• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New Method for Aerosol Retrieval Based on Lidar Observations in Beijing

    2014-03-30 07:53:59PANYuBingDaRenandPANWeilin

    PAN Yu-Bing, Lü Da-Ren and PAN Weilin

    1Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    A New Method for Aerosol Retrieval Based on Lidar Observations in Beijing

    PAN Yu-Bing1,2, Lü Da-Ren1, and PAN Weilin1

    1Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

    2University of Chinese Academy of Sciences, Beijing 100049, China

    Lidar has been used extensively in the area of atmospheric aerosol measurement. Two unknowns at the reference altitude, the lidar ratio and the backscatter coefficient, need to be resolved from the lidar equation. In the actual application, these two values are difficult to obtain, particularly the backscatter coefficient. To better characterize the optical properties of aerosols, optical thickness, and attenuated backscatter obtained by other instruments are usually used as the input for joint inversion. However, this method is limited by location and time. In this study, the authors propose a new method for aerosol retrieval by using Mie scattering lidar data to solve this problem. The authors take the horizontal aerosol extinction coefficient as the constraint to begin the iteration until a self-consistent aerosol vertical profile was obtained. By comparing their results with Aerosol Robotic Network (AERONET) data, the authours determine that the aerosol extinction coefficient obtained by combining horizontal and vertical lidar observations is more precise than that obtained by using the traditional Fernald method. This new method has been adopted for retrieving the extinction coefficient of aerosols during the observation days.

    lidar, lidar ratio, backward integration, extinction coefficient

    1 Introduction

    Aerosols play an important role in atmospheric radiation and climate change. They can affect the radiation balance of the earth-atmosphere system by absorbing and scattering solar radiation, which is known as the direct radiation effect. Aerosols can also act as cloud condensation nuclei during the cloud generation process, thereby changing the physical characteristics and radiation properties of the cloud, which is known as the indirect radiation effect (Twomey, 1977; Lohmann andFeichter, 1997). By using advanced atmospheric remote sensing technology to conduct in-depth study of the spatial and temporal distribution of aerosol concentration and its physical and chemical properties, aerosol climate effects research can be quantified with continuous improvement of the climate models.

    As an active remote sensing tool, lidar has been used extensively in the field of atmospheric and environmental research, primarily in detecting the optical properties of aerosols and cirrus clouds in the troposphere.

    Welton et al. (2000) used micropulse lidar to obtain aerosol vertical distribution and physical properties in the Aerosol Characterization Experiment 2 (ACE-2) and compared their results with those obtained by other ground-based instruments and satellite data. The Atmospheric Radiation Measurement (ARM) program supported by the U.S. Department of Energy (DOE) obtained atmospheric observational data by using various ground- based instruments such as lidar to better understand the clouds and aerosols processes in climate system models, as well as their interactions (Campbell et al., 2002).

    In their study of solving lidar equations, Dulac and Chazette (2003) calculated the column-averaged lidar ratio (LR) by comparing the aerosol optical depth (AOD) retrieved from the Meteosat satellite with that obtained from lidar. Their results showed that the average LR is quite accurate. Welton et al. (2002) presented an iterative method based on the aerosol optical thickness from independent observations as a limiting factor. This method can not only obtain the aerosol extinction coefficient and AOD but also can calculate LR. Lu et al. (2011) purposed a retrieval method by combining ground-based and space-borne lidar observations. This technique can obtain the aerosol extinction coefficients and aerosol extinction-to-backscatter ratio in more than one aerosol layer. They compared their results with data from Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) and Napoli-Earlinet lidar data and reported a good agreement.

    However, previous studies often rely on other instrument data for solving lidar equations. In the present study, we propose a new method by using a single lidar to obtain the aerosol vertical profiles.

    2 Instrumentation

    In recent years, many universities and research institutions have successfully developed lidar systems. The lidar used in the present study is a Mie scattering lidar system manufactured by Xi'an University of Technology (Yan et al., 2013) installed at the top of Building No. 40, Institute of Atmospheric Physics, Chinese Academy of Sciences (39.97°N, 116.38°E).

    This lidar system contains a diode pumped Nd: YAG laser with a pulse output at a wavelength of 532 nm. The pulse duration is 12 ns with a pulse repetition frequency (PRF) of 1 kHz, and the pulse energy is approximately 50 μJ. This lidar runs on the analog detection mode, which is more suitable than the photon counting mode for monitoring high-concentration aerosols in urban areas. The receiving telescope, with a 254 mm diameter and a 2500 mm focal length, has a ground-penetrating radar system (GPRS) scanning function with azimuth angles from 0° to 360° and zenith angles from 0° to 90°. The specifications of this micro-pulsed Mie scattering lidar are shown in Table 1.

