1992-2012 can also be seen in Fig. 1. There is no significant trend in anthropogenic CO. However, it can be clearly seen that the CO content decreases from the first period of 1992-2003 to the second period of 2004-2013, as marked by the broken lines in Fig. 1. This behavior corresponds to the other pollutants, such as PM10, in Beijing according to the long-term measurements taken beside the meteorological tower of the Institute of Atmospheric Physics, Chinese Academy of Sciences.

    3.2 Frequency distribution of anthropogenic CO content

    To gain more understanding about the variation characteristics of the CO content in the atmosphere in different megacities, the frequency distribution of the anthropogenic part of the CO content (ΔU) in the atmosphere for both Moscow and Beijing are presented in Fig. 2. It can be seen that, for Moscow, the anthropogenic part, ΔU, is smaller than 0.05 atm?cm for more than 80% of the data points; while it is at this level for less than 50% in Beijing. In Moscow, the extreme values of CO content (ΔU≥ 0.110 atm?cm) are usually observed in the cold season (November to April), and they appear for less than 5% of the whole observation period. For Beijing, meanwhile, ΔU≥ 0.110 atm?cm for about 20% of the time for the same period. Moreover, another difference in the ΔUfrequency distribution between Moscow and Beijing is a second peak at 0.07-0.11 atm?cm for the latter, which is strongly related to air pollution events there.

    Figure 2 Frequency distribution of anthropogenic parts of CO content, ΔU, in the atmosphere in Beijing and Moscow for the autumns of 1992-2012.

    3.3 Anthropogenic CO in different time period

    To discuss the variation properties of CO content in both Moscow and Beijing for different time periods, the frequencies of ΔUfor different time periods for both megacities are compared in Fig. 3. It can be seen from the figure for Moscow, that the frequency with high ΔUduring 2006-2012 decreases, when compared with that during 1993-2005. Moreover, extreme ΔU(≥ 0.110 atm?cm) do not appear in Moscow since 2008, except for July to August 2010, when natural fires occurred in Moscow’s suburban region. A parallel comparison is made for Beijing. It shows that the frequency of higher ΔUranging from 0.075 to 0.175 atm?cm during 2001-2012 decreases when compared with the frequency during 1992-2000 (Fig. 3), implying that the CO pollution in Beijing has reduced somewhat over the last 10 years.

    Figure 3 Comparison of frequency of ?Uin the atmosphere in Moscow (top) for the periods 1993-2005 and 2006-2012; and in Beijing (bottom) for the periods 1992-2000 and 2001-2012.

    Figure 4 CO column content in Moscow and Beijing for 2010-2012.

    The CO column contents in Beijing and Moscow during recent years are compared in Fig. 4. The prominent feature is the very high CO values up to three times as much as the normal values in the summer of 2010. This corresponds to the severe natural fires in the Moscow region at that time. If 0.2 atm?cm is maintained as a threshold value of CO column content for extreme air pollution situations in Moscow, then it can be seen that such situations are observed quite frequently in Beijing.

    3.4 Example of the annual variation of CO column content

    The annual variation of the CO column content in the atmosphere for both Beijing and Moscow during the period of 2010-2012 is presented in Fig. 4, to give a general understanding of the difference between Beijing and Moscow. Four evident features can be found: First, during the whole period, for more than 50% of days the CO column contents in Beijing have the same level as in Moscow. Second, the minimum CO column contents observed during the whole period in Beijing and Moscow is almost same, so it can be treated as their background values. This implies that Beijing and Moscow have the same background value. Third, the extremely high CO column contents imply that air pollution takes place quite frequently in Beijing during all seasons, while in Moscow such extreme CO column contents are rarely observed except for the period of natural fire events mentioned above. Fourth, the CO column content is characterized by a maximum in winter and a minimum in summer for both Beijing and Moscow.