    3 Method and results

    3.1 Method

    Aerosol optical properties can be determined by lidar return signals. Under the assumption of evenly mixed air, we can use Collis slope method to solve the laser radar equation (Collis and Russell, 1976). However, if the air along the laser propagation path changes significantly, Klett method (Klett, 1985) and the Fernald method (Fernald, 1984) must be used. In the present study, we use mainly the Fernald method for the inversion of the lidar equation, which divides the lidar signals into those from the air molecules and those from aerosols. The lidar equation is written as follows:

    In the above equation,P(Z) is the energy received by the lidar at the height ofZ,Erepresents the lidar emission energy,Cis the lidar instrument parameter,σ=σm+σais the atmospheric extinction coefficient, which is the sum of the air molecular extinction coefficient and the aerosol extinction coefficient, andβ=βm+βais the atmospheric backscatter coefficient, which is the sum of the air molecular backscatter coefficient and the aerosol backscatter coefficient.

    We can use the backward integration method to solve the equation:

    whereX(Z) =P(Z)Z2,A(Z?1,Z)=(Sa?Sm)[βm(Z?1)+βm(Z)]ΔZ(ΔZis the lidar’s spatial resolution), andSm=8π /3,Sais the ratio of extinction coefficient and backscattering coefficient, which is related to particle shape and type, but is independent of the particle number density. The statistics of Aerosol Robotic Network (AERONET) show that aerosols can be categorized into six types according to the lidar ratios listed in Table 2, which are empirical values obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol model (Omar et al., 2004).

    Table 1 Specifications of micro-pulsed Mie scattering lidar.

    Table 2 Aerosol lidar ratio categorized from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol model.

    For an additional unknownσa(I), previous studies generally use the tropopause as the altitude for calibration because it is nearly free of aerosol particles, and the aerosol backscatter coefficient is determined by the fixed aerosol scattering ratio (Qiu, 2003). In actual application, however, lidar detectability is limited to the low troposphere height during the daytime; thus, so we cannot use this method for computing.

    We conducted Mie Lidar observations in both horizontal and vertical directions. The fundamental criterion of choosing horizontal observation time is to in-clude the time period during which the atmospheric condition is stable, with weak surface wind and clear air (Welton, 2002).

    Assuming the atmosphere is evenly mixed horizontally, the atmospheric extinction coefficient and the volume backscattering coefficient are constant. The lidar equation in the horizontal direction can be written as

    whereOC(Z) is lidar geometric form factor andHσis the horizontal atmospheric extinction coefficient.

    If the laser beam fully entering the receiving telescope’s field of view starts from altitudeZ0, i.e.,OC(Z0)= 1, the lidar equation can be expressed as

    Form these two equations, we can get the expression of geometric form factor as

    Figure 1a shows the geometric form factor obtained in the experiment. This factor increases as a function of distance until 600 m, where the receiver’s field of view is completely overlapped with the laser beam. The geometric form factor does not change with time, which shows the consistency and stability of the lidar performance.

    Although the horizontal atmosphere cannot be completely mixed evenly, we can obtain the atmospheric extinction coefficient in a short distance by using the adaptive least squares method. As shown in Fig. 1a, the receiver’s field of view does not completely overlap with the laser until 600 m; therefore, least squares fitting is performed on the horizontal data from 600 m to 3000 m. To find a more qualified curve, the fitting is started from 600 m with integration steps of 100 m, and the least squares fitting method is applied to determine the minimum variance, which is the best fitting range.

    By using this method, we can obtain the horizontal atmospheric extinction coefficient, as shown in Fig. 1b, withHσ= 0.3262 km?1.

    We selected the vertical observation data within 30 min from the horizontal observation. The atmospheric condition is assumed to be stable during this time period.

    Figure 1 Plots of (a) geometric form factor and (b) lnp(r)r2as functions of range in the horizontal observation (p(r) is the energy received by the lidar at the height ofr).

    Because the lidar observation capability is limited to the lower troposphere in daytime, we selected 3000 m as the starting point of the inversion. The aerosol extinction coefficient obtained from horizontal observation is taken as the aerosol extinction coefficient at an altitude of 200 m. Figure 2 shows our calculation procedure. We suppose the aerosol extinction coefficient at 3000 m altitude is 1 km?1, then we use the backward integration method to retrieve the data. After calculating the aerosol extinction coefficient at the 200 m altitude, we compared the results with the aerosol extinction coefficient from horizontal observation. If the difference is less than 1%, we take the supposed extinction coefficient as the actual value at 3000 m. Otherwise, we reduce 1% of the extinction coefficient and conduct this iteration until the difference is less than 1%.

    3.2 Results

    We selected data obtained on 7 February, 8 February, and 10 February 2013, which were clear days. Horizontal lidar measurements were conducted during those days during the daytime according to the experiment requirement.

    Equation (5) was used to compute the horizontal aerosol extinction coefficient at 15:54 local time (UTC+8) on 7 February 2013, because the atmosphere was very clean during this period. Figure 3a shows the correction of squared horizontal distance. By using the square method, the atmospheric extinction coefficient at the horizontal direction was determined to be 0.0405 km?1; we then obtained the aerosol extinction coefficient as 0.0276 km?1.

    In addition, we compared the unconstrained backward integration method with this new method. Due to the lack of long-term continuous aerosol observations in Beijing, the background atmospheric aerosol extinction coefficient in the Hefei area was taken as the boundary value (Zhou et al., 1998) in the backward integration calculation. As shown in Fig. 3b, the two profiles have similar shapes, with the aerosol extinction coefficient larger near the surface and decreasing with altitude. Moreover, the result obtained from backward integration method (plotted in red) is noticeably larger than that from our new method (plotted in blue). On the basis of the new method, the aerosol extinction coefficient at 3000 m was determined to be 0.0206 km?1, and the aerosol extinction coefficientat 200 m was 0.0275 km?1According to the empirical values, the aerosol extinction coefficient at 3000 m was 0.0376 km?1, and aerosol extinction coefficient at 200 m was 0.0429 km?1. The difference was larger at higher altitudes.

    Figure 2 Flow chart of iterative computation of extinction coefficient.

    Figure 3 Plots of (a) lnp(r)r2as a function of range in horizontal observation recorded on 15:54 7 February 2013 local time. (b) Plot of aerosol retrieval by using backward integration and the new method for data recorded at 16:08 on the same day.

    As shown in Fig. 4, we compared these two results with AERONET data (http://aeronet.gsfc.nasa.gov/). The AERONET Beijing site’s Cimel heliograph is stationed at the top of Building No. 40, Institute of Atmospheric Physics, Chinese Academy of Sciences (AERONET-IAP), at the same location as that of the Mie lidar. The AERONET Level 1.5 product data, which have been cloud cleared, were selected for comparison. The AOD above 3 km was replaced by the background atmospheric aerosol extinction coefficient in the Hefei area (Zhou et al., 1998). Because few aerosols are present above 3 km during a clear day, their difference was negligible.

    AOD was calculated to be 0.1256 on 16:19 7 February 2013 local time. As shown in Fig. 4a, the AOD obtained from the new method is closer to AERONET data (0.125592) than that from backward integration. The minimum difference was 0.0026 at 16:28 local time, and the maximum difference was 0.0463 at 16:16 local time. All differences were less than 0.05.

    Figure 4 Comparison of aerosol optical depth (AOD) obtained from backward integration and the new method with AERONET level 1.5 data recorded on (a) 7 February 2013, (b) 8 February 2013, and (c) 10 February 2013.

    As shown in Figs. 4b and 4c, the same computation was applied to the data of 8 February 2013 and 10 February 2013. The results again show that the AOD obtained from the new method is closer to AERONET data than that from backward integration.

    The mean aerosol extinction coefficient was obtained during the observation days by using this method (Fig. 5). Aerosols are mainly gathered 2 km above the surface. We determined that although the extinction coefficient near the ground surface is small, it increases with an increase in height and reaches its maximum near the top of the boundary layer. This phenomenon is attributed to many reasons, such as the inversion layer, misty rain effect, and the relative humidity. Above 2 km, the curve presented attenuation distribution. The aerosol extinction coefficient at 3 km was 0.0334 km?1.

    Errors may arise from the estimation of the horizontal extinction coefficient and lidar ratio (Fernald, 1984). To obtain a more accurate horizontal extinction coefficient, we fit the assumed evenly mixed atmosphere by using the least squares method. The uncertainty of the lidar ratio is no more than 30% (Omar et al., 2009). In addition, the backscatter coefficient is insensitive to the lidar ratio (Chen et al., 2011). Considering that the entire extinction coefficient on clear days is small, this effect has little impact on the inversion.

    4 Conclusions

    Two unknown quantities are to be resolved from lidar equations: lidar ratio and backscatter coefficient at a given height. Although the tropopause is generally chosen as the altitude for calibration, in actual application, lidar detectability is limited to the lower troposphere in daytime. Joint inversion with optical thickness and attenuated backscatter simultaneously measured by other instruments could be used; however, not all lidar sites have such extra data available. In this study, we purposed a new method for solving this problem.

    Figure 5 Mean aerosol extinction coefficient obtained during the observation days in Beijing.

    We conducted horizontal observation under stable weather conditions and calculate the upper atmospheric extinction coefficient by using the adaptive least squares method. We then used the results as the constraint to begin the iteration until we obtained a self-consistent aerosol vertical profile. Finally, we compared the results with AERONET data and the results of traditional backward integration, and we demonstrated that our results are closer to the AERONET data.