    3.5 Anthropogenic emission sources

    As mentioned above, a high CO concentration in Beijing (Dianov-Klokov et al., 1989; Wang et al., 1998b; Wu et al., 2005) may not be interpreted only by specific meteorological conditions and CO emission in the city region; there should be a reasonable difference in pollution sources between Moscow and Beijing. To better understand the possible anthropogenic emission sources in both Beijing and the surrounding area that influence the air pollution state in Beijing, the potential source contribution function (PSCF) method with the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (www.arl. noaa.gov/ready) is used to determine the back trajectory of pollutants in Beijing. The meteorological field of Global Data Assimilation System (GDAS) with a spatial resolution of 1° × 1° and a temporal resolution of three hours is used. The results are presented in Fig. 5, where the darkness of each grid represents the probability of pollution sources. The darker the grid, the higher the probability. It can be seen that many darker grids appear to the south of Beijing within 500 km, implying frequently severe air pollution. A statistical analysis for the quantitative estimation of the pollution contribution is made for each trajectory and shown in Fig. 6. Heavy pollution cases withMsa≥ 300 μg m?3are presented in Table 1, whereMsais the mass concentration of submicron aerosol. It can be seen that in all 413 heavy air pollution cases in Beijing, more than 80% can be attributed to trajectories 1, 2, and 7, of which trajectories 2 and 7(mainly anthropogenic emission sources) account for about 48%. This implies that emission sources in the surrounding areas, particularly areas to the south, are responsible for heavy air pollution in Beijing, and the second peak in frequency distribution in Fig. 2 can be well explained here.

    Figure 5 Spatial distribution of emission sources and trajectories of pollutants.

    Figure 6 Correlation between ?U, anthropogenic part of CO content andD(45°, 510 nm), measured scattering intensity at angle of 45° and 510 nm of submicron aerosol near the Earth’s surface in Beijing.

    Table 1 Statistics for heavy pollution cases (Msa≥ 300 μg m?3).

    For Beijing, haze events with a very high concentration of the submicron aerosol are mostly responsible for air pollution. We can see in Fig. 6 that ΔUandD(45°, 510 nm), which measures the scattering intensity at an angle of 45° and 510 nm by the ground submicron aerosol, are positive correlated, indicating that a high CO concentration appears simultaneously in haze events when it is contributed mainly by both local and regional emission sources. Moreover, an obvious difference in the slope of the correlation regression line can be found for the period before and after 2000. This indicates a change in the features of anthropogenic pollution sources in Beijing and the surrounding area for the last ten years.

    4 Conclusions

    A decreasing trend of CO content in the atmosphere was observed in Moscow during 1992-2012, particularly in the last 10 years; while in Beijing, a small decrease in CO content appears during 2001-2012 compared to that in 1992-2000. Such a variation trend of the CO content in Beijing can be attributed to specific meteorological and topographic conditions as well as anthropogenic emission sources in the surrounding areas. This CO variation trend is consistent with that of SO2(Lin et al., 2012), implying that the CO and SO2, at least partly, come from the same emission sources.

    High anthropogenic CO content in Beijing appearsseveral times more frequently than in Moscow. The average anthropogenic CO content in the atmosphere in Beijing for 2008-2012 is as high as 0.065 atm?cm. Such a high anthropogenic CO content is recorded in Moscow only in the summer of 2010 because of natural fire events in the region.

    The CO column content in the atmosphere is closely related to the fine particle concentration. Moreover, the correlation is stronger in Beijing than in Moscow.

    One of the most obvious differences in CO variation features in Moscow and Beijing is that, for Moscow, the CO content in the atmosphere is contributed by anthropogenic CO emission sources (e.g., vehicles, power plants) mainly in the city district; while for Beijing, a considerable contribution comes from the emission sources in areas to the south and southwest of the city.

    Acknowledgements. This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300), the National Basic Research Program of China (Grant No. 2013CB955801), the National Natural Science Foundation of China (Grant No. 41175030), and the Russian Foundation for Basic Research (Grant No. 13-05-00956).