    Although, this new method is suitable for use under relatively stable weather conditions, it may not perform well on windy or dusty days. Further study is required to determine methods for precise calculation of the extinction coefficient under different weather conditions. Moreover, it should be noted that we have conducted only a few experiments and calculations. To improve this new method, additional experiments should be designed in future studies.

    Acknowledgements. We want to thanks DENG Zhao-Ze, WANG Yi-Nan, BI Yong-Heng for helping to operate the lidar. This work was supported by the National Natural Science Foundation of China (Grant No. 41127901).

    Campbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing,J. Atmos. Oceanic Technol., 19, 431-442.

    Chen, L.-F, X.-X. Li, J.-H. Tao, et al., 2011: The aerosol retrieval for ground-based lidar in:Research and Application of Aerosol Quantitative Remote Sensing Inversion, P. Han et al. (Eds.), Science Press, Beijing, 70-75.

    Collis, R. T. H., and P. B. Russell, 1976: Lidar measurement of particles and gases by elastic backscattering and differential absorption,Laser Monitoring Atmos., 14, 71-151.

    Dulac, F., and P. Chazette, 2003: Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during the STAAARTE campaign,Atmos. Chem. Phys., 3, 1817-1831.

    Fernald, F. G., 1984: Analysis of atmospheric lidar observations: Some comments,Appl. Opt., 23, 652-653.

    Klett, J. D., 1985: Lidar inversion with variable backscatter/extinction ratios,Appl. Opt., 24(11), 1638-1643.

    Lohmann, U., and J. Feichter, 1997: Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM,J. Geophys. Res., 102(D12), 13685-13700.

    Lu, X., Y. Jiang, X. Zhang, et al., 2011: Retrieval of aerosol extinction-to-backscatter ratios by combining ground-based and space-borne lidar elastic scattering measurements,Opt. Express, 19(S2), A72-A79.

    Omar, A. H., D. Winker, M. A.Vaughan et al., 2009: The CALIPSO automated aerosol classification and lidar ratio selection algorithm,J. Atmos. Oceanic Technol., 26, 1994-2014.

    Omar, A. H., D. Winker, and J. G. Won, 2004: Aerosol models for the CALIPSO lidar inversion algorithms,Remote Sens., 153, 153-164, doi:10.1117/12.511067.

    Qiu, J., S. Zheng, Q. Huang, et al., 2003: Lidar measurements of cloud and aerosol in the upper troposphere in Beijing,Chinese J. Atmos. Sci.(in Chinese), 27, 1-7.

    Twomey, S., 1977: Influence of pollution on the short-wave albedo of clouds,J. Atmos. Sci., 34, 1149-1152.

    Welton, E. J., K. J. Voss, H. R. Gordon, et al., 2000: Ground-based lidar measurements of aerosols during ACE-2: Instrument de-scription, results, and comparisons with other ground-based and airborne measurements,Tellus B, 52, 636-651.

    Welton, E. J., K. J. Voss, P. K. Quinn, et al., 2002: Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars,J. Geophys. Res., 107(D19), 8019, doi:10.1029/2000JD000038.

    Yan, Q., D. Hua, S. Li, et al., 2013: Observation and productization of the micro-pulsed Mie scattering lidar system,Chinese J. Quantum Electron., 30(1), 123-182.

    Zhou, J., G. Yue, F. Qi, et al., 1998: Optical properties of aerosol derived from lidar measurements,Chinese J. Quantum Electron., 15(2), 140-148.

    :Pan, Y.-B., D.-R. Lü, and W. Pan, 2014: A new method for aerosol retrieval based on lidar observations in Beijing,Atmos. Oceanic Sci. Lett., 7, 203-209,

    10. 3878/j.issn.1674-2834.13.0090.

    Received 22 November 2013; revised 26 January 2014; accepted 12 February 2014; published 16 May 2014

    PAN Weilin, panweilin@mail.iap.ac.cn

    欧美日韩黄片免| 黄色a级毛片大全视频| 他把我摸到了高潮在线观看 | 国产欧美日韩精品亚洲av| 久久热在线av| 大码成人一级视频| 我要看黄色一级片免费的| 亚洲成人免费av在线播放| 菩萨蛮人人尽说江南好唐韦庄| 国产精品影院久久| 两人在一起打扑克的视频| 在线观看人妻少妇| 中文字幕色久视频| 丝袜喷水一区| 一级片'在线观看视频| 日韩精品免费视频一区二区三区| 免费久久久久久久精品成人欧美视频| 国产精品麻豆人妻色哟哟久久| 亚洲av男天堂| tube8黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 精品人妻在线不人妻| 亚洲欧洲精品一区二区精品久久久| 考比视频在线观看| 精品一区二区三区av网在线观看 | 久久国产亚洲av麻豆专区| 岛国毛片在线播放| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 男人爽女人下面视频在线观看| 国产精品 国内视频| 建设人人有责人人尽责人人享有的| 国产欧美日韩一区二区精品| 18禁观看日本| 爱豆传媒免费全集在线观看| 一区福利在线观看| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 午夜福利视频精品| 性色av乱码一区二区三区2| av免费在线观看网站| 亚洲人成电影观看| 中文字幕制服av| 桃花免费在线播放| 久久精品aⅴ一区二区三区四区| 久久影院123| 亚洲精品粉嫩美女一区| 一本综合久久免费| 母亲3免费完整高清在线观看| 国产精品一二三区在线看| 国产成人av教育| 亚洲国产毛片av蜜桃av| 欧美国产精品一级二级三级| 黄片小视频在线播放| 色播在线永久视频| 国产成人精品久久二区二区91| 99热全是精品| 热99re8久久精品国产| 久久狼人影院| 我的亚洲天堂| 少妇裸体淫交视频免费看高清 | 男女之事视频高清在线观看| 少妇 在线观看| av福利片在线| 搡老岳熟女国产| 国产日韩一区二区三区精品不卡| 国产精品一区二区免费欧美 | 91老司机精品| 精品国产一区二区三区久久久樱花| 777久久人妻少妇嫩草av网站| bbb黄色大片| 国产精品亚洲av一区麻豆| 丝袜人妻中文字幕| 久久中文字幕一级| 亚洲久久久国产精品| 亚洲国产看品久久| 国产在视频线精品| 美女主播在线视频| 少妇被粗大的猛进出69影院| 精品高清国产在线一区| 欧美日韩成人在线一区二区| 在线观看人妻少妇| 看免费av毛片| 亚洲激情五月婷婷啪啪| 国产日韩欧美亚洲二区| 欧美久久黑人一区二区| 国产精品一区二区在线不卡| 中文字幕最新亚洲高清| 老司机午夜福利在线观看视频 | 高清视频免费观看一区二区| 午夜免费观看性视频| 日韩电影二区| 高清欧美精品videossex| 99热网站在线观看| 国产激情久久老熟女| 99精国产麻豆久久婷婷| 免费在线观看影片大全网站| 亚洲欧洲日产国产| 俄罗斯特黄特色一大片| 国产高清视频在线播放一区 | 18禁观看日本| 成人18禁高潮啪啪吃奶动态图| 肉色欧美久久久久久久蜜桃| 欧美 日韩 精品 国产| 久久久精品94久久精品| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 2018国产大陆天天弄谢| 91成年电影在线观看| 久久人人爽人人片av| 日韩中文字幕视频在线看片| 女性生殖器流出的白浆| 亚洲三区欧美一区| 亚洲精品国产一区二区精华液| 亚洲av电影在线进入| 亚洲精品国产区一区二| 欧美国产精品一级二级三级| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 丰满迷人的少妇在线观看| 一级片免费观看大全| 亚洲国产毛片av蜜桃av| 午夜日韩欧美国产| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 99国产精品一区二区三区| 操美女的视频在线观看| 亚洲中文av在线| 亚洲精品在线美女| 中国国产av一级| 亚洲国产欧美一区二区综合| 亚洲第一av免费看| 女人爽到高潮嗷嗷叫在线视频| 久9热在线精品视频| 久久av网站| 久热爱精品视频在线9| 亚洲精品国产一区二区精华液| 中文字幕人妻丝袜制服| 国产成人免费无遮挡视频| 国产色视频综合| a级片在线免费高清观看视频| 午夜激情av网站| 一级片'在线观看视频| 久久人妻熟女aⅴ| 新久久久久国产一级毛片| 99久久综合免费| 亚洲人成电影免费在线| 久久久水蜜桃国产精品网| 久久久久久免费高清国产稀缺| 欧美大码av| 国产成人影院久久av| 