    Dianov-Klokov, V. I., L. N. Yurganov, E. I. Grechko, et al., 1989: Spectroscopic measurements of atmospheric carbon monoxide and methane, 1: Latitudinal distribution,J. Atmos. Chem., 8, 139-151, doi:10.1007/BF00053719.

    Duncan, B. N., J. A. Logan, I. Bey, et al., 2007: Global budget of CO, 1988-1997: Source estimates and validation with a global model,J. Geophys. Res., 112, D22301, doi:10.1029/2007JD008459.

    Fokeeva, E. V., E. I. Grechko, A. V. Dzhola, et al., 2007: Determination of content of carbon monoxide in the atmosphere in Moscow using a spectroscopic method,Izvestiya Atmos. Oceanic Phys.(in Russian), 43(5), 664-670.

    Lin, W. L., X. B. Xu, Z. Q. Ma, et al., 2012: Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures,J. Environ. Sci., 24(1), 34-49.

    Rakitin, V. C., E. V. Fokeeva, E. I. Grechko, et al., 2011: Variation of carbon monoxide in atmosphere in Moscow megalopolis,Izvestiya Atmos. Oceanic Phys.(in Russian), 47(1), 64-72.

    Wang, G. C., Q. X. Kong, G. R. Liu, et al., 1998a: Monitoring of total CO amount in the atmosphere using solar spectroscopy,Proc. SPIE, Optical Remote Sens. Atmos. Clouds, 3501, doi:10.1117/12.317720.

    Wang, G. C., Q. X. Kong, P. C. Wang, et al., 2005: Ground-based monitoring of CO and H2O total content in the atmosphere over Beijing, in:Optical Technologies for Atmospheric, Ocean, and Environmental Studies, D. R. Lü et al. (Eds.),Proc. SPIE, 5832, 316-319.

    Wang, P. C., G. C. Wang, Q. X. Kong, et al., 1998b: Measurement of carbon monoxide column content and other atmospheric trace gases from infrared spectra,Acta Meteor. Sinica, 12(4), 429-434.

    Wu, H. Y., P. C. Wang, G. C. Wang, et al., 2005: Variation of the atmospheric CO column amount over Beijing urban area in the fall,Climatic Environ. Res., 10, 72-79.

    Yurganov, L., V. Rakitin, A. Dzhola, et al., 2011: Satellite- and ground-based CO total column observations over 2010 Russian fires: Accuracy of top-down estimates based on thermal IR satellite data,Atmos. Chem. Phys., 11, 7925-7942, doi:10.5194/acp-11-7925-2011.

    :Wang, P.-C., G. S. Golitsyn, G.-C. Wang, et al., 2014: Variation trend and characteristics of anthropogenic CO column content in the atmosphere over Beijing and Moscow,Atmos. Oceanic Sci. Lett., 7, 243-247,

    10. 3878/j.issn.1674-2834.13.0106.

    Received 30 December 2013; revised 29 January 2014; accepted 5 March 2014; published 16 May 2014