久久精品国产亚洲av香蕉五月 | 日韩欧美一区视频在线观看| 99国产精品一区二区三区| 亚洲精品乱久久久久久| 国产av精品麻豆| 午夜免费成人在线视频| netflix在线观看网站| 亚洲国产av新网站| 色94色欧美一区二区| 伊人久久大香线蕉亚洲五| 久久国产亚洲av麻豆专区| 妹子高潮喷水视频| netflix在线观看网站| 老司机午夜十八禁免费视频| 国产精品自产拍在线观看55亚洲 | 欧美激情高清一区二区三区| 免费黄频网站在线观看国产| 亚洲专区字幕在线| 久久久久视频综合| 51午夜福利影视在线观看| 巨乳人妻的诱惑在线观看| 手机成人av网站| 欧美国产精品一级二级三级| 亚洲激情五月婷婷啪啪| 久久亚洲国产成人精品v| 亚洲人成77777在线视频| 永久免费av网站大全| 亚洲精品中文字幕一二三四区 | 黄频高清免费视频| 日本a在线网址| 国产又色又爽无遮挡免| 国产一级毛片在线| 亚洲欧美一区二区三区久久| 亚洲综合色网址| 精品高清国产在线一区| 亚洲精品乱久久久久久| 亚洲精华国产精华精| 久久av网站| 亚洲av成人不卡在线观看播放网 | 黄片小视频在线播放| 天天躁夜夜躁狠狠躁躁| 亚洲欧美清纯卡通| 亚洲国产毛片av蜜桃av| 久久免费观看电影| 久久午夜综合久久蜜桃| 黑人巨大精品欧美一区二区mp4| 精品人妻在线不人妻| 麻豆av在线久日| 伦理电影免费视频| 精品福利观看| 国产欧美日韩一区二区三 | av网站在线播放免费| 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品电影小说| 日韩欧美一区视频在线观看| 又大又爽又粗| 精品一区二区三区av网在线观看 | 久久精品国产综合久久久| av在线app专区| 精品国产一区二区三区久久久樱花| 国产一区二区在线观看av| 亚洲精品国产av成人精品| 久久亚洲精品不卡| 老鸭窝网址在线观看| 夜夜夜夜夜久久久久| 王馨瑶露胸无遮挡在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 黄色视频,在线免费观看| 国产区一区二久久| 国产精品熟女久久久久浪| 巨乳人妻的诱惑在线观看| 亚洲av国产av综合av卡| 亚洲情色 制服丝袜| 99久久精品国产亚洲精品| 免费在线观看日本一区| 女人被躁到高潮嗷嗷叫费观| 亚洲精品国产精品久久久不卡| 亚洲精品自拍成人| 午夜成年电影在线免费观看| 国产精品免费视频内射| 欧美午夜高清在线| a在线观看视频网站| 高清在线国产一区| 国产亚洲一区二区精品| 99精品欧美一区二区三区四区| 亚洲国产欧美一区二区综合| 久久久久精品国产欧美久久久 | 国产日韩欧美亚洲二区| 久久人妻熟女aⅴ| 2018国产大陆天天弄谢| 国产视频一区二区在线看| 亚洲,欧美精品.| 爱豆传媒免费全集在线观看| 亚洲精品一区蜜桃| 69精品国产乱码久久久| 亚洲三区欧美一区| 亚洲精品自拍成人| 久久久久网色| 最近中文字幕2019免费版| 9色porny在线观看| 日韩电影二区| 亚洲第一欧美日韩一区二区三区 | av在线app专区| 制服诱惑二区| 国产亚洲一区二区精品| 满18在线观看网站| 高清欧美精品videossex| 十八禁网站免费在线| √禁漫天堂资源中文www| 精品人妻一区二区三区麻豆| 精品国产一区二区久久| 成人av一区二区三区在线看 | 999久久久国产精品视频| 又大又爽又粗| 一级a爱视频在线免费观看| 精品国产乱码久久久久久男人| 精品国内亚洲2022精品成人 | 亚洲欧美激情在线| 亚洲国产欧美一区二区综合| 亚洲午夜精品一区,二区,三区| 国产精品一区二区在线观看99| 9色porny在线观看| 亚洲第一青青草原| 精品一区在线观看国产| 人妻 亚洲 视频| 久久香蕉激情| 精品久久久精品久久久| 搡老岳熟女国产| 狠狠狠狠99中文字幕| 可以免费在线观看a视频的电影网站| 美女国产高潮福利片在线看| 国产欧美日韩一区二区三 | 亚洲av成人一区二区三| 亚洲精品粉嫩美女一区| av国产精品久久久久影院| av视频免费观看在线观看| 亚洲成国产人片在线观看| 亚洲全国av大片| 亚洲五月婷婷丁香| 国产视频一区二区在线看| 69av精品久久久久久 | 日本欧美视频一区| 99久久精品国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 国产熟女午夜一区二区三区| 国产成人欧美| 国产熟女午夜一区二区三区| 丝袜在线中文字幕| 后天国语完整版免费观看| 一级a爱视频在线免费观看| 久久精品国产亚洲av高清一级| 精品国产国语对白av| 日韩三级视频一区二区三区| 精品少妇久久久久久888优播| 久久毛片免费看一区二区三区| 老司机午夜福利在线观看视频 | 