    WANG Pu-Cai, pcwang@mail.iap.ac.cn

    国产成人精品久久二区二区91| 色网站视频免费| 欧美变态另类bdsm刘玥| 精品国产一区二区三区久久久樱花| 波多野结衣一区麻豆| 大片电影免费在线观看免费| 亚洲午夜精品一区,二区,三区| 亚洲 国产 在线| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 成人国语在线视频| av在线播放精品| 久久久久国产精品人妻一区二区| 另类亚洲欧美激情| 大型av网站在线播放| 国产一区二区在线观看av| 久久久久久久精品精品| 亚洲av综合色区一区| 午夜福利一区二区在线看| 亚洲欧美一区二区三区黑人| e午夜精品久久久久久久| 在线观看国产h片| 老司机影院成人| 日韩制服丝袜自拍偷拍| 在线观看免费视频网站a站| 一区福利在线观看| 热re99久久国产66热| 99国产精品一区二区三区| 亚洲精品第二区| videos熟女内射| 热99久久久久精品小说推荐| 久热这里只有精品99| 国产主播在线观看一区二区 | 18在线观看网站| 亚洲人成电影免费在线| 成人国语在线视频| 精品一区在线观看国产| 亚洲精品av麻豆狂野| 婷婷色综合www| 又紧又爽又黄一区二区| www.自偷自拍.com| avwww免费| 日韩,欧美,国产一区二区三区| 男女之事视频高清在线观看 | 精品国产国语对白av| 三上悠亚av全集在线观看| 国产在线视频一区二区| 日韩伦理黄色片| 亚洲色图综合在线观看| av线在线观看网站| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 丝袜脚勾引网站| 久热这里只有精品99| 久久天躁狠狠躁夜夜2o2o | 一本一本久久a久久精品综合妖精| 电影成人av| 国产精品欧美亚洲77777| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 久久精品人人爽人人爽视色| 首页视频小说图片口味搜索 | 天天操日日干夜夜撸| 色综合欧美亚洲国产小说| 国产在视频线精品| tube8黄色片| 色94色欧美一区二区| 亚洲美女黄色视频免费看| 50天的宝宝边吃奶边哭怎么回事| 一区二区三区四区激情视频| 中文字幕亚洲精品专区| 免费在线观看完整版高清| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 亚洲欧美激情在线| 久久久欧美国产精品| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 久久久久网色| 少妇精品久久久久久久| 国产成人精品无人区| 高清av免费在线| 老司机亚洲免费影院| 美女午夜性视频免费| 亚洲欧美精品自产自拍| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| 久久久精品免费免费高清| 亚洲国产欧美一区二区综合| www.精华液| 老司机在亚洲福利影院| 亚洲成av片中文字幕在线观看| 香蕉国产在线看| xxxhd国产人妻xxx| 午夜免费成人在线视频| 男的添女的下面高潮视频| 久久久久精品国产欧美久久久 | 飞空精品影院首页| 看十八女毛片水多多多| 成人三级做爰电影| 97精品久久久久久久久久精品| 久久天堂一区二区三区四区| 欧美日韩福利视频一区二区| 中文字幕精品免费在线观看视频| 亚洲人成网站在线观看播放| 日韩伦理黄色片| netflix在线观看网站| 精品人妻一区二区三区麻豆| 你懂的网址亚洲精品在线观看| 久久久久视频综合| 777久久人妻少妇嫩草av网站| 国产精品久久久人人做人人爽| 免费高清在线观看视频在线观看| 精品少妇内射三级| 午夜福利乱码中文字幕| 