他把我摸到了高潮在线观看 | 国产精品免费视频内射| 最近最新免费中文字幕在线| 美女国产高潮福利片在线看| 国产福利在线免费观看视频| 成年人午夜在线观看视频| 欧美日韩亚洲综合一区二区三区_| 午夜福利视频精品| 国产精品一区二区在线观看99| 一区二区三区四区激情视频| 国产精品九九99| 我的亚洲天堂| 国产在线视频一区二区| av国产精品久久久久影院| 99精品欧美一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 一区福利在线观看| 免费av中文字幕在线| 日韩 欧美 亚洲 中文字幕| 一本—道久久a久久精品蜜桃钙片| 韩国精品一区二区三区| 亚洲国产av新网站| av在线app专区| 极品人妻少妇av视频| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 国产亚洲一区二区精品| tocl精华| 午夜精品国产一区二区电影| 18禁黄网站禁片午夜丰满| 久久久久久人人人人人| 欧美日韩一级在线毛片| 天天躁夜夜躁狠狠躁躁| 亚洲伊人久久精品综合| 无遮挡黄片免费观看| 99久久精品国产亚洲精品| 99久久人妻综合| 亚洲欧美成人综合另类久久久| 18禁观看日本| 性少妇av在线| 亚洲国产毛片av蜜桃av| 老司机福利观看| 国产又爽黄色视频| 午夜久久久在线观看| 久久狼人影院| 男女国产视频网站| 欧美黄色片欧美黄色片| 久久久久久久精品精品| 国产一区二区激情短视频 | 最近最新中文字幕大全免费视频| 9热在线视频观看99| 亚洲黑人精品在线| 国产精品久久久久久精品电影小说| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 最近最新免费中文字幕在线| 亚洲中文字幕日韩| 波多野结衣一区麻豆| 超碰97精品在线观看| 欧美成狂野欧美在线观看| 国产亚洲一区二区精品| 别揉我奶头~嗯~啊~动态视频 | 777米奇影视久久| 免费少妇av软件| 国产男人的电影天堂91| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 在线永久观看黄色视频| 亚洲av电影在线观看一区二区三区| 欧美午夜高清在线| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 窝窝影院91人妻| 女性生殖器流出的白浆| av电影中文网址| 久久人妻熟女aⅴ| 在线十欧美十亚洲十日本专区| 亚洲一码二码三码区别大吗| 一级黄色大片毛片| 男人操女人黄网站| 久久人人97超碰香蕉20202| 三级毛片av免费| 亚洲精品一区蜜桃| 婷婷丁香在线五月| 国产又色又爽无遮挡免| 高潮久久久久久久久久久不卡| 亚洲国产日韩一区二区| 深夜精品福利| 国产成人av激情在线播放| 国产一区二区三区综合在线观看| 国产人伦9x9x在线观看| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 侵犯人妻中文字幕一二三四区| 日韩视频一区二区在线观看| www.熟女人妻精品国产| 日韩制服丝袜自拍偷拍| 久久天躁狠狠躁夜夜2o2o| 亚洲成人手机| 日韩欧美一区二区三区在线观看 | 午夜精品国产一区二区电影| 久久精品久久久久久噜噜老黄| 黄色 视频免费看| 女警被强在线播放| 欧美av亚洲av综合av国产av| 国产精品免费大片| 一本一本久久a久久精品综合妖精| 高潮久久久久久久久久久不卡| www.av在线官网国产| 99久久综合免费| 俄罗斯特黄特色一大片| 精品福利观看| 亚洲色图 男人天堂 中文字幕| 狠狠精品人妻久久久久久综合| 极品人妻少妇av视频| av在线老鸭窝| 久久久精品94久久精品| 捣出白浆h1v1| 一本久久精品| 久久天躁狠狠躁夜夜2o2o| 动漫黄色视频在线观看| 国产成人一区二区三区免费视频网站| 亚洲av成人不卡在线观看播放网 | 宅男免费午夜| 免费一级毛片在线播放高清视频 | 国产男人的电影天堂91| 宅男免费午夜| 午夜福利视频精品| 亚洲av日韩在线播放| 一级a爱视频在线免费观看| 水蜜桃什么品种好| 日韩大码丰满熟妇| 久久久久久久国产电影| 首页视频小说图片口味搜索| 另类亚洲欧美激情| 中文字幕av电影在线播放| 精品国产一区二区三区久久久樱花| 欧美精品啪啪一区二区三区 | 岛国在线观看网站| 黄片大片在线免费观看| 欧美+亚洲+日韩+国产| 各种免费的搞黄视频| 久久久精品免费免费高清| 91老司机精品| 99国产综合亚洲精品| 国产老妇伦熟女老妇高清| a在线观看视频网站| 国产欧美日韩一区二区三区在线| 成人国语在线视频| 在线永久观看黄色视频| 日日摸夜夜添夜夜添小说| 肉色欧美久久久久久久蜜桃| 