午夜av观看不卡| 中文字幕高清在线视频| 成年动漫av网址| 亚洲精品自拍成人| 亚洲av片天天在线观看| 国产精品久久久人人做人人爽| 香蕉国产在线看| 国产成人a∨麻豆精品| 精品人妻一区二区三区麻豆| 18在线观看网站| av在线播放精品| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| 高清不卡的av网站| 久久国产精品男人的天堂亚洲| 久久免费观看电影| 看免费av毛片| 久久久国产欧美日韩av| 天天躁夜夜躁狠狠久久av| 在线观看国产h片| 在线亚洲精品国产二区图片欧美| 亚洲国产精品一区二区三区在线| 中文字幕最新亚洲高清| 精品亚洲乱码少妇综合久久| 日韩av不卡免费在线播放| 高潮久久久久久久久久久不卡| www.自偷自拍.com| 亚洲精品日韩在线中文字幕| 男男h啪啪无遮挡| 国产成人系列免费观看| 亚洲精品久久久久久婷婷小说| 一级毛片女人18水好多 | 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 黄色一级大片看看| 免费久久久久久久精品成人欧美视频| 欧美成人精品欧美一级黄| 国产高清不卡午夜福利| 国产视频首页在线观看| 欧美成人精品欧美一级黄| 国产有黄有色有爽视频| 亚洲av电影在线观看一区二区三区| 999久久久国产精品视频| 国产有黄有色有爽视频| 国产精品一区二区在线不卡| 涩涩av久久男人的天堂| 欧美日韩视频精品一区| 久久久久网色| 90打野战视频偷拍视频| 久久久久精品国产欧美久久久 | 久久国产精品男人的天堂亚洲| 丝袜人妻中文字幕| 一区二区三区乱码不卡18| 一区福利在线观看| 麻豆国产av国片精品| 亚洲国产最新在线播放| 欧美变态另类bdsm刘玥| 欧美黄色淫秽网站| 建设人人有责人人尽责人人享有的| 黄色一级大片看看| 国产片内射在线| 中文字幕制服av| 51午夜福利影视在线观看| 久久ye,这里只有精品| 中文字幕制服av| 精品免费久久久久久久清纯 | 女性生殖器流出的白浆| 欧美中文综合在线视频| 亚洲伊人色综图| 欧美在线一区亚洲| xxxhd国产人妻xxx| 午夜影院在线不卡| 精品国产乱码久久久久久小说| 夜夜骑夜夜射夜夜干| 国产精品国产av在线观看| 国产极品粉嫩免费观看在线| 国产黄色视频一区二区在线观看| 老司机影院毛片| 丰满人妻熟妇乱又伦精品不卡| 国产精品熟女久久久久浪| 波多野结衣av一区二区av| 满18在线观看网站| xxx大片免费视频| 丰满少妇做爰视频| 国产亚洲av高清不卡| 啦啦啦在线观看免费高清www| av国产久精品久网站免费入址| 久久影院123| 91老司机精品| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产日韩一区二区| 91国产中文字幕| 91老司机精品| 丰满饥渴人妻一区二区三| 午夜视频精品福利| 日韩熟女老妇一区二区性免费视频| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡| 97人妻天天添夜夜摸| 免费在线观看完整版高清| 国产色视频综合| 久久 成人 亚洲| 亚洲少妇的诱惑av| 狠狠婷婷综合久久久久久88av| av又黄又爽大尺度在线免费看| 欧美日韩av久久| 在线观看人妻少妇| 大陆偷拍与自拍| 国产成人av教育| 黑人猛操日本美女一级片| 王馨瑶露胸无遮挡在线观看| 激情视频va一区二区三区| 亚洲视频免费观看视频| 国产黄频视频在线观看| 成人影院久久| 亚洲欧美日韩另类电影网站| 国产精品久久久人人做人人爽| 国产精品 国内视频| √禁漫天堂资源中文www| 亚洲精品第二区| 亚洲,欧美精品.| 久久九九热精品免费| 50天的宝宝边吃奶边哭怎么回事| 国产成人欧美| 国产欧美亚洲国产| 别揉我奶头~嗯~啊~动态视频 | 国产免费视频播放在线视频| 中文字幕人妻丝袜一区二区| 2018国产大陆天天弄谢| 国产一区有黄有色的免费视频| 国产精品一国产av| 欧美成人午夜精品| 亚洲黑人精品在线| 久久精品国产综合久久久| 国产91精品成人一区二区三区 | 视频在线观看一区二区三区| 又黄又粗又硬又大视频| 免费高清在线观看日韩| 黄色怎么调成土黄色| 搡老岳熟女国产| 美女主播在线视频| 国产黄色视频一区二区在线观看| 精品国产乱码久久久久久男人| 丰满人妻熟妇乱又伦精品不卡| 老熟女久久久| 欧美日韩视频精品一区| 国产精品一二三区在线看| 你懂的网址亚洲精品在线观看| av国产精品久久久久影院| 精品一品国产午夜福利视频| 视频区图区小说| 国产亚洲一区二区精品| 久久天躁狠狠躁夜夜2o2o | 日韩av不卡免费在线播放| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| 中国国产av一级| 日本欧美视频一区| 最新在线观看一区二区三区 | 男女边摸边吃奶| 一本大道久久a久久精品| 日本黄色日本黄色录像| 亚洲国产精品一区三区| 成人午夜精彩视频在线观看| 亚洲精品国产一区二区精华液| 亚洲av成人不卡在线观看播放网 | 久久人人爽av亚洲精品天堂| 少妇被粗大的猛进出69影院| 熟女少妇亚洲综合色aaa.| av在线app专区| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 少妇猛男粗大的猛烈进出视频| 国产一卡二卡三卡精品| 国产精品三级大全| 欧美97在线视频| 日本wwww免费看| 美女视频免费永久观看网站| 国产精品偷伦视频观看了| 日韩 亚洲 欧美在线| 一级毛片黄色毛片免费观看视频| 亚洲国产欧美网| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 亚洲第一av免费看| 亚洲成国产人片在线观看| www.自偷自拍.com| 国产精品秋霞免费鲁丝片| 悠悠久久av| 一区二区三区精品91| 国产精品99久久99久久久不卡| 免费观看人在逋| 在线观看免费高清a一片| 亚洲av美国av| 久久国产精品人妻蜜桃| 蜜桃在线观看..| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 一级毛片 在线播放| 国产欧美日韩一区二区三区在线| 免费观看a级毛片全部| 亚洲欧美中文字幕日韩二区| 最近最新中文字幕大全免费视频 | 国产熟女欧美一区二区| 啦啦啦在线免费观看视频4| 高清视频免费观看一区二区| 久久国产精品人妻蜜桃| 宅男免费午夜| 黑人猛操日本美女一级片| 国产亚洲av片在线观看秒播厂| 精品国产乱码久久久久久小说| 婷婷色av中文字幕| 亚洲天堂av无毛| 亚洲中文字幕日韩| 一区二区三区精品91| 少妇 在线观看| 99国产精品一区二区蜜桃av | 丝袜人妻中文字幕| 亚洲成人免费电影在线观看 | 嫩草影视91久久| 免费观看a级毛片全部| 久久久精品区二区三区| 制服诱惑二区| 老司机靠b影院| 日本av免费视频播放| 建设人人有责人人尽责人人享有的| 中国美女看黄片| 日韩 亚洲 欧美在线| 男的添女的下面高潮视频| 久久久久网色| 母亲3免费完整高清在线观看| 老司机影院成人| 精品免费久久久久久久清纯 | 18在线观看网站| 侵犯人妻中文字幕一二三四区| av网站免费在线观看视频| 99国产精品一区二区三区| 免费女性裸体啪啪无遮挡网站| 女人爽到高潮嗷嗷叫在线视频| videosex国产| 好男人视频免费观看在线| 国产又色又爽无遮挡免| 欧美精品av麻豆av| 深夜精品福利| 一本久久精品| 欧美激情高清一区二区三区| 婷婷色综合www| 肉色欧美久久久久久久蜜桃| 欧美 亚洲 国产 日韩一| 精品久久久久久久毛片微露脸 | 手机成人av网站| 久久99一区二区三区| 免费日韩欧美在线观看| 国产精品久久久久久人妻精品电影 | 满18在线观看网站| 欧美精品亚洲一区二区| 久久精品成人免费网站| 建设人人有责人人尽责人人享有的| 国产精品国产三级专区第一集| 亚洲精品第二区| 日韩大码丰满熟妇| 久久精品久久久久久久性| 午夜av观看不卡| 欧美 日韩 精品 国产| 国产熟女午夜一区二区三区| www.