99热全是精品| 女警被强在线播放| 久久狼人影院| 久久99热这里只频精品6学生| 天天添夜夜摸| 欧美日韩精品网址| 亚洲一卡2卡3卡4卡5卡精品中文| 日本91视频免费播放| 一级毛片电影观看| 五月开心婷婷网| 欧美性长视频在线观看| 国产精品偷伦视频观看了| 嫩草影视91久久| 老司机福利观看| 久久av网站| 99久久99久久久精品蜜桃| 永久免费av网站大全| 亚洲精品在线美女| 最新在线观看一区二区三区| 亚洲视频免费观看视频| 午夜日韩欧美国产| 亚洲精华国产精华精| 久久久久久久大尺度免费视频| 首页视频小说图片口味搜索| 18禁国产床啪视频网站| 亚洲av成人一区二区三| 亚洲精华国产精华精| 老熟妇仑乱视频hdxx| 一本色道久久久久久精品综合| 国产又色又爽无遮挡免| 亚洲国产欧美网| 国产精品久久久久久人妻精品电影 | 欧美亚洲日本最大视频资源| 亚洲成国产人片在线观看| 国产不卡av网站在线观看| 少妇猛男粗大的猛烈进出视频| 久久99一区二区三区| 国产无遮挡羞羞视频在线观看| 99热网站在线观看| 欧美午夜高清在线| 国产免费一区二区三区四区乱码| 亚洲精华国产精华精| 国产欧美日韩一区二区三区在线| av网站在线播放免费| 十八禁网站免费在线| 欧美人与性动交α欧美软件| 国产精品偷伦视频观看了| 97在线人人人人妻| 青春草亚洲视频在线观看| 黑丝袜美女国产一区| 一级黄色大片毛片| 亚洲伊人久久精品综合| 国产不卡av网站在线观看| 亚洲av片天天在线观看| 免费看十八禁软件| 人人妻,人人澡人人爽秒播| 欧美少妇被猛烈插入视频| 性高湖久久久久久久久免费观看| a 毛片基地| 国产极品粉嫩免费观看在线| 久久精品熟女亚洲av麻豆精品| 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 超碰97精品在线观看| 爱豆传媒免费全集在线观看| 在线精品无人区一区二区三| 久久精品亚洲熟妇少妇任你| tocl精华| 青春草视频在线免费观看| av国产精品久久久久影院| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 狂野欧美激情性xxxx| 人人妻人人爽人人添夜夜欢视频| 老司机深夜福利视频在线观看 | 97在线人人人人妻| 丰满迷人的少妇在线观看| 日韩欧美免费精品| 亚洲精品中文字幕在线视频| 777米奇影视久久| 欧美日本中文国产一区发布| 国产精品久久久久久精品电影小说| 最黄视频免费看| 在线观看免费视频网站a站| 91精品国产国语对白视频| 交换朋友夫妻互换小说| www.自偷自拍.com| 久久ye,这里只有精品| 99国产综合亚洲精品| 国产亚洲一区二区精品| av又黄又爽大尺度在线免费看| 99国产精品免费福利视频| 五月天丁香电影| 日韩有码中文字幕| 国产精品久久久人人做人人爽| 黑人操中国人逼视频| 亚洲五月婷婷丁香| 亚洲第一av免费看| 丁香六月欧美| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 50天的宝宝边吃奶边哭怎么回事| 国产成人精品久久二区二区91| 18禁观看日本| 亚洲精品国产色婷婷电影| 亚洲九九香蕉| 美女视频免费永久观看网站| 国产激情久久老熟女| 一个人免费在线观看的高清视频 | 亚洲av欧美aⅴ国产| 韩国精品一区二区三区| 久久影院123| 香蕉丝袜av| 亚洲精品一卡2卡三卡4卡5卡 | 丁香六月欧美| 国产精品自产拍在线观看55亚洲 | 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 精品欧美一区二区三区在线| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 久久女婷五月综合色啪小说| 欧美国产精品va在线观看不卡| 视频在线观看一区二区三区| 欧美日韩亚洲高清精品| 欧美黄色淫秽网站| 人妻 亚洲 视频| 免费在线观看日本一区| 美女脱内裤让男人舔精品视频| 下体分泌物呈黄色| 大香蕉久久成人网| 91字幕亚洲| 精品欧美一区二区三区在线| 宅男免费午夜| 亚洲中文日韩欧美视频| 最近最新中文字幕大全免费视频| 日韩中文字幕欧美一区二区| 国产成人av教育| 亚洲国产看品久久| 人人澡人人妻人| 一个人免费在线观看的高清视频 | 精品视频人人做人人爽| 国产日韩一区二区三区精品不卡| 久久人妻熟女aⅴ| 精品少妇一区二区三区视频日本电影| 亚洲天堂av无毛| videos熟女内射| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 亚洲中文日韩欧美视频| 亚洲aⅴ乱码一区二区在线播放 | 老司机午夜福利在线观看视频|