自偷自拍.com| 首页视频小说图片口味搜索 | 日韩av免费高清视频| 国产淫语在线视频| 欧美另类一区| 欧美激情 高清一区二区三区| 国产精品一区二区免费欧美 | 亚洲熟女精品中文字幕| 欧美日韩亚洲高清精品| 少妇人妻久久综合中文| 国产成人系列免费观看| 国产精品 欧美亚洲| 免费看不卡的av| 成人影院久久| 国产在线视频一区二区| 午夜福利视频精品| 美女脱内裤让男人舔精品视频| 色播在线永久视频| 精品久久久久久久毛片微露脸 | 国产精品一区二区在线观看99| 亚洲中文av在线| 日韩中文字幕视频在线看片| 欧美日韩国产mv在线观看视频| 黄色一级大片看看| 久久久久久久精品精品| 亚洲男人天堂网一区| 午夜av观看不卡| 国产精品一二三区在线看| 午夜福利乱码中文字幕| 精品一区二区三区四区五区乱码 | 婷婷成人精品国产| 国产福利在线免费观看视频| 亚洲 欧美一区二区三区| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 最近手机中文字幕大全| 高清视频免费观看一区二区| 久久久久视频综合| 秋霞在线观看毛片| 90打野战视频偷拍视频| 久久ye,这里只有精品| 无遮挡黄片免费观看| 麻豆国产av国片精品| 午夜激情av网站| 人体艺术视频欧美日本| 国产高清videossex| www.自偷自拍.com| 这个男人来自地球电影免费观看| 精品久久久精品久久久| 国产在线视频一区二区| av国产久精品久网站免费入址| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 国产黄频视频在线观看| 嫩草影视91久久| 首页视频小说图片口味搜索 | 日本av手机在线免费观看| 日韩熟女老妇一区二区性免费视频| 天天躁日日躁夜夜躁夜夜| 久久99一区二区三区| 一级黄色大片毛片| 99精品久久久久人妻精品| 少妇裸体淫交视频免费看高清 | 国产精品欧美亚洲77777| a级片在线免费高清观看视频| 午夜免费鲁丝| 精品国产一区二区三区久久久樱花| 五月天丁香电影| 欧美在线一区亚洲| 建设人人有责人人尽责人人享有的| 观看av在线不卡| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 欧美日韩亚洲综合一区二区三区_| 在线 av 中文字幕| 十八禁人妻一区二区| 国产成人欧美| 国产精品亚洲av一区麻豆| 日韩欧美一区视频在线观看| 欧美日韩视频高清一区二区三区二| 亚洲av日韩精品久久久久久密 | 国产在线免费精品| 99国产精品一区二区三区| 亚洲精品日韩在线中文字幕| 999久久久国产精品视频| 爱豆传媒免费全集在线观看| 蜜桃在线观看..| 黄色毛片三级朝国网站| 亚洲av日韩在线播放| 欧美成人午夜精品| 国产成人一区二区三区免费视频网站 | 大陆偷拍与自拍| 手机成人av网站| 亚洲美女黄色视频免费看| 晚上一个人看的免费电影| 亚洲色图 男人天堂 中文字幕| 一区二区三区激情视频| 中文字幕亚洲精品专区| 女性生殖器流出的白浆| 50天的宝宝边吃奶边哭怎么回事| 免费看不卡的av| 亚洲国产欧美在线一区| 亚洲精品国产av蜜桃| 一区二区三区精品91| 成人国产一区最新在线观看 | 亚洲伊人色综图| 熟女少妇亚洲综合色aaa.| 亚洲,欧美,日韩| 精品少妇内射三级| 久久免费观看电影| 91字幕亚洲| 日本午夜av视频| 麻豆乱淫一区二区| 精品福利永久在线观看| av电影中文网址| 欧美日韩综合久久久久久| 精品少妇久久久久久888优播| 国产不卡av网站在线观看| 精品一区在线观看国产| 国产精品麻豆人妻色哟哟久久| 国产精品秋霞免费鲁丝片| 亚洲av综合色区一区| 精品一区二区三区四区五区乱码 | 国产成人一区二区三区免费视频网站 | 男女床上黄色一级片免费看| 人妻人人澡人人爽人人| 久久久久久久久久久久大奶| 国产无遮挡羞羞视频在线观看| 国产一区二区在线观看av| 久久精品aⅴ一区二区三区四区| av国产精品久久久久影院| 一级毛片黄色毛片免费观看视频| 又紧又爽又黄一区二区| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 首页视频小说图片口味搜索 | 亚洲成人手机| 日韩av在线免费看完整版不卡| 中文字幕亚洲精品专区| 后天国语完整版免费观看| 国产日韩欧美亚洲二区| 国产视频首页在线观看| 天天添夜夜摸| 国产视频一区二区在线看| 亚洲欧美成人综合另类久久久| 日韩 欧美 亚洲 中文字幕| 一级毛片女人18水好多 | 亚洲成人免费电影在线观看 | 久久久欧美国产精品| 色播在线永久视频| 18在线观看网站| 精品人妻一区二区三区麻豆| 久久影院123| 叶爱在线成人免费视频播放| 一区二区三区激情视频| 日韩大片免费观看网站| 深夜精品福利| 国产精品熟女久久久久浪| 男人操女人黄网站| 亚洲国产看品久久| 国产1区2区3区精品| 国产精品久久久久久人妻精品电影 | 久久久久久久久免费视频了| 狠狠婷婷综合久久久久久88av| 久久久久久免费高清国产稀缺| 久久久久视频综合| 久久久久精品人妻al黑| 一边摸一边抽搐一进一出视频| 国产熟女午夜一区二区三区| 日韩精品免费视频一区二区三区| 真人做人爱边吃奶动态| 免费看十八禁软件| 午夜免费成人在线视频| 欧美久久黑人一区二区| 成年美女黄网站色视频大全免费| 欧美成人精品欧美一级黄| 日韩av免费高清视频| 日韩熟女老妇一区二区性免费视频| 日韩 亚洲 欧美在线| 极品人妻少妇av视频| 黄片小视频在线播放| av不卡在线播放| 99精品久久久久人妻精品| 久久精品aⅴ一区二区三区四区| 大码成人一级视频| 欧美97在线视频| 真人做人爱边吃奶动态| 丝袜人妻中文字幕| 一个人免费看片子| 久久精品久久精品一区二区三区| 99国产精品一区二区蜜桃av | 中文精品一卡2卡3卡4更新| 九草在线视频观看| 97精品久久久久久久久久精品| 两人在一起打扑克的视频| 亚洲,欧美,日韩| 美女国产高潮福利片在线看| 国产成人一区二区三区免费视频网站 | 视频在线观看一区二区三区| 丁香六月天网| 看免费av毛片| 日韩人妻精品一区2区三区| 极品少妇高潮喷水抽搐| 色视频在线一区二区三区| 人成视频在线观看免费观看| www.自偷自拍.com| 精品第一国产精品| 久久99一区二区三区| 日韩制服丝袜自拍偷拍| 黑人欧美特级aaaaaa片| 国产女主播在线喷水免费视频网站| 丝瓜视频免费看黄片| 在线观看国产h片| 国产成人精品久久久久久| 久久久久久人人人人人| 国产高清videossex| 狠狠婷婷综合久久久久久88av| 在线亚洲精品国产二区图片欧美| av一本久久久久| 丝袜美腿诱惑在线| 晚上一个人看的免费电影| 精品一区在线观看国产| 久久人妻熟女aⅴ| 亚洲精品中文字幕在线视频| 两人在一起打扑克的视频| 日韩欧美一区视频在线观看| 国产成人91sexporn| 亚洲国产精品一区三区| 中文字幕人妻丝袜一区二区| 王馨瑶露胸无遮挡在线观看| 一级片免费观看大全| 91字幕亚洲|